• No results found

Då många mäniskor tillbringar merparten av sin tid inomhus så har inomhus-luftens kvalitet har stor betydelse för hur vi mår. Dålig luft orsakar vad som brukar kallas ”sick building syndrom” vilket definieras som att mäniskor uppvisar symptom som huvudvärk, trötthet och illamående i en byggnad utan att egentligen vara sjuka. Det finns olika orsaker till ”sick building syndrom” där flyktiga organiska förreningar (VOC) är en av dem. Utöver att orsaka dessa syndrom så kan den här typen av förreningar vara markörer för olika sjukdomar, exempelvis bröstcancer. Därför är det viktigt att forska kring och utveckla nya sensorer som kan detektera dem. I den här avhand-lingen har följande material används för att utveckla sensorer för detektion av VOCs: metaloxider, tiol funktionaliserade guldnanopartiklar samt TiO2 kombinerat med grafen.

En avancerad gasförångare använders för att producera tunnfilms NiO sensorer som kan användas för att detektera formaldehyd. Före värmebe-handling hade NiO filmens krystaliter en diameter på 2.2 nm till 3.7 nm med en snäv storleksdistribution. Filmerna har hög ytarea, ~154.7 m2/g, på grund av sin porositet och är därför optimala för gassensorer.

NiO-sensorerna var selektiva för detektion av formaldehyd och gav lågt utslag för etanol och metan i förhålland till formaldehyd. Testen utfördes vid 200°C och kunde detektera 0.5 ppm av formaldehyd och utfördes med meto-derna resistans och ”fluctation-enhanced sensing” (brus). De två metometo-derna gav liknande resultat.

InSnO tunnfilmer tillverkades med DC magnetron förstoftning (sput-tering) och hade olika In/(In+Sn) sammansättningar, från 3% till 75%. Pro-verna värmebehandlades vid 400°C. Prover med mindre än 20% hade SnO2 kristallstruktur medans prover med mer än 75% hade In2O3 struktur. Dock så visade SEM att kornen är bildade som kluster av kristaller, eftersom korn-storleken var högre än de genomsnittliga kristallitdiameter av proven. Olika analysmetoder, EDX och XPS, gav konsekventa resultat på elementära för-hållanden i små experimentella felprocent.

InSnO filmer användes för att detektera acetaldehyd, som är en biologisk markör för tidigt upptäcka bröstcancer samt en VOC. Svaret från sensorerna varierade med sina I /(I+Sn) förhållanden, prover har mindre än 20 % I/(I+

Sn) hade högre svar, men en lokal maxima inträffade var i och Sn förhållan-dena var nära. Vidare vid 185°C ned till 200 ppb acetaldehyd detektering uppnås.

Spridda Au nanopartiklar producerades via hjälp av avancerad gasförång-are. Au nanopartiklar hade ~10 nm kristallitdiameter och kornstorlek, vilket visar att varje korn är enda kristall. Au nanopartiklar var funktionaliseras med dodekantiol och 2-mercaptobenzaxozale. Efter funktionalisering, Au nanopartiklar hade webbliknande strukturer på Si substrat med egenskaper Schottkydiod.

Dodekantiol funtionaliserade AuNP sensorer användes för att detektera acetaldehyd och formaldehyd. Acetaldehyd detekteras med användning av motståndsförändringar vid olika punkter i sensor förspänning. Resultaten visade att sensorerna selektiv respons på acetaldehyd jämfört med etanol och etylbensen. Svaret på acetaldehyd har ökat i hög relativ fuktighet på 70%, vilket gör sensorn användbar för analys av utandningsluft.

2-mercaptobenzaxozale utjämnade Au NP användes för att övervaka for-maldehyd med fluktuationer förbättrad avkänning. Urskiljbart buller svar på formaldehyd på 1,5 ppm har erhållits jämfört med 50 ppm etanol. Således har en ny sensor tillverkningsmetod i kombination med fluktuationer förbätt-rad avkänning som kan leda till ytterligare diagnostiska tillämpningar.

Förstoftning har använts för att producera VO2 tunnfilmer, vilka även har thermochromics egenskaper. The O2 förhållanden under nedfall har påverkat deras svar på formaldehyd och acetaldehyd. Men det är en stor nackdel att VO2 inte är termiskt stabil och bildade V2O5 i vissa prover.

Slutligen var grafen/TiO2 prover som framställts genom användning av doctor-blading som är en mycket enkel metod. TiO2 har fotokatalytiska egenskaper, som kan kombineras i gas detektion. Sensorerna gav resultat med NO2 när brus används med ytterligare dataanalys, såsom principalkom-ponentanalys (PCA).

Acknowledgements

First off all, I am proud and happy with the results of my doctoral studies after such a long time. It would not have been possible to complete this task without the help of my supervisor Professor Gunnar Niklasson who guided me during my studies, especially with his theoretical knowledge. His calm attitude and working discipline have given me inspiration.

I am also grateful to my co-supervisor Professor Claes-Göran Granqvist for not only being a good mentor but also a great host. I have enjoyed his and Martha Garrett’s hospitality at their house parties which were fun to attend.

I thank my co-supervisor Professor Lars Österlund for his help during my studies and I am grateful for his help, especially in experimental issues. His help in finding contacts has been very useful in this time.

Furthermore, I thank Professor Janusz Smulko and Professor Radu Ionescu for co-operating in projects. It was joyful to work with them, and I am very happy with results achieved so far. I had a great time in Poland with Janusz’s guidance on Polish culture. In addition, I thank Tesfalem Welearegay for his hard work and co-operation.

During this time, I have received great help from post-doctoral fellows Dr.

Zareh Topalian and Dr. Pia Lansåker. I learned the basics of lab tools in FTF from them at the beginning of my studies. It was a great pleasure to chat with them at fika times.

I cannot continue further without mentioning my Turkish family in Uppsala.

Esat Pehlivan and Ilknur Bayrak Pehlivan started to help me even before I came to Sweden. I wish they have further joyful times with UmutP. Other members of my Turkish family, Arzu Graneberg and Yagmur Yagdiran Alatli were always there when I needed them. I wish them a happy life. Ser-kan ASer-kansel was not only a colleague but a joyful friend who listened to me a lot. Lastly, I thank to Selcuk Yaldir, Fatma Gulen Yaldir, and Esra Bayoglu Flener for the times we had.

I’m thankful to a close friend, whom I met here, from my hometown, Ozden Baltekin (Ozzy) for all the discussions we had on science, politics and

cur-current events. It was fun to be in Sputnik Kollektiv for Katushka. I’d like to mention Ninnie Abrahamsson for joining him and keeping a company with us as well. I should also mention another Turkish friend Burak Aktekin for his friendship, especially when I had difficult times, and joyful chats.

My friends and colleagues in FTF made me feel special during my studies. It was such a great working environment and I was always happy whenever we gathered for board games or during Christmas dinners at FTF. I thank Bozhidar Stefanov for the chats when we shared our office and I wish him success. I’m thankful to Delphine Lebrun, especially for board games and being a nice host. I feel lucky that I worked with my colleagues in FTF. I always had fun with Rui Tao Wen, Jose Montero, Miguel Arvizu, Carlos Triana, Andreas Mattson, Ji Yuxia, Mikael Andersson, Daniel Hedlund, Annica Nilsson and Sofia Kontos. I’m also grateful to Bengt Götesson for his help, not only in work but also for practice in Swedish.

I had lots of fun with my friends in BMC, Alexandre Barozzo with whom I ran a marathon, Klev Diamanti and Tommy Athan, with whom we travelled through the whole of Greece (with Alex). In addition, Petar Kovachev, Miha Purg, Ania Pabis, Showgy Maayeh and Fabio Freitag; it was fun to hang out with you at ICM beer clubs.

I should mention the twins Juliana and Gabriela Lundholm for the good times we had. It was a joy to cook with you together. I’m thankful to Elisabeth Dahlkvist for being a good friend for years.

Finally I leave my last words for my family (in Turkish):

Cesaretimi kaybettigim anlarda daima yanimda olan ve beni bugunlere kadar yetistiren annem ve babam, size minnetarim. Ebeveyn olmanin yanisira sizinle bir arkadas gibi iletisim kurdugum icin kendimi cok sansli hissediyorum. Ikiz kardesim Ulas, seninle daima aramizda özel bir bag olduguna inandim. Cesaretin ve kararliligin bana daima ilham verdi. Cok sevdigim Buse, aramizdaki yas farkina ragmen seninle de özel bir bagimiz var, uzakta olsan da seninle oynadigimiz oyunlar, konusmalarimiz hep eglenceli oldu. Ben ögrencilige veda ederken, sana universite yasaminda basarilar diliyorum. Hepiniz iyi ki varsiniz!

Umut Çindemir

References

[1] J.A. Leech, W.C. Nelson, R.T. Burnett, S. Aaron, M.E. Raizenne, It’s about time: a comparison of Canadian and American time-activity patterns., J.

Expo. Anal. Environ. Epidemiol. 12 (2002) 427–432.

doi:10.1038/sj.jea.7500244.

[2] K. Kreiss, The epidemiology of building-related complaints and illness., Occup. Med. 4 575–92. http://www.ncbi.nlm.nih.gov/pubmed/2690375 (accessed June 22, 2016).

[3] M.J. Mendell, G.A. Heath, Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature, Indoor Air. 15 (2005) 27–52. doi:10.1111/j.1600-0668.2004.00320.x.

[4] M.J. Mendell, W.J. Fisk, K. Kreiss, H. Levin, D. Alexander, W.S. Cain, J.R.

Girman, C. J. Hines, P.A. Jensen, D. K. Milton, L.P. Rexroat, K.M.

Wallingford, Improving the Health of Workers in Indoor Environments:

Priority Research Needs for a National Occupational Research Agenda, Am.

J. Public Heal. J Public Heal. 9292 (2002) 1430–1440.

[5] T. Godish, Indoor environmental quality, Lewis Publishers,Washington DC, 2001.

[6] M. Murphy, Sick building syndrome and the problem of uncertainty:

Environmental politics, technoscience, and women workers., Duke University Press, Durham, NC, 2006.

[7] World Health Organization. Regional Office for Europe., Indoor air quality research : report on a WHO meeting, Stockholm, 27-31 August 1984., World Health Organization, Regional Office for Europe, 1986.

[8] H. Nordman, H. Keskinen, M. Tuppurainen, Formaldehyde asthma—Rare or overlooked?, J. Allergy Clin. Immunol. 75 (1985) 91–99. doi:10.1016/0091-6749(85)90018-1.

[9] K.B. Rumchev, J.T. Spickett, M.K. Bulsara, M.R. Phillips, S.M. Stick, Domestic exposure to formaldehyde significantly increases the risk of asthma in young children, Eur. Respir. J. 20 (2002) 403–408.

doi:10.1183/09031936.02.00245002.

[10] R. Walinder, D. Norback, G. Wieslander, G. Smedje, C. Erwall, Nasal Mucosal Swelling in Relation to Low Air Exchange Rate in Schools, Indoor Air. 7 (1997) 198–205. doi:10.1111/j.1600-0668.1997.t01-1-00005.x.

[11] M. Garrett, M. Hooper, B. Hooper, P. Rayment, M. Abramson, Increased risk of allergy in children due to formaldehyde exposure in homes, Allergy. 54 (1999) 330–337. doi:10.1034/j.1398-9995.1999.00763.x.

[12] M. Eckert, G. Fleischmann, R. Jira, H.M. Bolt, K. Golka, Acetaldehyde, in:

Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006. doi:10.1002/14356007.a01_031.pub2.

[13] D. Grosjean, A.H. Miguel, T.M. Tavares, Urban air pollution in Brazil:

Acetaldehyde and other carbonyls, Atmos. Environ. Part B. Urban Atmos. 24 (1990) 101–106. doi:10.1016/0957-1272(90)90015-M.

[14] T.W. Kimmerer, T.T. Kozlowski, Ethylene, Ethane, Acetaldehyde, and Ethanol Production By Plants under Stress., Plant Physiol. 69 (1982) 840–

847. doi:10.1104/pp.69.4.840.

[15] E. Pesis, O. Dvir, O. Feygenberg, R. Ben Arie, M. Ackerman, A. Lichter, Production of acetaldehyde and ethanol during maturation and modified atmosphere storage of litchi fruit, Postharvest Biol. Technol. 26 (2002) 157–

165. doi:10.1016/S0925-5214(02)00024-8.

[16] N. Kosaric, Z. Duvnjak, A. Farkas, H. Sahm, S. Bringer-Meyer, O. Goebel, D. Mayer, Ethanol, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011.

doi:10.1002/14356007.a09_587.pub2.

[17] W.L. Guess, Tissue reactions to 2-chloroethanol in rabbits, Toxicol. Appl.

Pharmacol. 16 (1970) 382–390. doi:10.1016/0041-008X(70)90009-8.

[18] L. Phillips, M. Steinberg, H.I. Maibach, W.A. Akers, A comparison of rabbit and human skin response to certain irritants, Toxicol. Appl. Pharmacol. 21 (1972) 369–382. doi:10.1016/0041-008X(72)90157-3.

[19] M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H.

Haick, Volatile organic compounds of lung cancer and possible biochemical pathways, Chem. Rev. ,2012, 112(11), pp: 5949-5966 doi:10.1021/cr300174a.

[20] E. Walter, Cambridge Advanced Learner’s Dictionary Hardback with CD-ROM for Windows and Mac Klett Edition, Ernst Klett Sprachen, 2008.

[21] T. Naoyoshi, Gas detecting element and method of making it, US Patent No.

3 664 795, (1972). https://www.google.se/patents/US3644795.

[22] N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research:

How to?, Sensors Actuators B Chem. 121 (2007) 18–35.

doi:10.1016/j.snb.2006.09.047.

[23] G. Neri, First Fifty Years of Chemoresistive Gas Sensors, Chemosensors. 3 (2015) 1–20. doi:10.3390/chemosensors3010001.

[24] A. Gurlo, N. Barsan, U. Weimar, Gas sensors based on semiconductiong metal oxides, Metal Oxides: Chemistry and Applications, CRC Press (2006), p 683-738. doi:10.1201/9781420028126.ch22

[25] H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors Actuators B Chem. 192 (2014) 607–627. doi:10.1016/j.snb.2013.11.005.

[26] H. Ogawa, M. Nishikawa, A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, J. Appl.

Phys. 53 (1982) 4448–4455. doi:10.1063/1.331230.

[27] S. Das, V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci. 66 (2014) 112–255.

doi:10.1016/j.pmatsci.2014.06.003.

[28] W. Göpel, K.D. Schierbaum, SnO2 sensors: current status and future prospects, Sensors Actuators B Chem. 26 (1995) 1–12. doi:10.1016/0925-4005(94)01546-T.

[29] N.A. Abdullah, Z. Khusaimi, M. Mohammad Rusop, A Review on Zinc Oxide Nanostructures: Doping and Gas Sensing, Adv. Mater. Res. 667 (2013) 329–332. doi:10.4028/www.scientific.net/AMR.667.329.

[30] G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review, Crit.

Rev. Solid State Mater. Sci. 29 (2004) 111-188.

http://www.tandfonline.com/doi/abs/10.1080/10408430490888977 (accessed May 23, 2016).

[31] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331–349.

doi:10.1016/j.apcatb.2012.05.036.

[32] A. Tricoli, M. Righettoni, S.E. Pratsinis, Minimal cross-sensitivity to humidity during ethanol detection by SnO 2 –TiO 2 solid solutions, Nanotechnology. 20 (2009) 315502. doi:10.1088/0957-4484/20/31/315502.

[33] T.-Y. Yang, H.-M. Lin, B.-Y. Wei, C.-Y. Wu, C.-K. Lin, UV enhancement of the gas sensing properties of nano-TiO2, Rev. Adv. Mater. Sci. 4 (2003) 48–

[34] M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin,B. Zhang, Y. 54.

Hu, J. Yang, S. J .Pennycook, B. J . Hwang, H. Dai, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis., Nat. Commun. 5 (2014) 4695. doi:10.1038/ncomms5695.

[35] R.-T. Wen, G.A. Niklasson, C.G. Granqvist, Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties, Thin Solid Films. 565 (2014) 128–135.

doi:10.1016/j.tsf.2014.07.004.

[36] R.-T. Wen, C.G. Granqvist, G.A. Niklasson, Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange, Appl. Phys. Lett. 105 (2014) 163502.

doi:10.1063/1.4899069.

[37] V. Lantto, Semiconductor Gas Sensors Based on SnO2 Thick Films, in: Gas Sensors, G. Sbelveglieri (ed), Springer Netherlands, Dordrecht, 1992: pp.

117–167. doi:10.1007/978-94-011-2737-0_4.

[38] D. Kohl, Surface processes in the detection of reducing gases with SnO2 -based devices, Sensors and Actuators. 18 (1989) 71–113. doi:10.1016/0250-6874(89)87026-X.

[39] M.-C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical reviews, 104(1), 293-346.

(2004). doi:10.1021/cr030698+.

[40] U. Leonhardt, Optical metamaterials: Invisibility cup, Nat. Photonics. 1 (2007) 207–208. doi:10.1038/nphoton.2007.38.

[41] F. Antonii, Panacea aurea-auro potabile, Hambg. Ex Bibliopolio Frobeniano.

(1618) 250.

[42] J. Kunckels, Nuetliche Observationes oder Anmerkungen von Auro und Argento Potabili, Schutzens, Hambg. (1676).

[43] E.A. Hauser, Aurum potabile. J. Chem. Educ. (1952), 29 (9): 456.

[44] D.H. Brown, W.E. Smith, The chemistry of the gold drugs used in the treatment of rheumatoid arthritis, Chem. Soc. Rev. 9 (1980) 217–240.

[45] A. Alivisatos, Science, Semiconductor clusters, nanocrystals, and quantum dots. Science 271.5251 (1996): 933.

[46] M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review, Colloids Surfaces A Physicochem. Eng. Asp. 202 (2002) 175–186. doi:10.1016/S0927-7757(01)01087-1.

[47] J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc. 11 (1951) 55–75.

[48] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System, J. Chem. Soc., Chem Commun., 7 (1994) 801-802.

[49] M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, C. Kiely, Synthesis and reactions of functionalised gold nanoparticles, J. Chem. Soc. Chem. Commun. 16 (1995) 1655-1656. doi:10.1039/c39950001655.

[50] K. Mallick, Z.L. Wang, T. Pal, Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis, J. Photochem. Photobiol. A Chem. 140 (2001) 75–80.

doi:10.1016/S1010-6030(01)00389-6.

[51] G.B. Smith, G.A. Niklasson, J.S.E.M. Svensson, C.G. Granqvist, Noble-metal-based transparent infrared reflectors: Improved performance caused by nonhomogeneous film structure, Appl. Phys. Lett. 46 (1985) 713-715.

doi:10.1063/1.95484.

[52] N. Peled, R. Ionescu, P. Nol, O. Barash, M. McCollum, K. VerCauteren, M.

Koslow, R. Stahl, J. Rhyan, H. Haick, Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis, Sensors Actuators B Chem. 171 (2012) 588–594. doi:10.1016/j.snb.2012.05.038.

[53] U. Tisch, H. Haick, Nanomaterials for cross-reactive sensor arrays, MRS Bull. 35 (2010) 797–803. doi:10.1557/mrs2010.509.

[54] O. Barash, N. Peled, F.R. Hirsch, H. Haick, Sniffing the unique “Odor Print”

of non-small-cell lung cancer with gold nanoparticles, Small. 5 (2009) 2618–

2624. doi:10.1002/smll.200900937.

[55] H. Haick, Chemical sensors based on molecularly modified metallic nanoparticles, J. Phys. D Appl. Phys. J. Phys. D Appl. Phys. 40 (2007) 7173–

7186. doi:10.1088/0022-3727/40/23/S01.

[56] G. Shuster, S. Baltianski, Y. Tsur, H. Haick, Utility of resistance and capacitance response in sensors based on monolayer-capped metal nanoparticles, J. Phys. Chem. Lett. 2 (2011) 1912–1916.

doi:10.1021/jz2008648.

[57] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, Diagnosing lung cancer in exhaled breath using gold nanoparticles., Nat. Nanotechnol. 4 (2009) 669–673.

doi:10.1038/nnano.2009.235.

[58] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110 (2010) 132–145. doi:10.1021/cr900070d.

[59] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis. 22 (2010) 1027–1036. doi:10.1002/elan.200900571.

[60] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–

191. doi:10.1038/nmat1849.

[61] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat.

Nanotechnol. 4 (2009) 217-224. doi:10.1038/nnano.2009.58.

[62] F. Schedin, A.K. Geim, S. V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6 (2007) 652–655. doi:10.1038/nmat1967.

[63] Z. Zongbiao Ye, H. Hulling Tai, C. Chunhua Liu, Z. Zhen Yuan, T. Tao Xie, Y. Yuanjie Su, Y. Jiang., The investigation of reduced graphene oxide/titanium dioxide-based sensor for formaldehyde detection at room temperature, in: 2015 Ieee Sensors, IEEE, 2015: pp. 1–4.

doi:10.1109/ICSENS.2015.7370360.

[64] C. Hayashi, R. Uyeda, A. Tasaki, Ultra-fine particles: Exploratory science and technology, Noyes Publications, New Jersey, 1995.

[65] C.G. Granqvist, R.A. Buhrman, Ultrafine metal particles, J. Appl. Phys 47 (1976). doi:10.1063/1.326081.

[66] D.L. Smith, Thin-Film Deposition: Principles and Practice, McGraw Hill Professional, New York, NY 1995.

[67] M. Ohring, The Materials Science of Thin Films: Deposition and Structure Academic, San Diego, CA. 2002.

[68] U. Cindemir, P. Lansåker, L. Österlund, G. Niklasson, C.-G. Granqvist, Sputter-Deposited Indium–Tin Oxide Thin Films for Acetaldehyde Gas Sensing, Coatings. 6 (2016) 19. doi:10.3390/coatings6020019.

[69] H. Gronbeck, A. Curioni, W. Andreoni, Thiols and Disulfides on the Au (111) Surface: The Headgroup - Gold Interaction, J. Am. Chem. Soc. 122 (2000) 3839–3842. doi:10.1021/ja993622x.

[70] Z. Xu, Y.Y. Broza, R. Ionsecu, U. Tisch, L. Ding, H. Liu, Q. Song,Y.Y Pan, F.X. Xiong, K.S. Gu,G.P. Sun, Z.D. Chen, M. Leja, H. Haick, A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions, Br. J. Cancer. 108 (2013) 941–950.

doi:10.1038/bjc.2013.44.

[71] K. Siegbahn, Electron spectroscopy - an outlook, J. Electron Spectros. Relat.

Phenomena. 5 (1974) 3–97. doi:10.1016/0368-2048(74)85005-X.

[72] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Pearson, Upper Saddle River, NJ, 2001.

[73] M. Birkholz, Thin Film Analysis by X-ray Scattering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006. doi:10.1002/3527607595.

[74] L.C. Feldman, J.W. Mayer, Fundamentals of surface and thin film analysis, North Holland, Elsevier Sci. Publ. P. O. Box 211, 1000 AE Amsterdam, Netherlands, 1986.

[75] D.E. Sayers, E.A. Stern, F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray-absorption fine structure, Phys. Rev. Lett. 27 (1971) 1204–1207.

doi:10.1103/PhysRevLett.27.1204.

[76] F. Jalilehvand, Structure of hydrated ions and cyano complexes by x-absorption spectroscopy,PhD Thesis, KTH, 2000.

[77] A. Kodre, I. Arcon, J.P. Gomilsek, X-ray absorption spectroscopy and related techniques, Acta Chim. Slov. 51 (2004) 1–10.

[78] T.M. Grehk, P.O. Nilsson, The design of the material science beamline, I811, at MAX-II, Nucl. Instruments Methods Phys. Res. Sect. A Accel.

Spectrometers, Detect. Assoc. Equip. 467-468 (2001) 635–638.

doi:10.1016/S0168-9002(01)00433-8.

[79] S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, C. Svensson, XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden., J.

Synchrotron Radiat. 13 (2006) 359–64. doi:10.1107/S0909049506025611.

[80] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT., J. Synchrotron Radiat. 12 (2005) 537–41. doi:10.1107/S0909049505012719.

[81] B. Ravel, ATOMS : crystallography for the X-ray absorption spectroscopist, J. Synchrotron Radiat. 8 (2001) 314–316. doi:10.1107/S090904950001493X.

[82] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60 (1938) 309–319. doi:10.1021/ja01269a023.

[83] E.P. Barrett, L.G. Joyner, P.P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical society 73.1 (1951): 373-380.

[84] A. D’Amico, C. Di Natale, A contribution on some basic definitions of sensors properties, IEEE Sens. J. 1 (2001) 183–190.

doi:10.1109/JSEN.2001.954831.

[85] C. Kwan, S. Member, G. Schmera, J.M. Smulko, L.B. Kish, P. Heszler, C.G.

Granqvist, Fluctuation-Enhanced Sensing, IEEE Sens. J. 8 (2008) 706–713.

[86] L.K.J. Vandamme, Noise as a diagnostic tool for quality and reliability of electronic devices, IEEE Trans. Electron Devices. 41 (1994) 2176–2187.

doi:10.1109/16.333839.

[87] L.B. Kish, R. Vajtai, C.G. Granqvist, Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues, Sensors Actuators B Chem. 71 (2000) 55–59. doi:10.1016/S0925-4005(00)00586-4.

[88] J.L. Solis, L.B. Kish, R. Vajtai, C.G. Granqvist, J. Olsson, J. Schnürer, V.

Lantto, Identifying natural and artificial odours through noise analysis with a sampling-and-hold electronic nose, Sensors Actuators B Chem. 77 (2001) 312–315. doi:10.1016/S0925-4005(01)00698-0.

[89] R. Macku, J. Smulko, P. Koktavy, M. Trawka, P. Sedlak, Analytical fluctuation enhanced sensing by resistive gas sensors, Sensors Actuators B Chem. 213 (2015) 390–396. doi:10.1016/j.snb.2015.02.114.

[90] J. Ederth, J.M. Smulko, L.B. Kish, P. Heszler, C.G. Granqvist, Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films, Sensors Actuators B Chem. 113 (2006) 310–315.

doi:10.1016/j.snb.2005.03.009.

[91] A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci. 600 (2006) 1771–1779. doi:10.1016/j.susc.2006.01.041.

[92] L.M. Moroney, R. St, C. Smart, M.W. Roberts, Studies of the Thermal Decomposition of BNiO(0H) and Nickel Peroxide by X-ray Photoelectron Spectroscopy, J. Chem. SOC. Faraaby Trans. I. 79 (1983) 1769–1778.

[93] K.S. Kim, N. Winograd, X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using nickel-oxygen and argon ion-bombardment, Surf. Sci. 43 (1974) 625–643. doi:10.1016/0039-6028(74)90281-7.

[94] A.N. Mansour, Characterization of NiO by XPS, Surf. Sci. Spectra. 3 (1994) 231-238. doi:10.1116/1.1247751.

[95] K.-W. Nam, W.-S. Yoon, K.-B. Kim, X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors, Electrochim. Acta. 47 (2002) 3201–3209. doi:10.1016/S0013-4686(02)00240-2.

[96] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619.

[97] D. Kohl, Function and applications of gas sensors, J. Phys. D. Appl. Phys. 34 (2001) R125–R149. doi:10.1088/0022-3727/34/19/201.

[98] I. Castro-Hurtado, J. Herrán, G.G. Mandayo, E. Castaño, Studies of influence of structural properties and thickness of NiO thin films on formaldehyde

[98] I. Castro-Hurtado, J. Herrán, G.G. Mandayo, E. Castaño, Studies of influence of structural properties and thickness of NiO thin films on formaldehyde

Related documents