• No results found

Vidare arbete/forskning

5   Diskussion och slutsatser 37

5.5   Vidare arbete/forskning

I ett vidare perspektiv bör praktiska undersökningar göras för att fastställa hur resultatet pre- sterar. Till att börja med skulle rengöringssekvenserna testas med automation och datorstyrda ventiler. Dels för att testa prestandan gällande tider för varje ingående steg. Dels testa säker- hetsåtgärderna fungerar. Därigenom ses ifall och vilken grad av modifiering som krävs. Fortsatta experiment rekommenderas att testa de angivna förslagen på tvättmedel i Tate and Lyles fabrik. Vidare krävs, som innan nämnts, att djupare studera de konsekvenser de nya rengöringsmedlen medför.

Vidare undersökning är att undersöka frekvensen av rengöringstillfällen av fabriken. Eventu- ellt kan man rengöra utrustningen oftare med kortare sekvenser. Avslutningsvis skulle det vara av intresse att determinera effekterna av studien i detalj.

41

Referenser

[1] Dale A. Seiberling, Clean in Place for Biopharmaceutical Processes, Vol. 173. Pinehurst, North Carolina: 2007

[2] Yusuf Chisti, Modern Systems of Plant Cleaning, Process Hygiene, s. 1806-1815. Univer- sity of Almeria, Spain: Academic press, 1999

[3] Cleaning in place: A guide to cleaning technology in the food processing industry, The Society of Dairy Technology. [Online] Tillgänglig:

http://www.sdt.org/media/uploads/cleaning_in_place_a_guide_to_cleaning_technology_final. pdf [Hämtad: 27 mars, 2015]

[4] Operators Manual Highspeed Separator MR 900 CONC. Tumba, Sverige: Alfa Laval Tumba AB, 2011.

[5] “Natriumhydroxid”, Apps kemi, [Online]. Tillgänglig:

http://apps.kemi.se/flodessok/floden/kemamne/natriumhydroxid.htm, [Hämtad: 20 April, 2015]

[6] “Material Safety Data Sheet: Sodium hydroxide, pellets, Reagent ACS MSDS”, Science lab, [Online]. Tillgänglig: http://www.sciencelab.com/msds.php?msdsId=9924997. [Hämtad: 26 april, 2015]

[7] “Tergazyme Enzyme Active Powdered Detergent”, Alconox, 2012, [Online]. Tillgänlig:

https://www.alconox.com/downloads/pdf/techbull_tergazyme.pdf [Hämtad: 26 april, 2015]

[8] Dr. L. Palmowski, Clean In Place - A Review of Current Technology and Its Use in the Food and Beverage Industry, School of Engineering and Technology Deakin University: 2007. [Online]. Tillgänglig: http://www.dmsc.com.au/dmsc/reports/Report_Clean-In-Place- review_Deakin-University.pdf

[9] ”Safety Data Sheet: Tergazyme”, Alconox, 2012, [Online]. Tillgänglig:

http://www.alconox.com/resources/standarddocuments/msds/msds_tergazyme_english_ghs.p df [Hämtad: 26 april, 2015]

[10] “Orica Chemicals”, Orica, [Online]. Tillgänglig:

http://www.orica.co.nz/files/productbooklet.pdf [Hämtad: 25 April, 2015]

[11] “Safety Data Sheet: Chlorozolv”, Orica Chemicals, Februari 2011, [Online]. Tillgänglig:

http://msds.orica.com/pdf/shess-en-cds-010-000034426001.pdf, [Hämtad: 14 april, 2015]

42

[12] P.J. Bermer, “Laboratory Scale Clean-In-Place (CIP) studies on the effectiveness of dif- ferent caustic and acid wash steps on the removal of Dairy biofilms”, International Journal of Food Microbiology, Vol. 106, Upplaga 3, Februari 2006. [Online]. Tillgänglig:

http://www.sciencedirect.com.bibl.proxy.hj.se/science/article/pii/S016816050500437X

[Hämtad: 16 Februari, 2015]

[13] “Safety Data Sheet: Ultrazolv 700”, Orica Chemicals, Januari 2013, [Online]. Tillgäng- lig: http://msds.orica.com/pdf/shess-en-cds-020-000034432701.pdf, [Hämtad: 12 april, 2015]

[14] “Safety Data Sheet: Alkazolv 48”, Orica Chemicals, Mars 2013, [Online]. Tillgänglig:

http://msds.orica.com/pdf/shess-en-cds-020-000034422301.pdf, [Hämtad: 13 april, 2015]

[15] “Pugh method or decision-matrix method”, Virginia Tech, [Online]. Tillgänglig:

http://www.enge.vt.edu/terpenny/Smart/Virtual_econ/Module2/pugh_method.htm, [Hämtad 1 april, 2015]

[16] B. Lilja, “Nyckeltal”, Expowera, September 2014, [Online]. Tillgänglig:

http://www.expowera.se/mentor/ekonomi/ekonomistyrning_nyckeltal.htm, [Hämtad: 27 Mars, 2015]

[17] “Särintäkter, sär- och samkostnader”, Ekonomi Info, april 2009, [Online]. Tillgänglig:

http://www.ekonomi-info.nu/sarintakter_sar-_och_samkostnader_3532.asp, [Hämtad: 27 Mars, 2015]

[18] “Täckningsbidrag – Vad är täckningsbidrag?”, E-Conomic, [Online]. Tillgänglig:

https://www.e-conomic.se/bokforingsprogram/ordlista/tackningsbidrag, [Hämtad: 27 Mars, 2015]

[19] “Anläggningstillgång – Vad är en anläggningstillgång?”, E-Conomic, [Online]. Tillgäng- lig: https://www.e-conomic.se/bokforingsprogram/ordlista/anlaggningstillgang, [Hämtad: 27 Mars, 2015]

[20] “Omsättningstillgång – Vad är en omsättningstillgång?”, E-Conomic, [Online]. Tillgäng- lig: https://www.e-conomic.se/bokforingsprogram/ordlista/omsattningstillgang, [Hämtad: 27 Mars, 2015]

[21] ”Intäkt – Vad är intäkt?”, E-Conomic, [Online]. Tillgänglig: https://www.e- conomic.se/bokforingsprogram/ordlista/intakt, [Hämtad: 27 Mars, 2015]

[22] “Räntabilitet – Vad är räntabilitet?”, E-Conomic, [Online]. Tillgänglig: https://www.e- conomic.se/bokforingsprogram/ordlista/rantabilitet, [Hämtad: 27 Mars, 2015]

43

[23] “Termodynamiska system, tillstånd, tillståndsvariabler”, Mattliden, [Online]. Tillgäng- lig:

http://www.mattliden.fi/gym/images/fbfiles/files/Fysik_02_09_10_Lektion_3.pdf, [Hämtad: 3 maj, 2015]

[24] B. Jude och E. Lemarie, “How to optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations”, Schneider Electric, [Online]. Tillgänglig: http://www2.schneider- electric.com/documents/support/white-papers/energy-efficiency/how-to-optimize-clear-in- place-CIP-processes.pdf, [Hämtad 3 Maj, 2015]

[25] “Enzymer”, Nationalencyklopedin, april 2015, [Online]. Tillgänglig:

http://www.ne.se/uppslagsverk/encyklopedi/lång/enzymer [Hämtad: 3 Maj, 2015]

[26] T. Eriksson, “Centrifugalkraft”, Nationalencyklopedin, [Online]. Tillgänglig:

http://www.ne.se/uppslagsverk/encyklopedi/lång/centrifugalkraft, [Hämtad: 3 maj, 2015]

[27] Driftsinstruktionsbok: Dekantercentrifug. Köpenhamn, Danmark: Product Centre Decanters, Alfa Laval AB Köpenhamn, 2014.

[28] “Selcet product Concept”, Edge, Februari 2011, [Online]. Tillgänglig:

http://edge.rit.edu/edge/P11412/public/Select%20Product%20Concept(s), [Hämtad: 3 maj, 2015]

[29] P-H Skärvad och J. Olsson, Företagsekonomi 100, Upplaga 16. Kiruna: Liber AB, 2013

[30] B. Moutakis, ”Farligt avfall måste sorteras ut och lämnas rätt”, Avfall Sverige, juli 2014, [Online]. Tillgänglig: http://www.avfallsverige.se/avfallshantering/farligt-avfall/ [Hämtad: 5 maj, 2015]

[31] ”Farligt avfall”, Renova, [Online] Tillgänglig:

http://www.renova.se/miljoskolan/elever/atervinning-material/farligt-avfall/, [Hämtad: 5 maj, 2015]

44

Bilagor

Bilaga 1 Originalritning på dekantercentrifug Bilaga 2 Nya designen - dekantercentrifug

Bilaga 3 Step by Step manual – dekantercentrifug Bilaga 4 Originalritning på separator

Bilaga 5 Nya designen - separator

Bilaga 6 Step by Step manual – separator Bilaga 7 Design - CIP tankar

Bilaga 8 Beräkningar till ett nytt rengöringsmedel Bilaga 9 Beräkningar till investeringskalkylen

45 Bilaga 1

46 Bilaga 2

47 Bilaga 3

Cleaning Process – Decanter 3 (Step-by-Step)

Instructions:

Hot Water: 60-70 degrees Celsius Cool water: 5-10 degrees Celsius Caustic Soda: 60-70 degrees Celsius

Note: One thing that is missing is that there should be a component installed regarding the CIP return. It’s supposed to clean the returned water/caustic soda from impurities.

Pre-Rinse:

1. Disable the pump N-P10A (Under T5A) to stop the product from reaching the De- canter.

2. Close the valves N-KV01, N-CIP01, N-BV02, N-BV01, N-HV10, N-XV01, N-HV01, N-XV02, N-XV03, N-XV04, N-HV02, N-HV03, N-HV07, N-HV08, N-HV09, N- HV10, N-HV11 and N-HV16.

3. Stop the pump N-P18. 4. Wait 5 seconds

5. Open the valves N-HV01 and N-XV02 to enable hot water.

6. Rinse the decanter with water until the wastewaters from the large gable looks clear and clean. (By using the CT (Conductivity transmitter ) to see the wastewaters clear- ness)

7. Open the valve N-HV08 to enable draining 8. Wait 5 minutes

9. Turn off the main engine but continue flushing.

10. Wait until the bowls speed decreases close to 300 rpm (Couple of minutes). 11. Close the valves N-HV01 and N-XV02 before the bowls speed reaches 300 rpm 12. Wait 30 seconds

13. Close the draining valve N-HV08 14. Wait 30 seconds

Note: Never spray the decanter when the bowl is stationary or rotating slower than 300 rpm. High Speed Flush:

Note: The speed used at the high speed flush should be 10-15% lower than the normal oper- ating speed (rpm).

15. Decrease the operating speed to 85-90%. 16. Wait 5 seconds.

17. Open the valves HV05, V110, HV10 and N-BV08 to allow hot water from the tank CT1.

18. Start the CIP-Pump PP003.

19. Open the valves N-CIP01, N-BV02, N-BV01 and N-HV10 to let hot water flow through the feeding tube and inlet nozzles.

20. Open the valves N-XV01, N-XV03, N-XV04, N-HV02 and N-HV03 to enable the spray balls SN01-SN06.

48

21. Start the pump N-P18 to enable circulation (CIP Return).

22. Open the valve N-HV07 to enable the hot water to flow through the pump. 23. Open valve N-HV16 to let the water enter the CIP return for circulation. 24. Wait 5 minutes

25. Close the valve N-XV01 to disable the spray balls SN01-SN06. 26. Stop the CIP pump PP003.

27. Wait 5 seconds.

28. Close the valves HV05 and V110 to disable the water feed from CT1 29. Wait 30 seconds.

30. Open the valves HV07 and V116 to allow Caustic soda from the tank CT3. 31. Start the CIP pump PP003.

Note: The valves N-CIP01, N-BV02, N-BV01 and N-HV10 are still open. 32. Open the valve N-XV01 to enable the spray balls SN01-SN06. 33. Wait 5 minutes

34. Close the valve to disable the spray balls SN01-SN06. 35. Stop the CIP pump PP003.

36. Wait 30 seconds

37. Close the valves HV07 and V116 to disable the Caustic soda feed from CT3. 38. Wait 30 seconds

39. Open the valves HV05 and V110 to enable hot water to flush through the feeding tube and inlet nozzles to clear the lye leftovers.

40. Start the CIP pump PP003.

41. Open the valve N-XV01 to enable the spray balls SN01-SN06. 42. Wait 5 minutes

43. Close the valve N-XV01 to disable the spray balls SN01-SN06. 44. Stop the CIP pump PP003.

45. Wait 30 seconds.

46. Close the valves HV05 and V110 to disable the water feed from CT1. 47. Wait 30 seconds

48. Stop the pump N-P18 to disable circulation (CIP Return) 49. Wait 10 seconds

50. Turn of the main engine

51. Open the valve N-KV01 to enable cool water through the feeding tube while the main engine is off. (Until the rotation reaches 300 rpm)

52. Open the valve N-HV08 to enable draining

53. Wait until the balls speed decreases close to 300 rpm (Couple of minutes). 54. Close the valve N-KV01 before the balls speed reaches 300 rpm

55. Wait 30 seconds

56. Close the draining valve N-HV08 57. Wait 30 seconds

Low Speed Flush:

Note: The cool water will contribute to the ball slowing down. This will make the decanters rotation decrease and empty the decanter from CIP liquid. The rotation will automatically switch to counter-clockwise rotation.

49

Note: The Low Speed flush shouldn’t be operated until the balls rotation is counter- clockwise. This is done by the earlier sequences with cool water.

58. Open the valves HV07 and V116 to allow Caustic soda from the tank CT3 59. Wait 5 seconds

60. Start the CIP-Pump PP003.

61. Open the valve N-XV01 to enable the spray balls SN01-SN06. 62. Start the pump N-P18 to enable circulation (CIP Return). 63. Wait 5 minutes

64. Close the valve N-XV01 to disable the spray balls SN01-SN06. 65. Stop the CIP-Pump PP003.

66. Wait 30 seconds.

67. Close the valves HV07 and V116 to disable the Caustic soda feed from CT3 68. Wait 30 seconds

69. Open the valves HV05 and V110 to allow hot water from the tank CT1. (A VT (Vis- cosity Transmitter) is installed at the end to determine if there’s any sediment left) 70. Wait 5 seconds.

71. Start the CIP-Pump PP003.

72. Open the valves N-XV01 to enable the spray balls SN01-SN06.

73. Wait until the VT shows there’s no sediment left. Otherwise, continue flushing. 74. Close the valves N-XV01 to disable the spray balls SN01-SN06.

75. Stop the CIP-Pump PP003. 76. Wait 30 seconds

77. Stop the pump N-P18 to disable circulation (CIP Return).

78. Close the valves HV05 and V110 to disable the water feed from CT1. 79. Wait 30 seconds

80. Turn of the main engine 81. Wait 5 seconds

82. Open the valve N-KV01 to enable cool water through the feeding tube while the main engine is off. (Until the rotation reaches 300 rpm)

Note: The cool water will contribute to the ball slowing down. This will make the decanters rotation decrease and empty the decanter from CIP liquid. The rotation will automatically go back to clockwise rotation.

83. Open the valve N-HV08 to enable draining 84. Wait 5 minutes

85. Close the valve N-KV01. 86. Wait 30 seconds

87. Close the draining valve N-HV08 88. Wait 30 seconds

89. Open the valves HV07 and V116 to enable the Caustic soda feed from CT3. 90. Wait 5 seconds

91. Start the CIP-Pump PP003.

92. Open the valves N-XV01 to enable the spray balls SN01-SN06. 93. Start the pump N-P18 to enable circulation (CIP Return). 94. Wait 5 minutes

50

95. Close the valves N-XV01 to disable the spray balls SN01-SN06. 96. Stop the CIP-Pump PP003.

97. Close the valves HV07 and V116 to disable the Caustic soda feed from CT3. 98. Wait 60 seconds

99. Open the valves HV05 and V110 to enable the hot water feed from CT1. 100. Wait 5 seconds

101. Start the CIP-Pump PP003.

102. Open the valves N-XV01 to enable the spray balls SN01-SN06. 103. Wait 5 minutes

104. Close the valves N-XV01 to disable the spray balls SN01-SN06. 105. Stop the CIP-Pump PP003

106. Close the valves HV05 and V110 to disable the hot water feed from CT1. 107. Wait 30 seconds

108. Stop the pump N-P18 to disable circulation (CIP Return).

109. Open the valve N-KV01 to enable cool water through the feeding tube. 110. Open the valve N-HV08 to enable draining

111. Wait 5 minutes

112. Close the valves N-KV01, N-BV02, N-BV01 and N-HV10 113. Wait 30 seconds

114. Close the draining valve N-HV08

115. Close all the valves, N-CIP01, N-XV01, N-HV01, N-XV02, N-XV03, N- XV04, N-HV02, N-HV03, N-HV07, N-HV09, N-HV10, N-HV11,N-HV16, HV10 and N-BV08.

51 Bilaga 4

52 Bilaga 5

53 Bilaga 6

Step by step cleaning of separator

Pre-flushing

Note: 1-25 is a step by step manual for a how regular flush is done.. (Before starting the CIP sequence it is favourably to first perform a regular flush). This could be programmed. Instructions:

1. Stop pump N-P20 (Below tank T7A) and close valve N-XV02 (Below tank T7A). To ensure nothing is feeding the separator.

2. Close valves: N-XV03, NXV02, P-CIP 01, P-CIP 02, P-CIP 03, P-CIP 04, V301-1 and V300-1.

3. Wait 5 seconds.

4. Open valves: V300-1, PV401-1, V405-1, PV375-1, PR375-1, PV615-1, PV635-1, PV630-1, N-SV506b and R375-1 to enable sealing liquids, cooling water and ma- neuver discharge water.

5. Wait 5 seconds

6. Open valves: PV305-1, PV304-1 and PV303a-1. 7. Have processing in STAND BY.

8. Open powered valves: V301-1, PV305-1, PV304-1 and PV303a-1 to allow hot water to reach flushing inlets (TC DN51).

9. Wait 5 seconds.

10. Open TC 50.4 (Light Phase) and TC 60.5 (Heavy Phase) and pass to drain. 11. Wait 5 seconds.

12. Close product inlet TC DN60.5. 13. Wait 5 seconds.

14. Start Hot water pump. (Flow: 460l/h Pressure: 330kPa) 15. Wait 2 minutes.

16. Perform a full discharge. 17. Wait 2 minutes.

18. Perform a full discharge. 19. Wait 2 minutes.

20. Perform a full discharge. 21. Wait 2 minutes.

22. Perform a full discharge. 23. Wait 2 minutes.

24. Perform a full discharge. 25. Wait 5 seconds

Note: In CIP the feed flow rate and the backpressure in the outlets are regulated automati- cally in sepatator.

54 * Continue feeding CIP liquid.

26. Set separator in STANDBY WET 27. Wait 5 seconds.

28. Close powered valve V301-1. 29. Wait 5 seconds.

30. Open product inlet TC DN60.5 31. Wait 5 seconds.

32. Open valve P-CIP 01 and N-XV03 and set P-CIP 03 pass to separator. 33. Wait 5 seconds.

34. Open valves: HV05, HV10, N-BV08 and V110 to allow water from CT1 35. Wait 5 seconds

36. Start CIP-pump PP03 (Recomanded Flowrate: 60m3/h Presseure: 500kPa and similar througout)

37. Wait 5 seconds.

38. Start main engine (Processing in RUNNING). Run on standard processing speed (5000 rpm).

39. Feed hot water from CIP feed threw product inlet 201. 40. *Wait 2 minutes

41. Perform a full discharge. (10 second duration) 42. *Wait 2 minutes.

43. Perform a full discharge. 44. *Wait 2 minutes.

45. Perform a full discharge. 46. *Wait 2 minutes

47. Perform a full discharge. 48. *Wait 2 minutes.

49. Perform a full discharge. 50. Wait 5 seconds

Note: The first rinse runs for about 11 minutes. 51. Change processing to STANDBY. 52. Wait 5 seconds.

53. Stop CIP-pump PP03 54. Wait 30 seconds

55 56. Wait 20 seconds.

57. Open valves: HV07 and V116 to supply CIP-pump with Lye (+builder) 58. Wait 5 seconds.

59. Open P-CIP-02 and P-CIP 04 to pass to separator, to enable lye (+builder) threw product inlet.

60. Wait 5 seconds

61. Set outlet device to run threw light phase outlet and open P-CIP 02 and P-CIP 04 to allow CIP FEED to circulate threw CIP RETURN

62. Wait 5 seconds

63. Start CIP-pump PP03.

64. Change processing to RUNNING. 65. * Wait 5 minutes.

66. Perform a full discharge. 67. *Wait 5 minutes.

68. Perform a full discharge. 69. *Wait 5 minutes.

70. Perform a full discharge. 71. *Wait 5 minutes.

72. Perform a full discharge. 73. *Wait 5 minutes.

74. Perform a full discharge. 75. Wait 5 seconds

Note: First flush with lye (+builder) runs for about 26 minutes.

Note: All valves (N-XV03, P-CIP01 and P-CIP03) concerning feeding the separator is still opened, as the same for valves (P-CIP 02 and P-CIP 04) concerning the CIP RETURN

76. Change processing to STANDBY. 77. Wait 5 seconds.

78. Stop CIP-Pump PP03

79. Close valves HV07 and V116 to cut lye supply to pump. 80. Wait 5 seconds.

81. Open valves: HV05, and V110 to supply PP03 with water from CT1 82. Wait 5 seconds.

83. Start CIP-pump PP03

56 85. *Wait 2 minutes.

86. Perform a full discharge. 87. *Wait 2 minutes.

88. Perform a full discharge. 89. Wait 5 seconds.

Note: Intermediate flush will take about 5 minutes.

Note: All valves (N-XV03, P-CIP01 and P-CIP03) concerning feeding the separator is still opened, as the same for valves (P-CIP 02 and P-CIP 04) concerning the CIP RETURN

90. Change processing to STANDBY 91. Wait 5 seconds.

92. Stop CIP pump PP03

93. Close valves HV05 and V110 to cut water supply. 94. Wait 5 seconds.

95. Open valve HV06 and V122 to supply PP03 with acid. 96. Wait 5 seconds

97. Start CIP-pump PP03

98. Change processing to RUNNING 99. *Wait 5 minutes.

100. Perform a full discharge. 101. *Wait 5 minutes.

102. Perform a full discharge. 103. *Wait 5 minutes.

104. Perform a full discharge. 105. Wait 5 seconds

Note: Second flush with lye (+builder) runs for about 16 minutes.

Note: All valves (N-XV03, P-CIP01 and P-CIP03) concerning feeding the separator is still opened, as the same for valves (P-CIP 02 and P-CIP 04) concerning the CIP RETURN

106. Change to processing to STANDBY 107. Wait 5 seconds.

108. Stop CIP pump PP03

109. Close valve HV06 and V122 to cut acid supply 110. Wait 5 seconds

111. Open HV05 and V110 to supply PP03 with water from CT1 112. Wait 5 seconds

57 113. Change processing to RUNNING 114. Start CIP-pump PP03.

115. *Wait 5 minutes.

116. Perform a full discharge. 117. *Wait 5 minutes.

118. Perform a full discharge.

58 Bilaga 7

59 Biliga 8

Experiment utfördes på Jönköpings Tekniska Högskola 2015-04-20.

Experimentet påbörjades genom att använda nedanstående formel för att beräkna koncentrat- ionen (weight/volume %).

Concentration  solute  (w/v  %)   = mass  of  solute  (g)   ÷  volume  of  solution  (ml) Eftersom koncentrationen redan var känd, beräknades vilken mängd som behövdes för att uppnå önskad koncentration.

Mängden är okänd och formeln användes därför baklänges. Den totala mängden ska vara 100 ml.

𝑁𝑎𝑡𝑟𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑   𝑑𝑒𝑛𝑖𝑠𝑡𝑒𝑡 =  1,52  𝑔/𝑐𝑚3 𝑉𝑜𝑙𝑦𝑚 = 𝑚𝑎𝑠𝑠𝑎 𝑑𝑒𝑛𝑠𝑖𝑡𝑒𝑡= 100𝑔 1,52𝑔/𝑚𝑙 = 65,789  𝑚𝑙 𝐾𝑜𝑛𝑐𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =   𝑋 65,789  𝑚𝑙= 2  % 𝑁𝑎𝑡𝑟𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑   𝑚ä𝑛𝑔𝑑 = 65,789  ×0,02 = 1,32𝑔

Samma sätt som ovan användes vid beräkningarna av de resterande mängderna.

𝐾𝑎𝑙𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑   𝑑𝑒𝑛𝑖𝑠𝑡𝑒𝑡 =  2,12  𝑔/𝑐𝑚3 𝐾𝑎𝑙𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑  (𝑚ä𝑛𝑔𝑑) =  1,42𝑔

𝐾𝑎𝑙𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑 + 𝑁𝑎𝑡𝑟𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑   𝑚ä𝑛𝑔𝑑 =  0,71𝑔 + 0,99𝑔 = 1,7𝑔

𝑇𝑒𝑟𝑔𝑎𝑧𝑦𝑚𝑒   𝑑𝑒𝑛𝑠𝑖𝑡𝑒𝑡 = 1,10  𝑔/𝑐𝑚3 𝑇𝑒𝑟𝑔𝑎𝑧𝑦𝑚𝑒   𝑚ä𝑛𝑔𝑑 = 0,91𝑔

60

Beräkningarna för årsbesparingen och avfallshanteringen vid byte av rengöringsmedel.

CIP Tank 2000 l Densitet [ g/cm3] Koncentration % Pris [kr/lbs] Mängd [lbs]

Natriumhydroxid 1,52 2 50 57,99

Salpetersyra 1,42 0,5 125 15,52

Tergazyme 1,10 1 75 40,01

Tabellen visar med densitet och koncentration (blandningsmängd) vilket inköpspris de olika ämnena skulle ha. 2000 liter används vid beräkningarna av använt rengöringsmedel. De vat- ten som används vid sköljning behandlas inte. Tillsammans med Tate and Lyles dränerings- filter blir Procentandelen i det vattnet som sköljs ut är så låg att det dräneras.

Mängden i tabellen erhålls på samma sätt som i experimentet, se sida 1. 𝑁𝑎𝑡𝑟𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑   𝑚ä𝑛𝑔𝑑 = 26,3𝑘𝑔 = 57,99(𝑙𝑏𝑠)

𝑆𝑎𝑙𝑝𝑒𝑡𝑒𝑟𝑠𝑦𝑟𝑎   𝑚ä𝑛𝑔𝑑 = 7,04  𝑘𝑔   = 15,52  (𝑙𝑏𝑠) 𝑇𝑒𝑟𝑔𝑎𝑧𝑦𝑚𝑒   𝑚ä𝑛𝑔𝑑 = 18,2  𝑘𝑔   = 40,01  (𝑙𝑏𝑠) Inköpspriset beräknades på följande sätt.

𝑁𝑎𝑡𝑟𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑   2  % ∶  𝑇𝑜𝑡𝑎𝑙𝑡  𝑘𝑜𝑠𝑡𝑛𝑎𝑑 = 𝑃𝑟𝑖𝑠  ×𝑀ä𝑛𝑔𝑑 = 2900  𝑘𝑟 𝑆𝑎𝑙𝑝𝑒𝑡𝑒𝑟𝑠𝑦𝑟𝑎   0,5  % ∶  𝑇𝑜𝑡𝑎𝑙𝑡  𝑘𝑜𝑠𝑡𝑛𝑎𝑑 = 𝑃𝑟𝑖𝑠  ×𝑀ä𝑛𝑔𝑑 = 1940  𝑘𝑟

𝑇𝑒𝑟𝑔𝑎𝑧𝑦𝑚𝑒   1  % ∶  𝑇𝑜𝑡𝑎𝑙𝑡  𝑘𝑜𝑠𝑡𝑛𝑎𝑑 = 𝑃𝑟𝑖𝑠  ×𝑀ä𝑛𝑔𝑑 = 3001  𝑘𝑟

För att fastställa årsbesparingen i bytet av rengöringsmedel gjordes följande beräkning:

𝑇𝑜𝑡𝑎𝑙𝑎  𝑏𝑒𝑠𝑝𝑎𝑟𝑖𝑛𝑔𝑒𝑛   𝑃𝑟𝑖𝑠 = 𝑁𝑎𝑡𝑟𝑖𝑢𝑚ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑 + 𝑆𝑎𝑙𝑝𝑒𝑡𝑒𝑟𝑠𝑦𝑟𝑎 − 𝑇𝑒𝑟𝑔𝑎𝑧𝑦𝑚𝑒 = 24× 2900𝑘𝑟 + 1940𝑘𝑟 − 24  × 3001𝑘𝑟 = 44136  𝑘𝑟/å𝑟

För att fastställa kostnaden för avfallshanteringen gjordes följande beräkning:

𝐾𝑜𝑠𝑡𝑛𝑎𝑑   𝐹ö𝑟𝑠𝑡ö𝑟𝑖𝑛𝑔 = 2  𝑡𝑜𝑛   𝑀ä𝑛𝑔𝑑  ×950  𝑘𝑟   𝐹ö𝑟𝑠𝑡ö𝑟𝑛𝑖𝑛𝑔  ×24   𝑇𝑣ä𝑡𝑡  𝑝𝑒𝑟  å𝑟   = 45  600  𝑘𝑟/å𝑟

Enligt Sakab AB beräknades kostnaden för transport och upphämtning till 3500 kro- nor/upphämtning.

𝐾𝑜𝑠𝑡𝑛𝑎𝑑   𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 3500𝑘𝑟   𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  ×  24   𝑇𝑣ä𝑡𝑡  𝑝𝑒𝑟  å𝑟 =  84  000  𝑘𝑟/å𝑟 𝐾𝑜𝑠𝑡𝑛𝑎𝑑   𝐹ö𝑟𝑠𝑡ö𝑟𝑖𝑛𝑔 + 𝐾𝑜𝑠𝑡𝑛𝑎𝑑    𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =  129  000  𝑘𝑟/å𝑟

61 Bilaga 9

Beräkningarna för att bestämma den ökade produktionstiden vid reducerad rengö- ringstid.

• Utrustningsrengöring – två gånger/månad

• Rengöringstid – 36 timmar/gång (864 timmar/år) Vid automatiserat Clean-in-Place system

• Utrustningsrengöring – två gånger/månad • Rengöringstid – 4 timmar/gång (96 timmar/år) Ett år inkluderar 8760 timmar. Följande siffror erhölls.

 Produktionsaktivitet  innan  automatisering   = 8760 − 864 = 7896  timmar/år Produktionsaktivitet  efter  automatisering = 8760 −  96 = 8664  timmar/år  

8664  𝑡𝑖𝑚𝑚𝑎𝑟/å𝑟

62

In- och utbetalningarnas förändring med ökad produktionstid. Beräkningen av inbetal- ningsöverskottet.

In och utbetalningarna vid första kvartalet av 2015.

𝐼𝑛𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑎𝑟 = 25  000  𝑘𝑘𝑟

𝑈𝑡𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑎𝑟 = 26  000  𝑘𝑘𝑟  (𝐷ä𝑟  8700  𝑘𝑘𝑟  ä𝑟  𝑑𝑖𝑟𝑒𝑘𝑡  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

Ifall rengöringssekvenserna reduceras till fyra timmar kommer den ökade produktionstiden göra följande skillnad.

𝐼𝑛𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑎𝑟    25  000  𝑘𝑘𝑟 ×1,097 = 27  425  𝑘𝑘𝑟

𝑈𝑡𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑎𝑟    17300  𝑘𝑘𝑟   + 𝐷𝑖𝑟𝑒𝑘𝑡  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙    8700  𝑘𝑘𝑟 ×1,097 = 26  844  𝑘𝑘𝑟

 27  425  𝑘𝑘𝑟   𝐼𝑛𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑎𝑟 − 26  844  𝑘𝑘𝑟   𝑈𝑡𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑎𝑟 =   = 581  000  𝑘𝑟  (𝐼𝑛𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑠ö𝑣𝑒𝑟𝑠𝑘𝑜𝑡𝑡𝑒𝑡  )  

63

Beräkningarna av det genomsnittliga årsöverskottet med användning av annuitetsme- toden. Skriv upp Vilken tabell siffrorna kommer ifrån.

581  000  ×3,7908   = 𝑁𝑢𝑣ä𝑟𝑑𝑒𝑡  𝑎𝑣  𝑖𝑛𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑠ö𝑣𝑒𝑟𝑠𝑘𝑜𝑡𝑡𝑒𝑡  (  2  202  455  )   2  202  455  ×0,2638   = 𝐴𝑛𝑛𝑢𝑖𝑡𝑒𝑡  𝑎𝑣  𝑖𝑛𝑏𝑒𝑡𝑎𝑙𝑛𝑖𝑛𝑔𝑠ö𝑣𝑒𝑟𝑠𝑘𝑜𝑡𝑡𝑒𝑡  (  581  008  )   1  200  000  ×0,2638   = 𝐴𝑛𝑛𝑢𝑖𝑡𝑒𝑡  𝑎𝑣  𝑔𝑟𝑢𝑛𝑑𝑖𝑛𝑣𝑒𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝑒𝑛  (  316  560  )   581  008 − 316  560   =  Differens/genomsnittligt  årsöverskott  (  264 448  )   Nuvärdet av inbetalningsöverskottet 2 202 455 Annuitetsfaktor 0

Annuitet av nuvärde av inbetalningsöver-

skottet 581 008 Grundinvesteringen (G) 1 200 000 Restvärde (R) 0 Nuvärde av R 0 G-Nuvärde av R 1 200 000 Annuitet av (G-Nuvärde av R) 316 560

Related documents