• No results found

Genom att utvinna och analysera genetiskt material från subfossila lämningar av olika djurarter kan man undersöka en mängd aspekter av deras evolutionära historia. Den här avhandlingen undersöker dynamik, släktskap och ekologi hos olika populationer av tre stora rovdjur; grottlejon (Panthera spelaea), varg (Canis lupus) och brunbjörn (Ursus arctos). Resultaten är främst baserade på mitokondrie-DNA, men även på nukleärt DNA och stabila isotoper från insamlat benmaterial. Åldern på lämningarna har mer specifikt kunnat bestämmas med hjälp av 14C-datering och tidsskalan sträcker sig ända till den bortre gränsen för denna metod – ca 50,000 år tillbaka i tiden. Denna senkvartära tidsrymd innefattar både den Holocena, samt senare delen av den Pleistocena tidsepoken, en tid som utmärktes av dramatiska klimatförändringar med låga medeltemperaturer. Genom att använda analyser som jämför lämningarnas geografiska ursprung, den genetiska diversiteten vid olika tidpunkter samt information om samtida ekologiska förhållanden, har avsikten varit att hitta mönster som kan visa på kopplingar mellan populationernas dynamik och förändringar i deras miljö. Även interaktioner mellan arter samt mänsklig påverkan har tagits upp för att uppskatta om/hur dessa faktorer inverkat. I en del fall har vi utgått från tidigare studier, som antytt förändringar i vissa geografiska områden (Paper I) eller slagit fast att en flaskhals inträffat (Paper V). I andra har vi mer förutsättningslöst undersökt genetisk diversitet på en global (Paper II) eller temporal skala (Papers III & IV).

Korta mitokondrie-sekvenser från daterade prover av grottlejon från hela Eurasien analyserades i Paper I. En tydlig förlust av genetisk diversitet som kunde tolkas som orsakad av en flaskhals testades genom simuleringar av olika populationsmodeller, där resultaten stödde ett scenario med en långvarig flaskhals mellan ca 47-18,000 år sedan i Beringia. Tidsintervallet tillsammans med samtida nedgångar hos andra stora däggdjur antyder att djupgående klimatförändringar kan ha legat bakom. I Paper II undersöktes temporal diversitet hos vargar utifrån mitokondrie-DNA. Moderna prover från hela utbredningsområdet samt två lämningar från Sibirien analyserades. Resultaten visade lite geografisk struktur utöver två grupperingar, där den ena innehöll alla vargar från sen Pleistocen tid. Vidare påvisade simuleringar stöd för att en flaskhals inträffat i slutet av Pleistocen hos nordamerikanska vargar. En av varglämningarna från Sibirien analyserades utifrån både mitokondrie- och nukleärt DNA i Paper III. Jämförelser av det nukleära DNA:t med motsvarande data från moderna hundar och vargar stödde ett scenario där den sibiriska vargen tillhört en population som troligen utgjordes av de gemensamma föregångarna till de två moderna grupperna. Utifrån den uppskattade mutationshastigheten skilde sig de två sistnämnda genetiska linjerna förmodligen så tidigt som för minst ca 27,000 år sedan. I Paper IV sekvenserades mitokondrie-DNA från lämningar av europeisk brunbjörn. Flera demografiska förändringar kunde avslöjas med hjälp av 14C-dateringar och provernas fastställda haplotyper. En minskning av diversitet kunde iakttas i samband med den senaste istiden (LGM), samt en kraftigt minskande populationsstorlek efter mitten av Holocen. Den geografiska

30

utbredningen i västra Europa under LGM motsäger tidigare hypoteser om att brunbjörnens utbredning skulle ha varit begränsad till enbart södra Europa under denna tid. I Paper V fokuserade vi på den skandinaviska björnpopulationen, för att undersöka genetiska effekter av den flaskhals som inträffade under sent 1800-tal, orsakad av intensiv och okontrollerad jakt. Jämförelser av mitokondrie-DNA och nukleära mikrosatelliter från museimaterial respektive moderna björnar påvisade en signifikant minskning av diversitet, framför allt i södra Skandinavien. Simuleringar gav vidare stöd för en modell där en flaskhals påverkat alla skandinaviska björnar.

Acknowledgements

I would first of all like to thank my supervisor Professor Love Dalén for taking me on and supporting me during the work on these and all other projects. I have also received much support from colleagues and fellow PhD students at the departments of zoology and archaeology, but especially in the ancient DNA group; Vendela, Elle, Edson, Patricia, Jean-Luc, George, Johanna, Matti and David - I am very grateful for all your help and your company over the years. For valuable assistance at the Department of Bioinformatics and Genetics and in the DNA-lab I am most grateful to; Fredrik Ronquist, Pia Eldenäs, Jane Parker, Anna-Lena Löfberg, Martin Irestedt, Bodil Cronholm, Veronica Nyström Edmark, Rodrigo Esparza-Salas and Keyvan Mirbakhsh. All other colleagues at NRM are acknowledged, especially Daniella Kalthoff, Peter Mortensen and Peter Nilsson for helping out with the bear samples from the museum.

For work on the simulations I am in much gratitude to Ludovic Orlando, Edson Sandoval-Castellanos, Jean-Luc Tison and Yvonne Chan. I am also grateful to Pontus Skoglund, in whose hands the data from the Taimyr-wolf turned into a great paper. For inviting me to work on the dataset gathered from modern wolves I would like to thank Peter Savolainen at the Royal Institute of Technology (KTH) and Cornelya Klütsch at Trent University. I would further like to express my gratitude to everyone that have helped with and facilitated the contribution of samples for all projects, as well as all the co-authors (more thoroughly acknowledged in the papers/manuscripts). Tom Gilbert and Mikkel Sinding-Larsen are especially acknowledged for sharing their data on the wolf samples from Greenland.

Additionally, I would like to express my gratitude to Tom Higham and Katerina Douka at the Research Laboratory for Archaeology and the History of Art in Oxford for all their help and for a real good time. The group working under Michael Hofreiter in Potsdam is acknowledged, especially Axel Barlow, Johanna Paijmans and Mick Westbury, and so are Beth Shapiro and her group for hosting me at UCSC in Santa Cruz, US. I am grateful for financial support from Tullbergs stiftelse and Föreningen Riksmusei Vänner. I would also like to thank my co-supervisor Kerstin Lidén and the other members of my evaluation committee; Karl Gotthard and Lars Werdelin.

Last but not least, I want to thank family and friends for their support, especially Hani for supporting and sticking with me ♥.

31

Contributions

Paper I

I took part in the design of the study. All laboratory work was performed by me and I helped with the data analyses. The paper was written by me, with input from the co-authors.

Paper II

I helped to design the study and performed laboratory analyses on the two Late Pleistocene wolf samples. I also conducted all data analyses, except for the coalescent simulations, which were done together with Yvonne Chan. I wrote the manuscript with help from the other authors.

Paper III

This study was based on the DNA extractions I did for paper II. I further helped building the Illumina libraries. The analyses of the mitochondrial genome were performed by me, and I also participated in writing the paper.

Paper IV

For this manuscript I helped to design the study and to formulate hypotheses. I collected samples from museum collections around Europe, on which I did all DNA extractions, amplifications and sequencing. I also conducted all the computational analyses on the data, interpreted the results and wrote the manuscript with input from the co-authors.

Paper V

I helped to design the study and to formulate hypotheses. I collected all the historical samples, and conducted laboratory and data analyses together with George Xenikoudakis. I also took part in the work on the Bayesian simulations as well as in interpreting the results and writing the paper.

32

References

Adler CJ, Haak W, Donlon D, Cooper A (2011) Survival and recovery of DNA from ancient teeth and bones. Journal of Archaeological Science, 38, 956–964.

Aggarwal RK, Kivisild T, Ramadevi J, Singh L (2007) Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species. Journal of Zoological

Systematics and Evolutionary Research, 45, 163–172.

Allentoft ME, Collins M, Harker D et al. (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings. Biological sciences / The Royal Society, 279, 4724–

33.

Anderson PM, Bartlein PJ, Brubaker LB (1994) Late Quaternary History of Tundra Vegetation in Northwestern Alaska. Quaternary Research, 41, 306–315.

Anderson CNK, Ramakrishnan U, Chan YL, Hadly EA (2005) Serial SimCoal: A population genetics model for data from multiple populations and points in time. Bioinformatics, 21, 1733–1734.

Antón M (2013) Sabertooth. Indiana University Press.

Avise JC (2000) Phylogeography: the history and formation of species. Harvard university press.

Avise JC, Arnold J, Ball RM et al. (1987) Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annual Review of Ecology and Systematics, 18, 489–522.

Axelsson E, Ratnakumar A, Arendt M-L et al. (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 495, 360–4.

Axelsson E, Willerslev E, Gilbert MTP, Nielsen R (2008) The effect of ancient DNA damage on inferences of demographic histories. Molecular Biology and Evolution, 25, 2181–2187.

Azzaroli A (1983) Quaternary mammals and the “end-Villafranchian” dispersal event - A turning point in the history of Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 44, 117–

139.

Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A (2002) Dynamics of Pleistocene Population Extinctions in Beringian Brown Bears. , 295, 2267–2270.

Barnett R, Shapiro B, Barnes I et al. (2009) Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Molecular Ecology, 18, 1668–

1677.

Barnett R, Yamaguchi N, Barnes I, Cooper A (2006) The origin, current diversity and future conservation of the modern lion (Panthera leo). Proceedings of the Royal Society B-Biological Sciences, 273, 2119–2125.

Bartosiewicz L (2009) A lion’s share of attention: archaeozoology and the historical record. Acta Archaeologica, 60, 275–289.

Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: A novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007–1012.

Beaumont MA (2010) Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics, 41, 379–406.

Berger J, Stacey PB, Bellis L, Johnson MP (2001) A mammalian predator-prey imbalance: Grizzly bear and wolf extinction affect avian neotropical migrants. Ecological Applications, 11, 947–

960.

Bocherens H (2003) Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna.

Deinsea, 9, e76.

Bocherens H (2015) Isotopic tracking of large carnivore palaeoecology in the mammoth steppe.

Quaternary Science Reviews, 117, 42–71.

Bocherens H, Drucker DG, Bonjean D et al. (2011) Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: Prey choice, competition and implications for extinction. Quaternary International, 245, 249–261.

Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology, 83, 2936–2941.

Bowen GJ (2010) Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. Annual Review of Earth and Planetary Sciences, 38, 161–187.

33 Briggs AW, Stenzel U, Johnson PLF et al. (2007) Patterns of damage in genomic DNA sequences

from a Neandertal. Proceedings of the National Academy of Sciences, 104, 14616–14621.

Burbano HA, Hodges E, Green RE et al. (2010) Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture. Science, 328, 723–725.

Burger J, Rosendahl W, Loreille O et al. (2004) Molecular phylogeny of the extinct cave lion Panthera leo spelaea. Molecular Phylogenetics and Evolution, 30, 841–849.

Cahill JA, Green RE, Fulton TL et al. (2013) Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution. PLoS Genetics, 9.

Cahill JA, Stirling I, Kistler L et al. (2015) Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Molecular Ecology, 24, 1205–1217.

Calvignac S, Hughes S (2008) Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times. Molecular Ecology, 17, 1962–1970.

Campos PF, Willerslev E, Sher A et al. (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 107, 5675–5680.

Carbone C, Mace GM, Roberts SC, Macdonald DW (1999) Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–288.

Carmichael LE, Nagy JA, Larter NC, Strobeck C (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Molecular Ecology, 10, 2787–2798.

Carpenter ML, Buenrostro JD, Valdiosera C et al. (2013) Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries. American Journal of Human Genetics, 93, 852–864.

Chaix L, Bridault A, Picavet R (1997) A Tamed Brown Bear (Ursus arctos L.) of the Late Mesolithic from La Grande Rivoire (Isère, France)? Journal of Archaeological Science, 24, 1067–1074.

Chapron G, Kaczensky P, Linnell JDC et al. (2014) Recovery of large carnivores in Europe ’ s modern human-dominated landscapes. Science, 346, 17–20.

Chauvet J-M, Brunel Deschamps E, Hillaire C (1996) Dawn of art : the Chauvet Cave : the oldest known paintings in the world. H.N. Abrams, New York.

Christiansen P (2008) Phylogeny of the great cats (Felidae: Pantherinae), and the influence of fossil taxa and missing characters. Cladistics, 24, 977–992.

Clark PU, Mix a. C (2002) Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews, 21, 1–7.

Cooper a, Poinar HN (2000) Ancient DNA: do it right or not at all. Science (New York, N.Y.), 289, 1139.

Cooper A, Turney C, Hughen KA et al. (2015) Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science express, 349, 1–8.

Corbett LK (1995) The dingo in Australia and Asia. Cornell Univ. Press, Ithaca.

Cornuet JM, Santos F, Beaumont MA et al. (2008) Inferring population history with DIY ABC: A user-friendly approach to approximate Bayesian computation. Bioinformatics, 24, 2713–2719.

Dalén L, Nyström V, Valdiosera C et al. (2007) Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proceedings of the National Academy of Sciences of the United States of America, 104, 6726–6729.

Dalton R (2003) Lion man takes pride of place as oldest statue. Nature, 425, 7.

Dansgaard W, Johnsen SJ, Clausen HB et al. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.

Darimont CT, Paquet PC, Reimchen TE (2007) Stable isotopic niche predicts fitness of prey in a wolf-deer system. Biological Journal of the Linnean Society, 90, 125–137.

Davison J, Ho SYW, Bray SC et al. (2011) Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quaternary Science Reviews, 30, 418–430.

Debruyne R, Poinar HN (2009) Time dependency of molecular rates in ancient DNA data sets, A sampling artifact? Systematic Biology, 58, 348–360.

Dickman A, Marchini S, Manfredo M (2013) The human dimension in addressing conflict with large carnivores. In: Key Topics in Conservation Biology 2, pp. 110–126.

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

34

Genetics, 161, 1307–1320.

Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG (2003) Measurably evolving populations. Trends in Ecology and Evolution, 18, 481–488.

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evolutionary Biology, 7.

Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular biology and evolution, 22, 1185–92.

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

Druzhkova AS, Thalmann O, Trifonov VA et al. (2013) Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog. Plos One, 8.

Edwards CJ, Suchard M a., Lemey P et al. (2011) Ancient hybridization and an irish origin for the modern polar bear matriline. Current Biology, 21, 1251–1258.

Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature reviews.

Genetics, 5, 435–445.

Enk JM, Devault AM, Kuch M et al. (2014) Ancient whole genome enrichment using baits built from modern dna. Molecular Biology and Evolution, 31, 1292–1294.

Excoffier L, Novembre J, Schneider S (2000) SIMCOAL: A general coalescent program for the simulation of molecular data in interconnected populations with arbitrary demography. Journal of Heredity, 91, 506–509.

Fain SR, Straughan DJ, Taylor BF (2010) Genetic outcomes of wolf recovery in the western Great Lakes states. Conservation Genetics, 11, 1747–1765.

Firestone RB, West a, Kennett JP et al. (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences of the United States of America, 104, 16016–16021.

Flueck W (2000) Population regulation in large northern herbivores: evolution, thermodynamics, and large predators. Zeitschrift fuer Jagdwissenschaft, 46, 139–166.

Fox M (1971) Behaviour of wolves dogs and related canids. Dogwise Publishing.

Freedman AH, Gronau I, Schweizer RM et al. (2014) Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genetics, 10.

García N (2004) New results on the remains of Ursidae from Untermassfeld: Comparisons with Ursus dolinensis from Atapuerca and other early and middle Pleistocene sites. In: Late Neogene and Quaternary biodiversity and evolution: Regional developments and interregional correlations.

Conference, p. 112e113.

Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Molecular Ecology, 13, 2481–2490.

Germonpré M, Sablin M V., Stevens RE et al. (2009) Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science, 36, 473–490.

Gill MS, Lemey P, Faria NR et al. (2013) Improving Bayesian Population Dynamics Inference: A Coalescent-Based Model for Multiple Loci. Molecular Biology and Evolution, 30, 713–724.

Godinho R, Llaneza L, Blanco JC et al. (2011) Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Molecular Ecology, 20, 5154–5166.

Goudie AS (2013) The human impact on the natural environment: past, present, and future. John Wiley & Sons.

Green RE, Krause J, Briggs AW et al. (2010) A Draft Sequence of the Neandertal Genome. Science, 328, 710–722.

Guthrie RD (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews, 20, 549–574.

Guthrie RD (2005) The Nature of Paleolithic Art. University of Chicago Press.

Hailer F, Kutschera VE, Hallstrom BM et al. (2012) Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science, 336, 344–347.

Hallowell AI (1926) Bear ceremonialism in the northern hemisphere. American Anthropologist, 28, 1–

175.

Hamdine W, Thevenot M, Michaux J (1998) Recent history of the brown bear in the Maghreb.

35 Comptes Rendus de l’Academie des Sciences - Serie III: Sciences de la Vie, 321, 565–570.

Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142–152.

Hewitt GM (1996) Some genetic consequences of ice ages, and their role, in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

Hewitt G (1999) Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.

Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–284.

Hirata D, Mano T, Abramov A V et al. (2013) Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

Molecular biology and evolution, 30, 1644–52.

Ho SYW, Lanfear R, Bromham L et al. (2011) Time-dependent rates of molecular evolution.

Molecular Ecology, 20, 3087–3101.

Hofreiter M (2007) Pleistocene Extinctions: Haunting the Survivors. Current Biology, 17.

Hofreiter M, Barnes I (2010) Diversity lost: are all Holarctic large mammal species just relict populations? BMC biology, 8, 46.

Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001a) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research, 29, 4793–4799.

Hofreiter M, Münzel S, Conard NJ et al. (2007) Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Current Biology, 17, R122–R123.

Hofreiter M, Paijmans JLA, Goodchild H et al. (2015) The future of ancient DNA: Technical advances and conceptual shifts. BioEssays, 37, 284–293.

Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S (2001b) Ancient DNA. Nature Reviews Genetics, 2, 353–359.

Hofreiter M, Serre D, Rohland N et al. (2004) Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America, 101, 12963–12968.

Hofreiter M, Stewart J (2009) Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology, 19, R584–R594.

Horn S, Prost S, Stiller M et al. (2014) Ancient mitochondrial DNA and the genetic history of Eurasian beaver ( Castor fiber ) in Europe. Molecular Ecology, 23, 1717–1729.

Hudson RR (1990) Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology, 7, 1–44.

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees.

Bioinformatics, 17, 754–755.

Hunter L (2011) Carnivores of the World. Princeton University Press, Princeton, New Jersey.

Hänni C, Laudet V, Sakka M, Bègue A, Stéhelin D (1990) Amplification of mitochondrial DNA fragments from ancient human teeth and bones. C.R.Acad.Sci.Paris, t.310, Série III, 365–370.

Jansson S-B (1985) Erikskrönikan. Tiden.

Keis M, Remm J, Ho SYW et al. (2013) Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographical structure and migration patterns among brown bears in north-western Eurasia. Journal of Biogeography, 40, 915–927.

Kellert SR, Black M, Rush CR, Bath AJ (1996) Human culture and large carnivore conservation in North America. Conservation Biology, 10, 977–990.

Kennett JP (1990) The younger dryas cooling event: an introduction. Paleoceanography, 5, 891–895.

KoblmÜller S, Nord M, Wayne RK, Leonard JA (2009) Origin and status of the Great Lakes wolf.

KoblmÜller S, Nord M, Wayne RK, Leonard JA (2009) Origin and status of the Great Lakes wolf.

Related documents