• No results found

Kommunikation mellan celler är avgörande för utvecklingen av en multicellulär organism. För att kunna växa och skapa vävnader måste cellerna hela tiden skicka och ta emot signaler. Celler som inte är i direkt kontakt med varandra, är inbäddade i en extracellulär matrix som signalmolekyler måste transporteras igenom. Kompositionen av extracellulär matrix, som bland annat innehåller många proteoglykaner påverkar informationsöverföringen. Proteoglykaner är proteiner modifierade med sulfaterade sockerkedjor. Många enzymer är inblandade i att polymerisera och modifiera proteoglykaner. Sulfatgrupper som sitter på sockerkedjorna ger proteoglykaner en hög negativ laddning vilket binder många andra proteiner och attraherar vatten, vilket är nödvändigt för mekaniskt stöd i broskvävnader. För att bättre förstå hur många olika typer av sockerkedjor som kan produceras och hur de interagerar med proteiner i olika vävnader, använder vi oss av zebrafiskar som modell.

I vårt arbete fokuserade vi på heparansulfat (HS) proteoglykaner och chondroitin/dermatansulfat (CS/DS) proteoglykaner. För att studera funktionen av HS och CS/DS biosyntes använde vi oss av zebrafiskar som saknar utvalda enzymer nödvändiga för uppbyggnaden av dessa sockerkedjor. I vissa mutanter fann vi morfologiska förändringar i broskstrukturer och efter biokemiska analyser kunde vi se att HS och CS/DS samspelar i uppbyggandet av broskstrukturer (arbete I). Lite var känt om CS/DS biosyntes i zebrafisk, därför beslöt vi att identifiera zebrafiskgener som motsvarar tidigare identifierade gener inblandade i CS/DS biosyntes hos däggdjur.

Vi beskrev först alla CS/DS syntetiserande enzymer och studerade dess uttrycksmönster hos unga zebrafiskar (arbete II). Vi fortsatte sedan med att beskriva grupper av modifieringsenzymer för HS och CS/DS som inte tidigare analyserats (arbete III och IV). Dessa studier ger oss nu en full bild av var och när GAG biosyntesenzymer är uttryckta. Överlappande uttryck av vissa glykosyltransferaser stödjer tidigare hypoteser om att dessa enzymer agerar tillsammans för att polymerisera sockerkedjor.

I sista delarbetet använde vi oss av den nya CRISPR/Cas9-tekniken för att skapa mutationer i HS och CS/DS biosyntesenzymer hos zebrafiskar (arbete V). CRISPR/Cas9-tekniken möjliggör en effektiv och riktad mutagenes hos zebrafiskar, vilket inte var genomförbart tidigare. Man använder sig av en kort RNA-molekyl som vägleder Cas9, ett nuklease, till en specifik sekvens i

genomet för att klippa båda DNA strängarna. Cellernas egen reparationsmekanism är felbenägen och därför introduceras det ofta en deletion eller insertion när strängbrottet repareras. Med denna metod har vi nu skapat mutationer i 17 olika gener och de flesta fiskar som vi har undersökt hittills har överlevt som homozygota mutanter till vuxen ålder utan att utveckla uppenbara morfologiska förändringar. Detta tyder på att dessa enzymer har överlappande funktioner och att flera gener måste slås ut hos en och samma fisk för att kunna studera enskilda enzymatiska modifikationer. Vi har nu ett antal nya zebrafiskmutanter tillgängliga för vidare morfologiska och biokemiska studier. Med dessa hoppas vi kunna få större inblick i den funktionella rollen av GAG biosyntesenzymer under zebrafiskens utveckling.

Acknowledgements

I would like to express my sincere gratitude to all co-workers, co-authors and collaborators, who have helped me throughout my years and contributed to this work.

My first and very special thank you goes to you, Johan, my supervisor and true Doktorvater. I am forever grateful that you gave me the chance to work with you;

you taught me so much in so many different ways. You have been a true scientific father to me, and even with the physical distance over the past two years, we developed a great way to work together, skype was our friend. I am also thankful that I got the chance to come and work with you at the NIH. Thank you for always meeting me with open arms, keeping up with my emotional ups and downs, spreading your passion for GAGs and zebrafish, mediating your wisdom in science and life, and for being in the same boat with me for such a long time. Dankeschön!

Thank you, Per, my co-supervisor for giving me the opportunity to work in this great group and giving me advice and guidance along the way, and thank you for your great spirit not only at work, but also on christmas-party-dancefloors.

Thank you so much, Katarina. Who needs Olivia, if I have you? You have always been there for me, fixed things for me, helped me out in the lab and with the thesis and other written texts; your input is very valuable to me. You really lived through all my ups and downs in our cozy office and you have been guiding me and pushing me forward. I am endlessly thankful for our friendship, co-authorships, common passion for zebrafish, GAGs and Scandal. Without you I wouldn’t be here at all.

Thank you to all the people from the Ahlberg Lab, and fikagänget, for the great discussions related to work and everything else, fantastic cakes and all the fun moments and laughter, you are all so lavish to me. Thank you Helena and Rose-Marie, for all the help in the lab and with administrative things. Thank you Tatjana for collaborations and your help in the lab and with my thesis. Special thanks to you,

Beata, for the fun times working together, all the collaborations and great discussions at and outside work. Thank you for your friendship!

Thank you also to everyone from IMBIM, who I worked with over the years. My scientific path started out with you. Thank you Johan K., Dorothe and Lena for guidance and advice, Inger for your great HPLC wisdom and help, and Anna for sharing your lab bench and knowledge with me for my HPLC preparation.

Thank you to everyone I met at the NIH in Bethesda for your warm welcome and help. Special thank you to you Shawn, for your open door, our discussions, your kindness, and your immense knowledge. Big thank you also to you, Gaurav, for everything you told me, the trust you have in me, your sharing of reagents and experience. I felt immediately welcome in the lab.

Thanks

With a friend by your side, no road seems too long.

No matter how many words I put on these pages, I am afraid they wont be able to cover the gratitude I feel, the emotions inside me, and the people that were part of this very special journey in my life. Still, I want to try, because if you never try, you will never know.

I thank honestly everyone, who is or was part of my life. Some of you had a bigger, some a smaller influence on me, but without every single one of you, I wouldn’t be where I am today.

Thank you to all my friends here and there, in the fish, in the volleyball and in the mountains. Thank you for always being by my side, even after knowing crazy me and the drama queen inside me. Volleyball is a big part of my life and I am very grateful for every encounter I made over the years, indoor and in the sand. Thank you so much for making my life better, funnier, full of laughter and love.

Meine gonzen Freinde in meiner scheanen Heimat bin i a volle donkbor. Es hob net so viel live mitkriag von meiner Dokotorzeit, obor enkre Besuche, die Heimaturlaube, die Berge de mir bestiegen hoben und die Feste de mir gfeiert hoben, hoben mir die Energie geben olm wieder weiterzugian. Danke dafür!

A riesiges Danekschön an meine Familie. Liebe Mami, lieber Papi, danke, dass es olm und überoll für mi do seid, es fohrts mir noch in die weite Welt und unterstützt mi olm a wenn i wirklich oft net leicht bin. Enkre Ratschläge und weisen Worte helfen mir viel und den drhoam des es für ins gschofft hob hon i mein gonzes Leben zu verdanken. Hannes, mein Bruderherz, du bringsch mi nach wie vor af die Palme wia mit 14 obor i war nix und niamand ohne di. Du bisch olm hinter mir gstonden und hosch Sochen für mi af di Fiass gstellt de i dir nia vergessen wear.

Danke vielmals! Sonja mit dir hot dr Hannes an guaten Fong gemocht und i bin froa um de Bereicherung in insrer Famile. Danke für olles wos du für mi getun hosch und du Ellen, hosch mir nu an richitgen Freudenkick geben is leschte Stickl nu zu gian.

Last but not least, thank you Carl, my better half. You have been supporting me throughout the years, even in the hard times in the end. I am forever grateful that you are by my side, in guten wie in schlechten Tagen. Danke für deine unendliche Liebe. Du bisch mein Fels in der Brandung.

References

Akyuz N, Rost S, Mehanna A, Bian S, Loers G, Oezen I, Mishra B, Hoffmann K, Guseva D, Laczynska E, Irintchev A, Jakovcevski I, Schachner M (2013) Dermatan 4-O-sulfotransferase1 ablation accelerates peripheral nerve regeneration. Exp Neurol 247:517-530.

doi:10.1016/j.expneurol.2013.01.025

Alberts B, Johnson A, Lewis J, al e (2002) Molecular Biology of the Cell.

4th edition edn. Garland Science, New York: Garland Science Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer

model system. Cancer cell 1 (3):229-231

Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proceedings of the National Academy of Sciences of the United States of America 101 (35):12792-12797.

doi:10.1073/pnas.0403929101

Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128 (1):87-94 Bartolini B, Thelin MA, Rauch U, Feinstein R, Oldberg A, Malmstrom A,

Maccarana M (2012) Mouse development is not obviously affected by the absence of dermatan sulfate epimerase 2 in spite of a modified brain dermatan sulfate composition. Glycobiology 22 (7):1007-1016. doi:10.1093/glycob/cws065

Bergefall K, Trybala E, Johansson M, Uyama T, Naito S, Yamada S, Kitagawa H, Sugahara K, Bergstrom T (2005) Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. The Journal of biological chemistry 280 (37):32193-32199. doi:10.1074/jbc.M503645200

Beurdeley M, Spatazza J, Lee HH, Sugiyama S, Bernard C, Di Nardo AA, Hensch TK, Prochiantz A (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 32 (27):9429-9437. doi:10.1523/JNEUROSCI.0394-12.2012

Bian S, Akyuz N, Bernreuther C, Loers G, Laczynska E, Jakovcevski I, Schachner M (2011) Dermatan sulfotransferase Chst14/D4st1, but not chondroitin sulfotransferase Chst11/C4st1, regulates

proliferation and neurogenesis of neural progenitor cells. Journal of cell science 124 (Pt 23):4051-4063. doi:10.1242/jcs.088120

Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE, Mouse Genome Database G (2014) The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic acids research 42 (Database issue):D810-817. doi:10.1093/nar/gkt1225 Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T,

Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 (5959):1509-1512.

doi:10.1126/science.1178811

Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151 (Pt 8):2551-2561.

doi:10.1099/mic.0.28048-0

Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes & development 12 (12):1894-1906

Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, Kusche-Gullberg M (2007) Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. The Journal of biological chemistry 282 (45):32802-32810. doi:10.1074/jbc.M703560200 Cadwalader EL, Condic ML, Yost HJ (2012) 2-O-sulfotransferase regulates

Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly.

Development 139 (7):1296-1305. doi:10.1242/dev.078238

Cadwallader AB, Yost HJ (2006a) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Developmental dynamics : an official publication of the American Association of Anatomists 235 (12):3423-3431. doi:10.1002/dvdy.20991

Cadwallader AB, Yost HJ (2006b) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family. Developmental dynamics : an official publication of the American Association of Anatomists 235 (12):3432-3437. doi:10.1002/dvdy.20990

Cadwallader AB, Yost HJ (2007) Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases. Developmental dynamics : an official publication of the American Association of Anatomists 236 (2):581-586. doi:10.1002/dvdy.21051

Carrington B, Varshney GK, Burgess SM, Sood R (2015) CRISPR-STAT:

An Easy and Reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic acids research. accepted, in press

Clark KJ, Urban MD, Skuster KJ, Ekker SC (2011) Transgenic zebrafish using transposable elements. Methods in cell biology 104:137-149.

doi:10.1016/B978-0-12-374814-0.00008-2

Clement A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB, Roehl HH (2008) Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS genetics 4 (7):e1000136.

doi:10.1371/journal.pgen.1000136

Coates MI, Sequeira SEK, Sansom IJ, Smith MM (1998) Spines and tissues of ancient sharks. Nature 396 (6713):729-730. doi:Doi 10.1038/25467

Cole AG (2011) A Review of Diversity in the Evolution and Development of Cartilage: The Search for the Origin of the Chondrocyte. Eur Cells Mater 21:122-129

Cole AG, Hall BK (2004a) Cartilage is a metazoan tissue; integrating data from nonvertebrates sources. Acta Zoologica 85:69-80

Cole AG, Hall BK (2004b) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology (Jena) 107 (4):261-273. doi:10.1016/j.zool.2004.05.001

Condac E, Silasi-Mansat R, Kosanke S, Schoeb T, Towner R, Lupu F, Cummings RD, Hinsdale ME (2007) Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 104 (22):9416-9421. doi:10.1073/pnas.0700908104

Cook A, Raskind W, Blanton SH, Pauli RM, Gregg RG, Francomano CA, Puffenberger E, Conrad EU, Schmale G, Schellenberg G, et al.

(1993) Genetic heterogeneity in families with hereditary multiple exostoses. American journal of human genetics 53 (1):71-79

Dale RM, Topczewski J (2011) Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene. Developmental biology 357 (2):518-531. doi:10.1016/j.ydbio.2011.06.020

Deepa SS, Umehara Y, Higashiyama S, Itoh N, Sugahara K (2002) Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. The Journal of biological chemistry 277 (46):43707-43716.

doi:10.1074/jbc.M207105200

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (7340):602-607. doi:10.1038/nature09886

Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to

CRISPR-encoded resistance in Streptococcus thermophilus. Journal of bacteriology 190 (4):1390-1400. doi:10.1128/JB.01412-07 Dierker T, Bachvarova V, Krause Y, Li JP, Kjellen L, Seidler DG,

Vortkamp A (2015) Altered heparan sulfate structure in Glce mice leads to increased hedgehog signaling in endochondral bones.

Matrix biology : journal of the International Society for Matrix Biology. doi:10.1016/j.matbio.2015.06.004

Donoghue PC, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Journal of experimental zoology Part B, Molecular and developmental evolution 306 (3):278-294.

doi:10.1002/jez.b.21090

Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature biotechnology 26 (6):702-708. doi:10.1038/nbt1409

Eames BF, Singer A, Smith GA, Wood ZA, Yan YL, He X, Polizzi SJ, Catchen JM, Rodriguez-Mari A, Linbo T, Raible DW, Postlethwait JH (2010) UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Developmental biology 341 (2):400-415. doi:10.1016/j.ydbio.2010.02.035

Eames BF, Yan YL, Swartz ME, Levic DS, Knapik EW, Postlethwait JH, Kimmel CB (2011) Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS genetics 7 (8):e1002246.

doi:10.1371/journal.pgen.1002246

Eisen JS, Smith JC (2008) Controlling morpholino experiments: don't stop making antisense. Development 135 (10):1735-1743.

doi:10.1242/dev.001115

Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annual review of biochemistry 71:435-471.

doi:10.1146/annurev.biochem.71.110601.135458

Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS letters 467 (1):7-11

Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellen L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400 (6746):773-776.

doi:10.1038/23488

Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and

large-scale assessment of single-guide RNAs. PloS one 9 (5):e98186. doi:10.1371/journal.pone.0098186

Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America 109 (39):E2579-2586. doi:10.1073/pnas.1208507109

Ghiselli G, Farber SA (2005) D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish. BMC developmental biology 5:19. doi:10.1186/1471-213X-5-19

Habuchi H, Nagai N, Sugaya N, Atsumi F, Stevens RL, Kimata K (2007) Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. The Journal of biological chemistry 282 (21):15578-15588. doi:10.1074/jbc.M607434200

Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans:

the sweet side of development. Nat Rev Mol Cell Biol 6 (7):530-541. doi:10.1038/nrm1681

Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1-36

HajMohammadi S, Enjyoji K, Princivalle M, Christi P, Lech M, Beeler D, Rayburn H, Schwartz JJ, Barzegar S, de Agostini AI, Post MJ, Rosenberg RD, Shworak NW (2003) Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. The Journal of clinical investigation 111 (7):989-999. doi:10.1172/JCI15809 Hall BK (2005) Bones and Cartilage: Development and Evolutionary

Skeletal Biology. Elsevier Academic Press, San Diego

Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131 (7):1563-1575. doi:10.1242/dev.01051

Harfouche R, Hentschel DM, Piecewicz S, Basu S, Print C, Eavarone D, Kiziltepe T, Sasisekharan R, Sengupta S (2009) Glycome and transcriptome regulation of vasculogenesis. Circulation 120 (19):1883-1892. doi:10.1161/CIRCULATIONAHA.108.837724 Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997)

High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Developmental biology 192 (2):289-299

Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological sciences

: an official journal of the Society of Toxicology 86 (1):6-19.

doi:10.1093/toxsci/kfi110

Holmborn K, Ledin J, Smeds E, Eriksson I, Kusche-Gullberg M, Kjellen L (2004) Heparan sulfate synthesized by mouse embryonic stem cells deficient in NDST1 and NDST2 is 6-O-sulfated but contains no N-sulfate groups. The Journal of biological chemistry 279 (41):42355-42358. doi:10.1074/jbc.C400373200

Hoogewerf AJ, Kuschert GS, Proudfoot AE, Borlat F, Clark-Lewis I, Power CA, Wells TN (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36 (44):13570-13578. Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Eliott D, Threadgold G, Harden G, Ware D, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL

Hoogewerf AJ, Kuschert GS, Proudfoot AE, Borlat F, Clark-Lewis I, Power CA, Wells TN (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36 (44):13570-13578. Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Eliott D, Threadgold G, Harden G, Ware D, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL

Related documents