• No results found

Fasta polymera elektrolyter (FPE) är av stort intresse att använda i litiumbat-terier, då flytande elektrolyter är både brandfarliga, giftiga samt sliter hårt på batteriets samtliga komponenter, vilket i sin tur påverkar batteriets livslängd och prestanda. FPE skulle även kunna tillföra mekaniska egenskaper, vilket potentiellt skulle medföra nya möjligheter när man designar batterier i forma av att man inte behöver en separator mellan elektroderna, och på sätt ökar batteriets energidensitet. Det är flera parametrar som måste tas hänsyn till när man designar en ny elektrolyt, mekaniska egenskaper, jonledning, jonselekti-vitet samt elektrokemisk stabilitet är de viktigaste. Det största problemet med polymera elektrolyter är deras dåliga jonledning i förhållande till deras meka-niska egenskaper; ofta måste man välja mellan dessa två egenskaper. FPE li-der emellertid fortfarande av för låg prestanda för praktiska tillämpningar vid rumstemperatur, och temperaturen måste upp till 60 °C-90 °C för att få till en praktisk prestanda. Nackdelen med att höja temperaturen är dock att olika ty-per av sidreaktioner kan accelerera och bli märkbara, vilket påverkar batteriets livslängd och prestanda på ett negativt sätt. Ett sätt att kombinera både meka-niska egenskaper och elektrokemisk prestanda är att polymerisera blocksam-polymerer (BSP), det vill säga blocksam-polymerer som kombinerar ett joniskt ledande block med ett mekaniskt block i en polymer. Genom att variera monomerkom-positionen och strukturen hos BSP är det möjligt att tillverka elektrolyter med olika batteriprestanda. I artikel I och artikel II syntetiserades två typer av metakrylatbaserade BSP:er med olika mekaniska block för att utvärdera mor-fologin, den elektrokemiska stabiliteten och batteriförmågan. Denna avhand-ling började med att syntetisera en serie sampolymerer av metylmetakrylat (MMA) och metylmetakrylat med etylenoxid som sidogrupper. Det visade sig att den jonledande förmågan var hög, så nästa naturliga steg var att polymeri-sera BSP:er, i ett försök att ytterligare öka den jonledande förmågan med hy-potesen att mikrofasseparerade BSP:er kan kombinera både hög jonisk kon-duktivitet och mekanisk integritet. Men som framgår i artikel I visade det sig att elektrolyterna inte fasseparerade. I artikel II ersättas MMA:n med ben-zylmetakrylat (BMA), och då fasseparerade elektrolyterna. Tyvärr visade det sig att de metakrylatbaserade elektrolyerna inte är elektrokemiskt stabila, och batteriprestanda var begränsad.

I artikel III och artikel IV antogs en ny strategi, och fokus förflyttades till diblocksampolymerer, i vilka den jonkoordinerande gruppen byttes från ety-lenoxid till ester- och karbonatgrupper. Det visade sig att batteriprestandan för dessa elektrolyter var överlägsen de metakrylatbaserade elektrolyterna. Det var möjligt att cykla halvceller med konfigurationen Li | elektrolyt | LiFePO4

vid 40 °C och med hög kapacitet under en längre tid. När BMA användes som mekaniskt block i kombination med kaprolakton och trimetylkarbonat erhölls en BSP som visade sig vara ett attraktivt alternativ till etylenoxid som poly-merelektrolyt, då elektrolyten kombinerade elektrokemisk stabilitet med hög jonkonduktivitet och transporttal, samt mekanisk integritet. Genom att växla till polyester- och polykarbonatbaserade elektrolyter uppnåddes alltså inte bara hög jonledningsförmåga utan även höga transporttal, god elektrokemisk kompatibilitet och lovande mekaniska egenskaper. De lovande mekaniska egenskaperna tillsammans med att BSP:erna verkar mycket pålitliga som elektrolytmaterial, de drabbas inte av några plötsliga kortslutningar, gör dessa BSP:er till intressanta kandidater för fortsatta studier som elektrolyter för strukturella batterier.

Figur 12. De två studerade blocksampolymererna i artikel I (vänster) och II (höger).

Figur 2. Bilden visar blocksampolymeren som studerades i artikel IV, som är en kom-bination av benzylmetakrylat som mekaniskt block samt ett jonledande block av kapro-lakton och trimetylenkarbonat.

Acknowledgements

As Ramiro said when a were about to start at Uppsala, enjoy the ride! Truly it has been a ride, both emotionally and in life. Not to mention the ride between Stockholm and Uppsala... I guess I have to acknowledge SJ for (mostly) taking me home to Stockholm late evenings, and the fact that this thesis actually was written (mostly) on the train.

To my supervisors: thank you for giving me an amazing once in a lifetime opportunity to freely explore the world of polymers, I believe that this freedom will be hard to find again. Laurent, thank you for taking your time helping me with the SAXS analysis and all the time you spent on discussing science with me. I’m grateful to have had the opportunity to meet such a friendly and help-ful person. Adrian! Thank you for introducing me to the world of neutrons, a truly amazing but at the same time daunting world. The trip to NIST was an eye-opener for me, it was great to meet so many friendly and enthusiastic peo-ple that really wants to contribute. I will remember this trip for the rest of my life.

All members of the polymer chemistry and PUB-group throughout the years, thank you for the friendly atmosphere and being the people you are! Special thanks to Fabian, Ronnie and Matthew who helped me with the battery chemistry part, without you guys life had been really hard. I really appreciate your friendliness and your enthusiasm to science (and beer drinking), thank you for these years.

I have had a couple of project workers throughout the years helping me with various stuff in the lab. Maybe everything wasn’t that organized and planned in detail, but it was great fun and I’m truly grateful for the help, thank you so much! Special thanks to Jonas Hedman and Guiomar Hernández, with-out your help in the end I would not have made it, at the time I was too tired to do all the lab-work myself.

Daniel Bermejo and Fabian Jeschull, you have been great friends and nice companions in the lab, so well as at the pub. I wish you the best of luck what-ever you do in life.

To my family and friends, it is hard to explain what I’m been doing in Upp-sala, but it doesn’t matter, thank you for supporting me anyways and balanced my life, with football, orchestra, and just having fun! And Martina, I hope that we will have more time for each other and our small family know, exciting new times lie ahead.

References

1. J.B. Goodenough, K.S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society 135(4) (2013) 1167-1176.

2. F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Functional Materials for Rechargeable Batteries, Advanced Materials 23(15) (2011) 1695-1715.

3. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Advanced Materials 10(10) (1998) 725-763. 4. S. Flandrois, B. Simon, Carbon materials for lithium-ion rechargeable batteries,

Carbon 37(2) (1999) 165-180.

5. R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Groting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering B-Advanced Functional Solid-State Materials 192 (2015) 3-25.

6. S. Tobishima, M. Arakawa, T. Hirai, J. Yamaki, Ethylene carbonate ether solvents for electrolytes in lithium secondary batteries, Journal of Power Sources 20(3-4) (1987) 293-297.

7. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochimica Acta 45(1-2) (1999) 67-86.

8. J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives, ChemSusChem 8(13) (2015) 2154-75.

9. T. Spath, D. Becker, N. Schulz, R. Hausbrand, W. Jaegermann, Understanding the SEI Formation at Pristine Li-Ion Cathodes: Chemisorption and Reaction of DEC on LiCoO2 Surfaces Studied by a Combined SXPS/HREELS Approach, Advanced Materials Interfaces 4(23) (2017).

10. P. Lu, C. Li, E.W. Schneider, S.J. Harris, Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries, Journal of Physical Chemistry C 118(2) (2014) 896-903. 11. B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging,

Nature 458(7235) (2009) 190-193.

12. M.S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chemical Reviews 114(23) (2014) 11414-11443.

13. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew Chem Int Ed Engl 47(16) (2008) 2930-46.

14. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials 4(5) (2005) 366-377.

15. H. Li, Z.X. Wang, L.Q. Chen, X.J. Huang, Research on Advanced Materials for Li-ion Batteries, Advanced Materials 21(45) (2009) 4593-4607.

16. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries, Electrochimica Acta 47(9) (2002) 1423-1439.

17. J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter, K. Dietmayer, State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation, Journal of Power Sources 196(12) (2011) 5357-5363. 18. P. Rong, M. Pedram, An analytical model for predicting the remaining battery

capacity of lithium-ion batteries, Ieee Transactions on Very Large Scale Integration (Vlsi) Systems 14(5) (2006) 441-451.

19. R.C. Agrawal, G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, Journal of Physics D: Applied Physics 41(22) (2008) 223001.

20. W.-S. Young, W.-F. Kuan, T.H. Epps, Block copolymer electrolytes for rechargeable lithium batteries, Journal of Polymer Science Part B: Polymer Physics 52(1) (2014) 1-16.

21. M. Armand, J.M. Tarascon, Building better batteries, Nature 451(7179) (2008) 652-657.

22. L.E. Asp, E.S. Greenhalgh, Structural power composites, Composites Science and Technology 101 (2014) 41-61.

23. M. Armand, Polymer solid electrolytes - an overview, Solid State Ionics 9-10(DEC) (1983) 745-754.

24. K. Timachova, H. Watanabe, N.P. Balsara, Effect of Molecular Weight and Salt Concentration on Ion Transport and the Transference Number in Polymer Electrolytes, Macromolecules 48(21) (2015) 7882-7888.

25. C. Monroe, J. Newman, Dendrite growth in lithium/polymer systems - A propagation model for liquid electrolytes under galvanostatic conditions, Journal of the Electrochemical Society 150(10) (2003) A1377-A1384.

26. C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, Journal of the Electrochemical Society 152(2) (2005) A396-A404.

27. M. Szwarc, M. Levy, R. Milkovich, Polymerization initiated by electron transfer to monomer - a new method of formation of block polymers, Journal of the American Chemical Society 78(11) (1956) 2656-2657.

28. K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules 45(10) (2012) 4015-4039. 29. W.A. Braunecker, K. Matyjaszewski, Controlled/living radical polymerization:

Features, developments, and perspectives, Progress in Polymer Science 32(1) (2007) 93-146.

30. D.J. Keddie, A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization, Chemical Society Reviews 43(2) (2014) 496-505.

31. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Nitroxide-mediated polymerization, Progress in Polymer Science 38(1) (2013) 63-235.

32. T.P. Russell, Y. Chai, 50th Anniversary Perspective: Putting the Squeeze on Polymers: A Perspective on Polymer Thin Films and Interfaces, Macromolecules 50(12) (2017) 4597-4609.

33. C.M. Bates, F.S. Bates, 50th Anniversary Perspective: Block Polymers-Pure Potential, Macromolecules 50(1) (2017) 3-22.

34. T. Inoue, T. Soen, Hashimot.T, H. Kawai, THermodynamic interpretation of domain structure in solvent-cast films of a-b type block copolymers of styrene and isoprene, Journal of Polymer Science Part a-2-Polymer Physics 7(8PA2) (1969) 1283-&.

35. D.J. Meier, Theory of interface in block copolymers, Abstracts of Papers of the American Chemical Society (1974) 29-29.

36. E. Helfand, Theory of domain-structure of block copolymers, Bulletin of the American Physical Society 19(3) (1974) 241-241.

37. L. Leibler, Theory of Microphase Separation in Block Copolymers, Macromolecules 13(6) (1980) 1602-1617.

38. S.H. Kim, M.J. Misner, T. Xu, M. Kimura, T.P. Russell, Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation, Advanced Materials 16(3) (2004) 226-231.

39. F.S. Bates, G.H. Fredrickson, Block copolymer thermodynamics - theory and experiment, Annual Review of Physical Chemistry 41 (1990) 525-557.

40. M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of

methyl-methacrylate with the carbon-tetrachloride dichlorotris(triphenylphosphine)ruthenium(ii) methylaluminum

bis(2,6-di-tert-butylphenoxide) initiating system - possibility of living radical polymerization, Macromolecules 28(5) (1995) 1721-1723.

41. J.S. Wang, K. Matyjaszewski, COntrolled living radical polymerization - atom-transfer radical polymerization in the presence of transition-metal complexes, Journal of the American Chemical Society 117(20) (1995) 5614-5615.

42. K. Matyjaszewski, From atom transfer radical addition to atom transfer radical polymerization, Current Organic Chemistry 6(2) (2002) 67-82.

43. H.R. Kricheldorf, I. Kreiser-Saunders, A. Stricker, Polylactones 48. SnOct(2)-initiated polymerizations of lactide: A mechanistic study, Macromolecules 33(3) (2000) 702-709.

44. A.P. Dove, Organic Catalysis for Ring-Opening Polymerization, Acs Macro Letters 1(12) (2012) 1409-1412.

45. M. Labet, W. Thielemans, Synthesis of polycaprolactone: a review, Chemical Society Reviews 38(12) (2009) 3484-3504.

46. Y. Ikada, H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromolecular Rapid Communications 21(3) (2000) 117-132. 47. J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic

devices, Biomaterials 21(23) (2000) 2335-2346.

48. O. Nuyken, S.D. Pask, Ring-Opening Polymerization-An Introductory Review, Polymers 5(2) (2013) 361-403.

49. H.T. Qian, J.Z. Bei, S.G. Wang, Synthesis, characterization and degradation of ABA block copolymer of L-lactide and epsilon-caprolactone, Polymer Degradation and Stability 68(3) (2000) 423-429.

50. F. Nederberg, E.F. Connor, M. Moller, T. Glauser, J.L. Hedrick, New paradigms for organic catalysts: The first organocatalytic living polymerization, Angewandte Chemie-International Edition 40(14) (2001) 2712-2715.

51. H.R. Kricheldorf, Tin-initiated polymerizations of lactones: Mechanistic and preparative aspects, Macromolecular Symposia 153 (2000) 55-65.

52. M. Ryner, K. Stridsberg, A.C. Albertsson, H. von Schenck, M. Svensson, Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and L-lactide with stannous 2-ethylhexanoate. A theoretical study, Macromolecules 34(12) (2001) 3877-3881.

53. N. Buis, S.A. French, G.D. Ruggiero, B. Stengel, A.A.D. Tulloch, I.H. Williams, Computational investigation of mechanisms for ring-opening polymerization of epsilon-caprolactone: Evidence for bifunctional catalysis by alcohols, Journal of Chemical Theory and Computation 3(1) (2007) 146-155.

54. Z.G. Xue, D. He, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A 3(38) (2015) 19218-19253. 55. D. Devaux, R. Bouchet, D. Glé, R. Denoyel, Mechanism of ion transport in

PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups, Solid State Ionics 227 (2012) 119-127.

56. M. Marzantowicz, J.R. Dygas, F. Krok, Z. Florjańczyk, E. Zygadło-Monikowska, Conductivity and dielectric properties of polymer electrolytes PEO:LiN(CF3SO2)2 near glass transition, Journal of Non-Crystalline Solids 353(47-51) (2007) 4467-4473.

57. S.K. Fullerton-Shirey, J.K. Maranas, Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes, Macromolecules 42(6) (2009) 2142-2156.

58. K. Sinha, J. Maranas, Does Ion Aggregation Impact Polymer Dynamics and Conductivity in PEO-Based Single Ion Conductors?, Macromolecules 47(8) (2014) 2718-2726.

59. D.-W. Kim, J.-K. Park, M.-S. Gong, H.-Y. Song, Effect of grafting degree and side PEO chain length on the ionic conductivities of NBR-g-PEO based polymer electrolytes, Polymer Engineering & Science 34(17) (1994) 1305-1313.

60. C.J. Hawker, F. Chu, P.J. Pomery, D.J.T. Hill, Hyperbranched Poly(ethylene glycol)s:  A New Class of Ion-Conducting Materials, Macromolecules 29(11) (1996) 3831-3838.

61. G.B. Appetecchi, F. Croce, J. Hassoun, B. Scrosati, M. Salomon, F. Cassel, Hot-pressed, dry, composite, PEO-based electrolyte membranes I. Ionic conductivity characterization, Journal of Power Sources 114(1) (2003) 105-112.

62. G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Structure of the polymer electrolyte poly(ethylene oxide)(6): LiAsF6, Nature 398(6730) (1999) 792-794. 63. Z. Stoeva, I. Martin-Litas, E. Staunton, Y.G. Andreev, P.G. Bruce, Ionic

conductivity in the crystalline polymer electrolytes PEO6 : LiXF6, X = P, As, Sb, Journal of the American Chemical Society 125(15) (2003) 4619-4626.

64. A.M. Christie, S.J. Lilley, E. Staunton, Y.G. Andreev, P.G. Bruce, Increasing the conductivity of crystalline polymer electrolytes, Nature 433(7021) (2005) 50-53. 65. S. Cheng, D.M. Smith, C.Y. Li, How Does Nanoscale Crystalline Structure

Affect Ion Transport in Solid Polymer Electrolytes?, Macromolecules 47(12) (2014) 3978-3986.

66. Y.Y. Wang, F. Fan, A.L. Agapov, T. Saito, J. Yang, X. Yu, K.L. Hong, J. Mays, A.P. Sokolov, Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes, Polymer 55(16) (2014) 4067-4076.

67. C.A. Angell, MOBILE IONS IN AMORPHOUS SOLIDS, Annual Review of Physical Chemistry 43 (1992) 693-717.

68. M. Adams, V. Richmond, D. Smith, Y.Y. Wang, F. Fan, A.P. Sokolov, D.A. Waldow, Decoupling of ion conductivity from segmental dynamics in oligomeric ethylene oxide functionalized oxanorbornene dicarboximide homopolymers, Polymer 116 (2017) 218-225.

69. M.S. Mendolia, G.C. Farrington, Ionic mobility in macromolecular electrolytes. The failure of Walden's rule, Chemistry of Materials 5(2) (1993) 174-181.

70. A. Bernson, J. Lindgren, W.W. Huang, R. Frech, Coordination and conformation in peo, pegm and peg systems containing lithium or lanthanum triflate, Polymer 36(23) (1995) 4471-4478.

71. E. Quartarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes, Solid State Ionics 110(1-2) (1998) 1-14.

72. J. Motomatsu, H. Kodama, T. Furukawa, Y. Tominaga, Dielectric Relaxation Behavior of a Poly(ethylene carbonate)-Lithium Bis-(trifluoromethanesulfonyl) Imide Electrolyte, Macromolecular Chemistry and Physics 216(15) (2015) 1660-1665.

73. Y. Tominaga, K. Yamazaki, V. Nanthana, Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes, Journal of the Electrochemical Society 162(2) (2015) A3133-A3136.

74. D. Baril, C. Michot, M. Armand, Electrochemistry of liquids vs. solids: Polymer electrolytes, Solid State Ionics 94(1) (1997) 35-47.

75. C.A. Angell, C.T. Imrie, M.D. Ingram, From simple electrolyte solutions through polymer electrolytes to superionic rubbers: Some fundamental considerations, Polymer International 47(1) (1998) 9-15.

76. M. Chintapalli, T.N.P. Le, N.R. Venkatesan, N.G. Mackay, A.A. Rojas, J.L. Thelen, X.C. Chen, D. Devaux, N.P. Balsara, Structure and Ionic Conductivity of Polystyrene-block-poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit, Macromolecules 49(5) (2016) 1770-1780.

77. K.M. Diederichsen, H.G. Buss, B.D. McCloskey, The Compensation Effect in the Vogel-Tammann-Fulcher (VTF) Equation for Polymer-Based Electrolytes, Macromolecules 50(10) (2017) 3832-3841.

78. J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer 28(13) (1987) 2324-2328. 79. P.G. Bruce, C.A. Vincent, STEADY-STATE CURRENT FLOW IN SOLID

BINARY ELECTROLYTE CELLS, Journal of Electroanalytical Chemistry 225(1-2) (1987) 1-17.

80. P.G. Bruce, M.T. Hardgrave, C.A. Vincent, THE DETERMINATION OF TRANSFERENCE NUMBERS IN SOLID POLYMER ELECTROLYTES USING THE HITTORF METHOD, Solid State Ionics 53 (1992) 1087-1094. 81. A.A. Teran, N.P. Balsara, Thermodynamics of block copolymers with and

without salt, J Phys Chem B 118(1) (2014) 4-17.

82. J.R.M. Giles, F.M. Gray, J.R. Maccallum, C.A. Vincent, Synthesis and characterization of aba block copolymer-based polymer electrolytes, Polymer 28(11) (1987) 1977-1981.

83. F.M. Gray, J.R. Maccallum, C.A. Vincent, J.R.M. Giles, Novel polymer electrolytes based on aba block copolymers, Macromolecules 21(2) (1988) 392-397.

84. P. Jannasch, Ion conducting electrolytes based on aggregating comblike poly(propylene oxide), Polymer 42(21) (2001) 8629-8635.

85. T. Niitani, M. Shimada, K. Kawamura, K. Dokko, Y.-H. Rho, K. Kanamura, Synthesis of Li[sup +] Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure, Electrochemical and Solid-State Letters 8(8) (2005) A385.

86. C.X. Wang, T. Sakai, O. Watanabe, K. Hirahara, T. Nakanishi, All solid-state lithium-polymer battery using a self-cross-linking polymer electrolyte, Journal of the Electrochemical Society 150(9) (2003) A1166-A1170.

87. S.W. Ryu, P.E. Trapa, S.C. Olugebefola, J.A. Gonzalez-Leon, D.R. Sadoway, A.M. Mayes, Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes, Journal of the Electrochemical Society 152(1) (2005) A158-A163.

88. D. Devaux, D. Glé, T.N.T. Phan, D. Gigmes, E. Giroud, M. Deschamps, R. Denoyel, R. Bouchet, Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries, Chemistry of Materials 27(13) (2015) 4682-4692.

89. R. Yuan, A.A. Teran, I. Gurevitch, S.A. Mullin, N.S. Wanakule, N.P. Balsara, Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes, Macromolecules 46(3) (2013) 914-921.

90. P.P. Soo, B.Y. Huang, Y.I. Jang, Y.M. Chiang, D.R. Sadoway, A.M. Mayes, Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries, Journal of the Electrochemical Society 146(1) (1999) 32-37.

91. A.-V.r.G. Ruzette, P.P. Soo, D.R. Sadoway, A.M. Mayes, Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries, Journal of The Electrochemical Society 148(6) (2001) A537.

92. M.S. Tureau, W.-F. Kuan, L. Rong, B.S. Hsiao, T.H. Epps, Inducing Order from Disordered Copolymers: On Demand Generation of Triblock Morphologies Including Networks, Macromolecules 45(11) (2012) 4599-4605.

93. J.L. Thelen, A.A. Teran, X. Wang, B.A. Garetz, I. Nakamura, Z.-G. Wang, N.P. Balsara, Phase Behavior of a Block Copolymer/Salt Mixture through the Order-to-Disorder Transition, Macromolecules 47(8) (2014) 2666-2673.

94. G. Jo, H. Ahn, M.J. Park, Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough, ACS Macro Letters 2(11) (2013) 990-995.

95. M. Singh, O. Odusanya, G.M. Wilmes, H.B. Eitouni, E.D. Gomez, A.J. Patel, V.L. Chen, M.J. Park, P. Fragouli, H. Iatrou, N. Hadjichristidis, D. Cookson, N.P. Balsara, Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes, Macromolecules 40(13) (2007) 4578-4585. 96. J.B. Gilbert, M. Luo, C.K. Shelton, M.F. Rubner, R.E. Cohen, T.H. Epps,

Determination of Lithium-Ion Distributions in Nanostructured Block Polymer Electrolyte Thin Films by X-ray Photoelectron Spectroscopy Depth Profiling, Acs Nano 9(1) (2015) 512-520.

97. E.D. Gomez, A. Panday, E.H. Feng, V. Chen, G.M. Stone, A.M. Minor, C. Kisielowski, K.H. Downing, O. Borodin, G.D. Smith, N.P. Balsara, Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes, Nano Letters 9(3) (2009) 1212-1216.

98. M. Chintapalli, X.C. Chen, J.L. Thelen, A.A. Teran, X. Wang, B.A. Garetz, N.P. Balsara, Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte, Macromolecules 47(15) (2014) 5424-5431.

99. M.T. Irwin, R.J. Hickey, S. Xie, S. So, F.S. Bates, T.P. Lodge, Structure– Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends, Macromolecules (2016).

100.X.Y. Wei, D.F. Shriver, Highly conductive polymer electrolytes containing rigid polymers, Chemistry of Materials 10(9) (1998) 2307-+.

101.M.J. Smith, M.M. Silva, S. Cerqueira, J.R. MacCallum, Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate), Solid State Ionics 140(3–4) (2001) 345-351. 102.M.M. Silva, S.C. Barros, M.J. Smith, J.R. MacCallum, Characterization of solid

polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate, Electrochimica Acta 49(12) (2004) 1887-1891.

103.A.M. Elmer, P. Jannasch, Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes, Journal of Polymer Science Part a-Polymer Chemistry 44(7) (2006) 2195-2205.

104.K. Kimura, J. Motomatsu, Y. Tominaga, Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes, Journal of Physical Chemistry C 120(23) (2016) 12385-12391. 105.K. Kimura, M. Yajima, Y. Tominaga, A highly-concentrated poly(ethylene

carbonate)-based electrolyte for all-solid-state Li battery working at room temperature, Electrochemistry Communications 66 (2016) 46-48.

106.Y. Tominaga, T. Shimomura, M. Nakamura, Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes, Polymer 51(19) (2010) 4295-4298.

107.Y. Tominaga, V. Nanthana, D. Tohyama, Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts, Polymer Journal 44(12) (2012) 1155-1158.

108.T. Morioka, K. Ota, Y. Tominaga, Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes, Polymer 84 (2016) 21-26.

109.T. Morioka, K. Nakano, Y. Tominaga, Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer, Macromolecular Rapid Communications 38(8) (2017).

110.B. Sun, J. Mindemark, K. Edström, D. Brandell, Polycarbonate-based solid polymer electrolytes for Li-ion batteries, Solid State Ionics 262 (2014) 738-742. 111.C.P. Fonseca, S. Neves, Electrochemical properties of a biodegradable polymer

electrolyte applied to a rechargeable lithium battery, Journal of Power Sources 159(1) (2006) 712-716.

112.J. Mindemark, E. Törmä, B. Sun, D. Brandell, Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries, Polymer 63 (2015) 91-98.

113.J. Mindemark, B. Sun, E. Torma, D. Brandell, High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature, Journal of Power Sources 298 (2015) 166-170.

114.J. Mindemark, A. Sobkowiak, G. Oltean, D. Brandell, T. Gustafsson, Mechanical Stabilization of Solid Polymer Electrolytes through Gamma Irradiation, Electrochimica Acta 230 (2017) 189-195.

115.M. Bergman, A. Bergfelt, B. Sun, T. Bowden, D. Brandell, P. Johansson, Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide), Electrochimica Acta 175 (2015) 96-103.

116.J.Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources 77(2) (1999) 183-197.

117.A.M. Stephan, Review on gel polymer electrolytes for lithium batteries, European

Related documents