• No results found

Under arbetets gång upptäcktes en bristande erfarenhet av animationer hos eleverna. Därför skulle det vara av intresse att undersöka hur elevers erfarenhet av olika representationer påverkar förståelsen för nya animationer eller representationer. Är det en fördel för eleverna att ha mycket erfarenhet av olika representationsformer?

Ett annat förslag är att vidareutveckla det vägledande materialet, exempelvis genom att utvidga det till fler naturvetenskapliga områden. Det kräver att materialet som tagits fram i denna studie praktiskt testas samt att man gör extensiva undersökningar i både biologi och fysik. Ett metodförslag skulle vara att följa liknande en metod som använts i denna studie, där en undersökning utförs i syfte att kartlägga hur animationer idag används i respektive naturämne, hur tidigare forskning ser ut samt i vilken utsträckning elevers förkunskaper och animationers design påverkar förståelsen för ett naturvetenskapligt fenomen.

Den här studien begränsas till animationer som behandlar jonbindning. Det finns utvecklingsmöjligheter för att ta fram animationer som visar de mer komplexa kemiska bindningarna, exempelvis intermolekylära bindningar. En tillämpning av jonbindning är animationer som visar bindningarna i en jonkristall. Det finns även en möjlighet att utveckla studien till andra kemiska områden.

41

Referenser

Arslan-Ari, I. (2018). Learning from instructional animations : How does prior knowledge mediate the effect of visual cues ? Journal of Computer Assisted Learning, 34(2), 140–

149. https://doi.org/10.1111/jcal.12222

Atkins, P., & de Paula, J. (2014). Atkins’ physical chemistry (10e uppl.). Oxford: Oxford university press.

Bergqvist, A. (2017). Teaching and learning of chemical bonding models professional knowledge Teaching and learning of chemical bonding models.

Björndahl, C. R. P. (2002). Det värderande ögat (4e uppl.). Stockholm: Liber.

Blayney, P., Kalyuga, S., & Sweller, J. (2015). Using cognitive load theory to tailor instruction to levels of accounting students’ expertise. Educational Technology and Society, 18(4), 199–210.

Borén, H., Börner, M., Larsson, M., Lindh, B., Ragnarsson, M., & Sundkvist, S.-Å. (2011).

Kemiboken 1. Stockholm: Liber.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

Bryman, A. (2016). Social research methods (5e uppl.). Oxford: Oxford university press.

Burrows, A., Holman, J., Parsons, A., Pilling, G., & Price, G. (2013). Chemistry3 (2a uppl.).

Oxford: Oxford university press.

Cohen, L., Manion, L., Lecturer, P., Morrison, K., & Lecturer, S. (2007). Research Methods in Education (6e uppl.). Abingdon: Routledge.

Cole, M. H., Rosenthal, D. P., & Sanger, M. J. (2019). Two studies comparing students’

explanations of an oxidation-reduction reaction after viewing a single computer animation: the effect of varying the complexity of visual images and depicting water molecules. Chemistry Education Research and Practice, 20(4), 738–759.

https://doi.org/10.1039/c9rp00065h

Ehinger, M. (2020). Magnus Ehingers undervisning. http://ehinger.nu

Eilks, I., Witteck, T., & Pietzner, V. (2012). The role and potential dangers of visualisation when learning about sub-microscopic explanations in chemistry education. Center for Educational Policy Studies Journal, 2(1), 125–145.

Fleming, S. A. (2013). Teaching tools for organic and bio-organic chemistry. ACS Symposium Series, 1142, 389–409. https://doi.org/10.1021/bk-2013-1142.ch016

Gilbert, J. K. (2005). Visualization: A Metacognitive skill in science and science education.

In Models and Modeling in Science Education, Visualization in Science Education (pp.

9–27). Dordrecht. https://doi.org/10.1007/1-4020-3613-2_2

Gilbert, J. K. (2008). Visualization : An Emergent Field of Practice and Enquiry in Science Education. In Visualization: Theory and Practice in Science Education (pp. 3–24).

Dordrecht.

Gregorius, R. M. (2013). Linking Animation Design and Usage to Learning Theories and Teaching Methods. ACS Symposium Series, 77–96.

42

Illeris, K. (2007). Lärande (2:7). Lund: Studentlitteratur.

Johnstone, A. H. (1991). Seldom What They Seem. Journal of Computer Assisted Learning, 7, 75–83.

Kelly, R. M. (2013). How a qualitative study with chemistry instructors informed atomic level animation design. ACS Symposium Series, 1142, 205–239. https://doi.org/10.1021/bk-2013-1142.ch009

Kelly, R. M. (2017). Learning from contrasting molecular animations with a metacognitive monitor activity.

Kozma, R., & Ed, J. G. (2019). Students Becoming Chemists : Developing Representationl Competence [ DRAFT – Do Not Quote ] Students Becoming Chemists : Developing Representational Competence Department of Chemistry , Oakland University In Visualization in Science Education. January 2005. https://doi.org/10.1007/1-4020-3613-2

Mnguni, L. E. (2014). The theoretical cognitive process of visualization for science education.

1–9.

Nahum, T. L., Mamlok-Naaman, R., Hofstein, A., & Taber, K. S. (2010). Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179–

207. https://doi.org/10.1080/03057267.2010.504548

Nimmermark, A. (2014). Facets of Chemical Bonding That Enhance or Encumber Conceptual Understanding.

Patron, E., Wikman, S., Edfors, I., Johansson-Cederblad, B., & Linder, C. (2017). Teachers ’ reasoning : Classroom visual representational practices in the context Emelie Patron 1.

April 2016, 887–906. https://doi.org/10.1002/sce.21298

Piaget, J. (1926). Barnets själsliga utveckling. Lund: Studentlitteratur.

Rogers, Y. (2008). Using External Visualizations to Extend and Integrate Learning in Mobile.

In Visualization: Theory and Practice in Science Education (pp. 89–102).

Nederländerna: Dordrecht.

Rundgren, Carl-Johan; Tibell, L. A. E. (2009). Critical features of visualizations of transport through the cell membrane — an empirical study of upper secondary and tertiary students ’ meaning-making of a still image and an animation. International Journal of Science and Mathematics Education, 8, 223–246. https://doi.org/10.1007/s10763-009-9171-1

Schönborn, K. J., & Anderson, T. R. (2006). The Importance of Visual Literacy in the Education of Biochemists. Biochemistry and Molecular Biology Education, 32(2), 94–

102.

Schwartz, R. N., Milne, C., Homer, B. D., & Plass, J. L. (2013). Designing and implementing effective animations and simulations for chemistry learning. ACS Symposium Series, 1142, 43–76. https://doi.org/10.1021/bk-2013-1142.ch003

Skinner, B. F. (1968). Undervisningsteknologi (3e uppl.). Lund: Studentlitteratur.

Skolverket. (2010). Kemi. https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-program-och-amnen-i-gym

43

Sweller, J., Ayres, P., Kalyuga, S., Sweller, J., Ayres, P., & Kalyuga, S. (2011). Amassing Information: The Information Store Principle. In Cognitive Load Theory.

https://doi.org/10.1007/978-1-4419-8126-4_2

Tasker, R. (2015). Research into Practice : Visualizing the molecular world for a deep understanding of chemistry. 1991, 1–8.

Tsaparlis, G., Pappa, E. T., & Byers, B. (2018). Research and Practice research-based evidence for misconceptions and in upper secondary schools and the effect of an. 2004, 1253–1269. https://doi.org/10.1039/c8rp00035b

UNDP. (2015). Mål 4: God utbildning för alla.

van Gog, T., Paas, F., & Sweller, J. (2010). Cognitive Load Theory: Advances in Research on Worked Examples, Animations, and Cognitive Load Measurement. Educational Psychology Review, 22(4), 375–378. https://doi.org/10.1007/s10648-010-9145-4 Vosniadou, S., & Brewer, W. F. (1992). Mental Models of the Earth : A Study of Conceptual

Change in Childhood accepted information that the earth is a sphere . Children and Adults Construct an Intuitive Understanding of the World Research in cognitive science , science education , and developm. 585, 535–585.

Vygotskij, L. S. (1934). Tänkande och språk (4e uppl.). Göteborg: Daidalos.

B1.1

Bilagor

Bilaga 1 - Lärarenkät

Related documents