• No results found

Skelleftefältet i norra Sverige har tolkats som en paleoproterozoisk vul-kanbåge. Det är ett av de viktigaste malmdistrikten i Sverige och malmkropparna är av typen Vulkaniska Massiva Sulfider (VMS) och pro-ducerar i huvudsak basmetaller, men även guld och silver. Prospektering och brytning av mineralresurser flyttas mot större djup på grund av svårigheten i att finna ytnära malmkroppar, men också tack vare de höga metallpriserna.

Därför är det viktigt att bättre förstå de tredimensionella geologiska struktur-erna ner till några kilometers djup. En sådan tredimensionell förståelse av berggrunden är viktig för att hitta fler malmkroppar samt för att planera framtida gruvdrift.

Efter ett lyckat pilotprojekt med 3D geologisk modellering i de västra delarna av skelleftefältet (omkring Kristineberg gruvan) lanserades 2008 ett nytt projekt ”VINNOVA 4D modeling of the Skellefte district” i syfte att förbättra existerande geologiska modeller på grunda djup, samt utöka model-len mot de centrala delarna. Mer än 100 km (krokiga) reflektionsseimiska profiler mättes in, bearbetades och tolkades integrerat med geologiska ob-servationer och potentialfältsdata. Resultaten användes för att förbättra ex-isterande 3D geologiska modeller, men gav även ny information om geologi och potentiella malmfyndigheter på större djup.

Två nya (i de närmaste vinkelräta) profiler i Kristineberg området förbät-trade den existerande lokala geologiska modellen jämfört med modellen från pilotprojektet och visade även på förmågan att lokalisera starkt mineral-iserade zoner med reflektionsseismik i området. Den mineralmineral-iserade zonen i Kristineberg samt strukturer associerade med denna stupar mot syd ner till ett djup av ungefär två kilometer. I de centrala delarna av Skelleftefältet visade tre (nästan parallella) profiler en annan seismisk karaktär jämfört med seismiskt data från Kristineberg området. De starkaste reflektionerna och diffraktionerna kunde korreleras med förkastningar och skjuvzoner i om-rådet. Dessa resultat kunde användas för att konstruera en första 3D geolo-gisk modell över de centrala delarna av Skelleftefältet ner till ett djup av ungefär fem kilometer. Tolkning av observerade reflektioner och svårigheter med standard seismisk processering förbättrades och förenklades med hjälp av användandet av Cross-dip analysering, reflektions modellering, pre-stack tidsmigrering, swath 3D processering samt Finit-differens seismisk model-lering. Även om 3D seismiska data är oftast att föredra för att uppnå en pcis lokalisering av potentiella mål för exploatering i gruvdistrikt, visar

re-57 sultaten från denna avhandling att även 2D seismiska profiler kan ge mycket värdefull information i gruvdistrikt, särskilt då resultaten kan verifieras med geologiska observationer och andra geofysiska data.

Acknowledgments

One of the many joys of this completion is to look back at the route and remember all the people who helped and supported me along this long but fulfilling road. I take this opportunity to express my sincere appreciation and gratitude to many of those who helped me finish this research project.

Foremost, I would like to express my sincere gratitude to my supervisor Christopher Juhlin. Chris: I met you in the Oskarshamn seismic fieldwork for the first time (my first practical fieldwork in the seismic group, April 2004) and my motivation to study for a PhD in Geophysics started there. I told myself, if I am going to do a PhD, I would want to have a supervisor like you. Thanks so much for having me accepted in the Geophysics group as your PhD student. I like your socializing and communications with your students, I had a comfortable time during my PhD, and I could express my opinions to you. I would like to thank you for allowing me to follow Alireza to Canada in the beginning of my study. During that time, you were in con-tact with me all the time and answered my questions quickly. I would like to thank you for all the time that you spent guiding me through seismic pro-cessing, modeling, reviewing my papers, and the thesis. Thank you for all your guidance, motivation, patience and support during this time. I also thank you for giving me opportunities to see nice cities and meet seismic experts by sending me to the conferences. I want to also thank you and your family for all your kindness and friendship since we moved to Sweden.

Thank you very much!

Special thanks go to Hans Palm for all the practical lecturing on reflection seismic data acquisition. Hasse: I learned a lot from you during many differ-ent fieldworks not only throughout my PhD time, also before that. Your support made me brave enough to go forward. You guided me not only through seismic surveys, but also my life, cooking, Swedish and driving.

I would like to thank my co-supervisor, Ari Tryggvason, and my earlier co-supervisor Laust B. Pedersen. Ari: thank you for your friendship and help since we moved to Sweden. I never forget your kindness, thank you!

I would like to thank my former colleagues, Artem Kashubin, for teach-ing me how to operate the ‘White House’. Artem: you gave me confidence to operate the ‘White House’ and also drive it. I wish you and your family all the best wherever you are.

I would like to thank my former officemates, Swasdee Yordkayhun and María García. María: we shared lots of time together not only because we

59 were office- or projectmates, but also because you were a nice friend to me.

Thank you for all your kindness and help from Matlab debugging to arrang-ing my home’s curtains!

I would like to thank Emil Lundberg. Emil: I spent a lot of time with you during fieldwork and conferences. Thanks for all your help from seismic processing to Swedish. Thanks also for the nice foods; your cooking in the field was always excellent. I want to especially thank you for taking care of the Swedish summary of this thesis.

VINNOVA, Boliden Mineral AB and Lundin mining are thanked for funding my research project. I would also like to thank all the VINNOVA 4D project members for their great discussion and collaborations, especially Pietari Skyttä and Tobias Bauer. Thank you very much!

I would like to thank Alireza, Chris, Tobias B., Bjarne and Omid for re-viewing this thesis and their comments.

I am grateful to Taher Mazloomian and his family, Faramarz Nil-fouroushan and his wife, Tabasom, Mehrdad Bastani and his wife, Fariba, Elnaz Sherafat and her husband, Hossein, for their friendship, kindness, support and help since we moved to Sweden. Thank you very much!

I would like to thank Reza Younesi and his wife, Sahar (Fatemeh Sharifi) for their friendship and kindness to my family and me. I will never be tired of being with you and I wish you all the best and thank you!

I take the opportunity to thank all my Iranian and International friends that helped my family and me during my PhD time.

At Uppsala University, the academic and support staffs from the Depart-ment of Earth Sciences are acknowledged for their support and help. All my colleagues, former and present PhD students are thanked for a great time during these years. I spent many hours with you during coffee breaks, lunch times, parties, conferences and fieldtrips. I will not try to write down a full list of names, since I do not want to miss anybody. A big ''Thank you'' to all of you.

My families, including my in-laws, have always supported me throughout my PhD time and I really appreciate it. I would like to thank my family for accompanying me during many of my fieldworks and taking care of Armita.

I am so lucky to have your support whenever and wherever needed!

I want to thank my lovely daughters, Armita and Camelia. I am greatly indebted to Armita for company during fieldworks, conferences and be pa-tient during my absence, and the times that I could have spent with her, but I spent on my own work. Thank you my dear Armita!

My deepest gratitude and love belong to Alireza, whose support, patience and guidance were with me in all these years. Your support and encourage-ment were in the end what made this dissertation possible. There are not enough words to thank you and I do not know many, but: Thank you.

Azita (Mahdieh) Dehghannejad, March, 2014

References

Adam, E., G. Perron, G. Arnold, L. Matthews, and B. Milkereit, 2003, 3D seismic imaging for VMS deposit exploration, Matagami, Quebec, in D.

W. Eaton, B. Milkereit, and M. H. Salisbury, eds., Hard rock seismic ex-ploration: SEG Geophysical Developments, 10, 229–246.

Allen, R.L., P. Weihed, and S-Å. Svenson, 1996, Setting of Zn-Cu-Au-Ag massive sulphide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden: Economic Geology, 91, 1022–1053.

Aki, K., and P. G. Richards, 1980, Quantitative Seismology, 1, 557 pp., W.

H. Freeman, New york.

Ayarza, P., C. Juhlin, D. Brown, M. Beckholmen, G. Kimbell, R. Pechnig, L. Pevzner, C. Ayala, M. Bliznetsov, A. Glushkov, and A. Rybalka, 2000, Integrated geological and geophysical studies in the SG4 borehole area, Tagil Volcanic Arc, Middle Urals: Location of seismic reflectors and source of the reflectivity: Journal of Geophysical Research, 105(B9), 21333–21352.

BABEL Working Group, 1990, Evidence for early Proterozoic plate tecton-ics from seismic reflection profiles in the Baltic shield: Nature, 348, 34–

38.

BABEL Working Group, 1993, Deep seismic reflection/refraction interpre-tation of crustal structure along BABEL profiles A and B in the southern Baltic Sea: Geophysical Journal International, 112, 325–343.

Bauer, T. E., 2010, Structural and Sedimentological Reconstruction of the Inverted Vargfors Basin, A base for 4D-modelling, Licentiate thesis, Lu-leå University of Technology, Department of Chemical Engineering and Geosciences, Division of Geosciences-Ore Geology, ISBN 978-91-7439-189-3.

Bauer, T. E., P. Skyttä, R. L. Allen, and P. Weihed, 2011, Syn-extensional faulting controlling structural inversion-Insights from the Palaeoprotero-zoic Vargfors syncline, Skellefte mining district, Sweden: Precambrian Research, 191, 166–183.

Bauer, T., P. Skyttä, R. Allen, P. Weihed, 2013, Fault-controlled sedimenta-tion in a progressively opening extensional basin: the Palaeoproterozoic Vargfors basin, Skellefte mining district, Sweden: International Journal of Earth Sciences, 102(2), 385-400.

61 Bauer, T. E., P. Skyttä, T. Hermansson, R. L. Allen, and P. Weihed, 2014, Correlation between distribution and shape of VMS deposits, and region-al deformation patterns, Skellefte district, northern Sweden: Minerregion-alium Deposita, doi: 10.1007/s00126-013-0503-2.

Bejgarn, T., U. Söderlund, P. Weihed, H. Årebäck, R. Ernst, 2013, Palaeo-proterozoic porphyry Cu-Au, intrusion-hosted Au and ultramafic Cu–Ni deposits in the Fennoscandian Shield: Temporal constraints using U–Pb geochronology: Lithos, 174, 236–254, doi: 10.1016/j.lithos.2012.06.015.

Bellefleur, G., A. Barnes, A. Calvert, C. Hubert, M. Mareschal, 1995, Seis-mic reflection constraints from Lithoprobe line 29 on the upper crustal structures of the northern Abitibi greenstone belt: Canadian Journal of Earth Sciences, 32, 128–134.

Bellefleur, G., C. Müller, D. Snyder, and L. Matthews, 2004, Downhole seismic imaging of a massive sulphide orebody with mode-converted waves, Halfmile lake, New Brunswick, Canada: Geophysics, 69, 318–

329, doi: 10.1190/1.1707051.

Bellefleur, G., A. Malehmir, and C. Müller, 2012, Elastic finite-difference modeling of volcanic-hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada: Geophysics, 77(5), WC25–

WC36.

Bergman Weihed, J., U. Bergström, K. Billström, P. Weihed, 1996, Geolo-gy, tectonic setting, and origin of the Palaeoproterozoic Boliden Au-Cu-As deposit, Skellefte District, northern Sweden: Economic Geology, 91, 1073–1097.

Billström, K., and P. Weihed, 1996, Age and provenance of host rocks and ores of the Palaeoproterozoic Skellefte District, northern Sweden: Eco-nomic Geology, 91, 1054–1072.

Bohlen, T., C. Müller, and B. Milkereit, 2003, Elastic wave scattering from massive sulfide orebodies: On the role of composition and shape, in B.

Milkereit, D. Eaton, and M. Salisbury, eds., Hard rock seismic explora-tion: SEG Geophysical Developments, 10, 70–89.

Carranza, E. J. M., and M. Sadeghi, 2010, Predictive mapping of prospectiv-ity and quantitative estimation of undiscovered VMS deposits in Skel-lefte district (Sweden): Ore Geology Reviews, 38, 219–241.

Chen, G., G. Liang, D. Xu, Q. Zeng, S. Fu, X. Wei, Z. He, and G. Fu, 2004, Application of a shallow seismic reflection method to the exploration of a gold deposit: Journal of Geophysics and Engineering, 1, 12–16, doi:

10.1088/1742-2132/1/1/002.

Cheng, L. Z., R. S. Smith, M. Allard, P. Keating, M. Chouteau, J. Lemieux, A. Vallée, D. Bois, and D. K. Fountain, 2006, Geophysical case study of the Iso and New Insco deposits, Québec, Canada: Part II: Modeling and interpretation: Exploration and Mining Geology, 15(1-2), 65–74, doi:

10.2113/gsemg.15.1-2.65.

Clarke, G. J., and D. W. Eaton, 2003, Influence of morphology and surface roughness on the seismic response of massive sulfides based on elastic wave Kirchhoff modeling, in D. W. Eaton, B. Milkereit, and M. H. Salis-bury, eds., Hardrock seismic exploration: SEG Geophysical Develop-ments, 10, 45–58.

Cosma, C., 1983, Determination of rock mass quality by a crosshole seismic method: Bulletin – International Association of Engineering Geology, 26-27(1), 219–225.

Cosma, C., and N. Enescu, 2001, Characterization of fractured rock in the vicinity of tunnels by the swept impact seismic technique: International Journal of Rock Mechanics and Mining Sciences, 38, 815–821.

Dehghannejad, M., C. Juhlin, A. Malehmir, P. Skyttä, and P. Weihed, 2010, Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden: Journal of Applied Geophysics, 71, 125–136.

Dehghannejad, M., T. E. Bauer, C. Juhlin, and P. Weihed, 2012a, Crustal geometry of the central Skellefte district, northern Sweden- Constraints from reflection seismic investigations: Tectonophysics, 524-525, 87–99, doi: 10.1016/j.tecto.2011.12.021.

Dehghannejad, M., A. Malehmir, C. Juhlin, and P. Skyttä, 2012b, 3D con-straints and finite-difference modeling of massive sulfide deposits: The Kristineberg seismic line revisited, northern Sweden: Geophysics, 77(5), WC69–WC79.

Deregowski, S. M., 1986, What is DMO?: First Break, 4, 7–24.

Duweke, W., J. C. Trickett, K. Tootal, and M. Slabbert, 2002, Three-dimensional reflection seismics as a tool to optimize mine design, plan-ning and development in the Bushveld Igneous Complex: 64th Annual International Conference and Exhibition, EAGE, Extended Abstracts.

Eaton, D. W., 1999, Weak elastic-wave scattering from massive sulfide ore-bodies: Geophysics, 64, 289–299, doi: 10.1190/1.1444525.

Eaton, D., B. Milkereit, and M. Salisbury, 2003, Hardrock seismic explora-tion: Mature technologies adapted to new exploration targets, Foreword to hardrock seismic exploration: SEG Geophysical Developments, 10, 1–

6.

Ehsan, S. A., A. Malehmir, and M. Dehghannejad, 2012, Re-processing and interpretation of 2D seismic data from the Kristineberg mining area, northern Sweden: Journal of Applied Geophysics, 80, 43–55.

Elming, S-Å., and H. Thunehed, 1991, A seismic reflection investigation in the Skellefte District, northern Sweden: GFF, 113(2-3), 258–259, doi:

10.1080/11035899109453866.

Fatti, J., 1987, Reflection seismic surveys in the Karoo Basin by Soekor:

South African Geophysical Association Yearbook, 22–30.

García Juanatey, M., 2012, Seismics, 2D and 3D Inversion of Magnetotellu-rics: Jigsaw pieces in understanding the Skellefte Ore District, PhD

the-63 sis, Uppsala University, Department of Earth Sciences, ISBN 978-91-554-8409-5.

García Juanatey, M., J. Hübert, A. Tryggvason, L. B. Pedersen, 2013, Imag-ing the Kristineberg minImag-ing area with two perpendicular magnetotelluric profiles in the Skellefte Ore District, northern Sweden: Geophysical Pro-specting, 61(1), 200–219.

Gierse, G., H. Trappe, J. Pruessmann, G. Eisenberg-Klein, J. Lynch, and D.

Clark, 2009, Enhanced velocity analysis, binning, gap infill, and imaging od sparse 2D/3D seismic data by CRS techniques: SEG Technical Pro-gram Expanded Abstracts, 3279–3283, doi: 10.1190/1.3255541.

Goleby, B., R. Korsch, T. Fomin, B. Bell, M. G. Nicoll, B. J. Drummond, and A. J. Owen, 2002, Preliminary 3-D geological model of the Kalgoor-lie region, Yilgarn Craton, Western Australia, based on deep seismic re-flection and potential-field data: Astralian Journal of Earth Sciences, 49, 917–933.

Gonzales Roldan, M. J., 2010, Mineralogia, petrologia y geoquimica de intrusions sin-volcanics en el distrito minero de Skellefte, norte de Suecia: Dissertation or Thesis, Universidad de Huelva, Spain, 273.

Green, A. G., 1972, Seafloor Spreading in the Mozambique Channel: Na-ture, 236, 19–21.

Green, A. G., and J. A. Mair, 1983, Subhorizontal fractures in a granitic pluton: Their detection and implications for radioactive waste disposal:

Geophysics, 48(11), 1428–1449.

Harrison, C. B., and M. Urosevic, 2012, Seismic processing, inversion, and AVO for gold exploration – Case study from Western Australia: Geo-physics, 77(5), WC235–WC243.

Hobbs, R. W., 2003, 3D modeling of seismic-wave propagation using com-plex elastic screens, with application to mineral exploration, in D. W.

Eaton, B. Milkereit, and M. H. Salisbury, eds., Hardrock seismic explora-tion: SEG Geophysical Developments, 10, 59–69.

Hübert, J., A. Malehmir, M. Smirnow, A. Tryggvason, and L. B. Pedersen, 2009, MT measurements in the western part of the Paleoproterozoic Skellefte Ore District, Northern Sweden: A contribution to an integrated geophysical study: Tectonophysics, 475, 493−502.

Hübert, J., M. García Juanatey, A. Malehmir, A. Tryggvason, and L. B.

Pedersen, 2013, The Upper crustal 3-D resistivity structure of the Kris-tineberg area, Skellefte district, northern Sweden revealed by magnetotel-luric data: Geophysical Journal International, 192(2), 500–513.

Jones, I. F., 2008, A modeling study of pre-processing consideration for reverse-time migration: Geophysics, 73(6), T99–T106.

Juhlin, C., 1995a, Imaging of fracture zones in the Finnsjön area, central Sweden, using the seismic reflection method: Geophysics, 60(1), 66−75, doi: 10.1190/1.1443764.

Juhlin, C., 1995b, Finite-difference elastic wave propagation in 2D hetero-geneous transversely isotropic media: Geophysical prospecting, 43, 843–

858.

Juhlin, C., and M. Stephens, 2006, Gently dipping fracture zones in Palaeo-proterozoic metagranite, Sweden: Evidence from reflection seismic and cored borehole data, and implications for the disposal of nuclear waste:

Journal of Geophysical Research, 111, B09302, doi:

10.1029/2005JB003887.

Juhlin, C., S. Kashubin, J. Knapp, V. Makovsky, and T. Ryberg, 1995, EU-ROPROBE seismic reflection profiling in the Urals: the ESRU project:

EOS, 76, 193–198.

Juhlin, C., S.-Å. Elming, C. Mellqvist, B. Öhlander, P. Weihed, and A. Wik-ström, 2002, Crustal reflectivity near the Archaean-Proterozoic boundary in northern Sweden and implications for tectonic evolution of the area:

Geophysical Journal International, 150, 180–197.

Kathol, B., and P. Weihed (eds.), 2005, Description of regional geological and geophysical maps of the Skellefte district and surrounding areas: Ge-ological Survey of Sweden, Ba 57, pp. 197.

Kathol, B., P. Weihed, I. Antal Lundin, G. Bark, J. Bergman Weihed, U.

Bergström, K. Billström, L. Björk, L. Claesson, J. Daniels, T. Eliasson, M. Frumerie, L. Kero, R.A. Kumpulainen, H. Lundström, I. Lundström, C. Mellqvist, J. Petersson, T. Skiöld, T. Sträng, L.-K. Stølen, J. Söder-man, C.-A. Triumf, A. Wikström, T. Wikström, H. Årebäck, 2005, Re-gional geological and geophysical maps of the Skellefte District and sur-rounding areas: Bedrock map, Geological Survey of Sweden, Ba 57:1.

Kazemeini, S. H., 2009, Seismic Investigations at the Ketzin CO2 Injection site, Germany: Applications to Subsurface Feature Mapping and CO2 Seismic Response Modeling, PhD thesis, Uppsala University, Depart-ment of Earth Sciences, ISBN 978-91-554-7557-4.

Keiswetter, D., R. Black, and C. Schmeissner, 1996, A program for seismic wave-field modeling using finite-difference techniques: Computers &

Geosciences, 22(3), 267–286.

Larner, K. L., B. R. Gibson, R. Chambers, and R. A. Wiggins, 1979, Simul-taneous estimation of residual statics and cross-dip corrections: Geophys-ics, 44, 1175–1192.

Li, Y., J. Downton, and B. Goodway, 2003, Recent applications of AVO to carbonate reservoirs in the Western Canadian Sedimentary Basin: The Leading Edge, 22(7), 670–674, doi: 10.1190/1.1599694.

Lundberg, E., 2014, 2D and 3D Reflection Seismic studies over Scandinavi-an Deformation Zones, PhD thesis, Uppsala University, Department of Earth Sciences, ISBN 978-91-554-8817-8.

Lundqvist, T., M. Vaasjoki, P.O. Persson, 1996, U–Pb ages of plutonic and volcanic rocks in the Svecofennian Bothnian Basin, central Sweden, and

65 their implications for the Palaeoproterozoic evolution of the Basin: GFF, 120, 357–363.

Lundström, I., M. Vaasjoki, U. Bergström, I. Antal, and F. Strandman, 1997, Radiometric age determinations of plutonic rocks in the Boliden area: the Hobergsliden granite and the Stavaträsk diorite, in T. Lundqvist, eds., Radiometric dating result 3: Sveriges Geologiska Undersökning, C830, 20–30.

Malehmir, A., 2007, 3D Geophysical and Geological Modeling in the Skel-lefte District: Implications for targeting Ore Deposits, PhD thesis, Uppsa-la University, Department of Earth Sciences, ISBN 978-91-554-6957-3.

Malehmir, A., and G. Bellefleur, 2009, 3D seismic reflection imaging of volcanic-hosted massive sulfide deposits: Insights from re-processing Halfmile Lake data, New Brunswick, Canada: Geophysics, 74, B209−B219, doi: 10.1190/1.3230495.

Malehmir, A., A. Tryggvason, C. Juhlin, J. Rodriguez-Tablante, and P. Wei-hed, 2006, Seismic imaging and potential field modeling to delineate structures hosting VHMS deposits in the Skellefte Ore District, northern Sweden: Tectonophysics, 426, 319−334.

Malehmir, A., A. Tryggvason, H. Lickorish, and P. Weihed, 2007, Regional structural profiles in the western part of the Palaeoproterozoic Skellefte ore district, northern Sweden: Precambrian Research, 159, 1−18.

Malehmir, A., H. Thunehed, and A. Tryggvason, 2009a, The Paleoprotero-zoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits: Geophysics, 74(1), B9−B22, doi: 10.1190/1.3008053.

Malehmir, A., C. Schmelzbach, E. Bongajum, G. Bellefleur, C. Juhlin, and A. Tryggvason, 2009b, 3D constraints on a possible deep >2.5 km mas-sive sulphide mineralization from 2D crooked-line seismic reflection data in the Kristineberg mining area, northern Sweden: Tectonophysics, 479, 223−240, doi: 10.1016/j.tecto.2009.08.013.

Malehmir, A., G. Bellefleur, and C. Müller, 2010, 3D diffraction and mode-converted scattering signatures of base-metal deposits, Bathurst mining camp, Canada: First Break, 28, 41−45.

Malehmir, A., P. Dahlin, E. Lundberg, C. Juhlin, H. Sjöström, and K. Hög-dahl, 2011, Reflection seismic investigations in the Dannemora area, cen-tral Sweden: Insights into the geometry of polyphase deformation zones and magnetic-skarn deposits: Journal of Geophysical Research, 116, B11307, doi: 10.1029/2011JB008643.

Malehmir, A., R. Durrheim, G. Bellefleur, M. Urosevic, C. Juhlin, D. J.

White, B. Milkereit, and G. Campbell, 2012, Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future: Geophysics, 77(5), WC173–

WC190.

Malehmir, A., M. Andersson, M. Lebedev, M. Urosevic, and V. Mikhaltvitch, 2013, Experimental estimation of velocities and anisotropy of a se-ries of Swedish crystalline rocks and ores: Geophysical Prospecting, 61 (1), 153−167.

Matthews, L., 2002, Base metal exploration: Looking deeper and adding value with seismic data: CSEG Recorder, 27, 37–43.

Matthews, L., 2002, Base metal exploration: Looking deeper and adding value with seismic data: CSEG Recorder, 27, 37–43.

Related documents