• No results found

5 ACKNOWLEDGEMENTS

a paper requires herculean effort and this award has spurred me to hang on to my ideas and projects with much tenacity.

For the continuous encouragement and the camaraderie that I am blessed with, I want to thank friends from the Institute of Medical Biology (IMB), Institute of Molecular and Cell Biology (IMCB), National University of Singapore (NUS) and KI. Lovely ex-EBL colleagues – Steve Ogg, John Common, Declan Lunny, Ildiko Szeverenyi, Ng Kee Woei and Huijia for the awesome support – I was fortunate to be part of the group.

My NUS seniors, Farhana and Yusuf, for being such fantastic role models to me – Thank you! Huge hugs to Xiaohui – for the terrific friendship and trust - I don’t know what I will do without you! The entire army of friends in KI for making my stay in Sweden such a joy – Jimmie, Jamie, Yinghui, Xue Yuan, Sharon, Jens, Michelle, Vithia, Delina, Kai’er, Zhixiong, Junwei, Kayoko and Huimin.

For the insightful discussions and incredulous support – thank you Xingang. My love to Ben Jin for teaching me about zinc finger nucleases and for continuously reminding me not to drink too much coffee (yes, I promise to sate my caffine carving with honey instead!) The rest of the team in IMCB including Tom Carney, Claudia, Zhonghua, Harriet, Yosuke, Asha, Swee Chuan, Ashley, Asha, Wilson, Anjali, Haihan and Ashish.

The University of Sheffield postdocs – Sarah Baxendale, Rosemary Kim, Caroline Parkin and Stone Elworthy for imparting excellent expertise and guidance on numerous zebrafish techniques – Thank you! To the AGA team, thank you for the prompt administrative assistance thoughout my PhD studies.

All my love to my family - my mum, dad and sister, thanks for such belief and support which I find endlessly encouraging and motivating. Mummy and RJ, thanks for holding my hand along this exciting and intriguing journey. Lastly to RJ, thank you for making me laugh when things get tough. I am eternally grateful to be blessed with such love!

6 REFERENCES

1. Freaking News photoshop contest Available from:

http://www.freakingnews.com/Zebrafish-Pics-43457.asp.

2. EU genomics news. Available from:

http://ec.europa.eu/research/health/genomics/newsletter/issue2/newprojects_en.

htm.

3. Haffter, P., et al., The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996. 123: p. 1-36.

4. Stainier, D.Y.R., A glimpse into the molecular entrails of endoderm formation.

Genes Dev, 2002. 16(8): p. 893-907.

5. Granato, M., et al., Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development, 1996. 123: p. 399-413.

6. Schier, A.F., et al., Mutations affecting the development of the embryonic zebrafish brain. Development, 1996. 123: p. 165-78.

7. Thisse, C. and L.I. Zon, Organogenesis--heart and blood formation from the zebrafish point of view. Science, 2002. 295(5554): p. 457-62.

8. Grunwald, D.J. and J.S. Eisen, Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet, 2002. 3(9): p. 717-24.

9. Cornell, R.A. and J.S. Eisen, Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development, 2002. 129(11): p. 2639-48.

10. Lawson, N.D. and B.M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol, 2002. 248(2): p. 307-18.

11. Davison, J.M., et al., Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol, 2007. 304(2):

p. 811-24.

12. Scott, E.K., et al., Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods, 2007. 4(4): p. 323-6.

13. Hatta, K., H. Tsujii, and T. Omura, Cell tracking using a photoconvertible fluorescent protein. Nat Protoc, 2006. 1(2): p. 960-7.

14. Parker, L. and D.Y. Stainier, Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. Development, 1999. 126(12): p. 2643-51.

15. St Johnston, D. and C. Nusslein-Volhard, The origin of pattern and polarity in the Drosophila embryo. Cell, 1992. 68(2): p. 201-19.

16. Ciruna, B., et al., Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci U S A, 2002. 99(23): p. 14919-24.

17. Brenner, S., Inverse genetics. Curr Biol, 2000. 10(18): p. R649.

18. Canestro, C., H. Yokoi, and J.H. Postlethwait, Evolutionary developmental biology and genomics. Nat Rev Genet, 2007. 8(12): p. 932-42.

19. Sato, Y., Y. Hashiguchi, and M. Nishida, Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol, 2009. 9: p. 127.

20. Ruddle, F.H., et al., Evolution of chordate hox gene clusters. Ann N Y Acad Sci, 1999. 870: p. 238-48.

21. Amores, A., et al., Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res, 2004. 14(1): p. 1-10.

22. Amores, A., et al., Zebrafish hox clusters and vertebrate genome evolution.

Science, 1998. 282(5394): p. 1711-4.

23. Aparicio, S., Vertebrate evolution: recent perspectives from fish. Trends Genet, 2000. 16(2): p. 54-6.

24. Meyer, A. and E. Malaga-Trillo, Vertebrate genomics: More fishy tales about Hox genes. Curr Biol, 1999. 9(6): p. R210-3.

25. Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310.

26. Zon, L.I., Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature, 2008. 453(7193): p. 306-13.

27. Orkin, S.H. and L.I. Zon, Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 2008. 132(4): p. 631-44.

28. Childs, S., et al., Patterning of angiogenesis in the zebrafish embryo.

Development, 2002. 129(4): p. 973-82.

29. Baer, M.M., H. Chanut-Delalande, and M. Affolter, Cellular and molecular mechanisms underlying the formation of biological tubes. Curr Top Dev Biol, 2009. 89: p. 137-62.

30. Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.

31. Ellertsdottir, E., et al., Vascular morphogenesis in the zebrafish embryo. Dev Biol. 341(1): p. 56-65.

32. Wang, H.U., Z.F. Chen, and D.J. Anderson, Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 1998. 93(5): p. 741-53.

33. Moyon, D., et al., Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development, 2001. 128(17): p. 3359-70.

34. Gering, M. and R. Patient, Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell, 2005. 8(3): p. 389-400.

35. Lawson, N.D., A.M. Vogel, and B.M. Weinstein, sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell, 2002. 3(1): p. 127-36.

36. Lawson, N.D. and B.M. Weinstein, Arteries and veins: making a difference with zebrafish. Nat Rev Genet, 2002. 3(9): p. 674-82.

37. Weinstein, B.M. and N.D. Lawson, Arteries, veins, Notch, and VEGF. Cold Spring Harb Symp Quant Biol, 2002. 67: p. 155-62.

38. Vokes, S.A., et al., Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development, 2004. 131(17): p. 4371-80.

39. Phng, L.K. and H. Gerhardt, Angiogenesis: a team effort coordinated by notch.

Dev Cell, 2009. 16(2): p. 196-208.

40. Jain, R.K. and K.A. Ward-Hartley, Dynamics of cancer cell interactions with microvasculature and interstitium. Biorheology, 1987. 24(2): p. 117-25.

41. Papetti, M. and I.M. Herman, Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol, 2002. 282(5): p. C947-70.

42. Shayan, R., M.G. Achen, and S.A. Stacker, Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis, 2006. 27(9): p. 1729-38.

43. Paget, S., The distribution of secondary growths in cancer of the breast. 1889.

Cancer Metastasis Rev, 1989. 8(2): p. 98-101.

44. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006. 12(8): p. 895-904.

45. Fidler, I.J., The organ microenvironment and cancer metastasis.

Differentiation, 2002. 70(9-10): p. 498-505.

46. Geng, J. and D.J. Klionsky, The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep, 2008. 9(9): p. 859-64.

47. Saey, T.H., Dining In. Science News, 2011. March 26th, 2011; Vol.179 #7 (p.

18).

48. Xie, Z. and D.J. Klionsky, Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 2007. 9(10): p. 1102-9.

49. Mizushima, N. and B. Levine, Autophagy in mammalian development and differentiation. Nat Cell Biol, 2010. 12(9): p. 823-30.

50. Stoletov, K. and R. Klemke, Catch of the day: zebrafish as a human cancer model. Oncogene, 2008.

51. Haldi, M., et al., Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in

zebrafish. Angiogenesis, 2006. 9(3): p. 139-51.

52. Nicoli, S., et al., Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res, 2007. 67(7): p. 2927-31.

53. Nicoli, S. and M. Presta, The zebrafish/tumor xenograft angiogenesis assay.

Nature protocols, 2007. 2(11): p. 2918-23.

54. Elaine Marieb, K.H., Human Anatomy & Physiology (7th ed.). 2007: Pearson Benjamin Cummings.

55. Dabiri, G.A., et al., Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A, 1997. 94(17): p. 9493-8.

56. Artero, R., et al., The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2. Dev Biol, 1998. 195(2): p. 131-43.

57. Holtzer, H., et al., Independent assembly of 1.6 microns long bipolar MHC filaments and I-Z-I bodies. Cell Struct Funct, 1997. 22(1): p. 83-93.

58. Ehler, E., et al., Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci, 1999. 112 ( Pt 10): p. 1529-39.

59. Gregorio, C.C., et al., Muscle assembly: a titanic achievement? Curr Opin Cell Biol, 1999. 11(1): p. 18-25.

60. Sparrow, J.C. and F. Schock, The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol, 2009. 10(4): p. 293-8.

61. De Deyne, P.G., Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol, 2000.

279(6): p. C1801-11.

62. Ferrante, M.I., et al., Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J Cell Sci, 2010. 124(Pt 4): p. 565-77.

63. Kim, J., T. Lowe, and T. Hoppe, Protein quality control gets muscle into shape.

Trends Cell Biol, 2008. 18(6): p. 264-72.

64. Wolff, C., S. Roy, and P.W. Ingham, Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol, 2003. 13(14): p. 1169-81.

65. Lewis, K.E., et al., Control of muscle cell-type specification in the zebrafish embryo by Hedgehog signalling. Dev Biol, 1999. 216(2): p. 469-80.

66. Brennan, C., S.L. Amacher, and P.D. Currie, Somitogenesis. Results Probl Cell Differ, 2002. 40: p. 271-97.

67. Roy, S., C. Wolff, and P.W. Ingham, The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev, 2001. 15(12): p. 1563-76.

68. Baxendale, S., et al., The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nat Genet, 2004. 36(1): p. 88-93.

69. Elworthy, S., et al., Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing

requirements for Hedgehog and Prdm1 activity. Development, 2008. 135(12):

p. 2115-26.

70. Hughes, S.M., Muscle differentiation: a gene for slow muscle? Curr Biol, 2004.

14(4): p. R156-7.

71. Ingham, P.W. and H.R. Kim, Hedgehog signalling and the specification of muscle cell identity in the zebrafish embryo. Exp Cell Res, 2005. 306(2): p.

336-42.

72. von Hofsten, J., et al., Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep, 2008. 9(7): p.

683-9.

73. Wilm, T.P. and L. Solnica-Krezel, Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development, 2005. 132(2):

p. 393-404.

74. Flynt, A.S., et al., Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet, 2007. 39(2): p. 259-63.

75. Knapik, E.W., ENU mutagenesis in zebrafish--from genes to complex diseases.

Mamm Genome, 2000. 11(7): p. 511-9.

76. Kimmel, C.B., Genetics and early development of zebrafish. Trends Genet, 1989. 5(8): p. 283-8.

77. Bassett, D. and P.D. Currie, Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol, 2004. 31(8): p. 537-40.

78. Bassett, D.I., et al., Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development, 2003. 130(23): p. 5851-60.

79. Guyon, J.R., et al., Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin. Hum Mol Genet, 2009. 18(1): p. 202-11.

80. Kawahara, G., et al., Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA, 2011. 108(13): p. 5331-6.

81. Otto, G.P., et al., Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem, 2003. 278(20): p.

17636-45.

82. Otto, G.P., et al., Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem, 2004. 279(15): p. 15621-9.

83. Tsukada, M. and Y. Ohsumi, Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993. 333(1-2): p.

169-74.

84. Goedert, M., Familial Parkinson's disease. The awakening of alpha-synuclein.

Nature, 1997. 388(6639): p. 232-3.

85. Kruger, R., et al., Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet, 1998. 18(2): p. 106-8.

86. Polymeropoulos, M.H., et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997. 276(5321): p. 2045-7.

87. Qin, Z.H., et al., Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet, 2003. 12(24): p. 3231-44.

88. Ravikumar, B., R. Duden, and D.C. Rubinsztein, Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy.

Hum Mol Genet, 2002. 11(9): p. 1107-17.

89. Ravikumar, B., et al., Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 2004. 36(6): p. 585-95.

90. Kirkegaard, K., M.P. Taylor, and W.T. Jackson, Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol, 2004. 2(4):

p. 301-14.

91. Ogawa, M., et al., Escape of intracellular Shigella from autophagy. Science, 2005. 307(5710): p. 727-31.

92. Liang, X.H., et al., Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 1998. 72(11): p. 8586-96.

93. Gutierrez, M.G., et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004.

119(6): p. 753-66.

94. Askanas, V. and W.K. Engel, Inclusion-body myositis: a myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. Neurology, 2006. 66(2 Suppl 1): p. S39-48.

95. Lunemann, J.D., et al., Macroautophagy as a pathomechanism in sporadic inclusion body myositis. Autophagy, 2007. 3(4): p. 384-6.

96. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672-6.

97. Degenhardt, K., et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10(1): p. 51-64.

98. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nat Rev Cancer, 2007. 7(12): p. 961-7.

99. Levine, B. and D.J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 2004. 6(4): p.

463-77.

100. Klionsky, D.J., Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol, 2007. 8(11): p. 931-7.

101. Pattingre, S. and B. Levine, Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res, 2006. 66(6): p. 2885-8.

102. Nishino, I., et al., Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature, 2000. 406(6798): p.

906-10.

103. Sugie, K., et al., Characterization of Danon disease in a male patient and his affected mother. Neuromuscul Disord, 2003. 13(9): p. 708-11.

104. Sugie, K., et al., Autophagic vacuoles with sarcolemmal features delineate Danon disease and related myopathies. J Neuropathol Exp Neurol, 2005. 64(6):

p. 513-22.

105. Fukuda, T., et al., Autophagy and lysosomes in Pompe disease. Autophagy, 2006. 2(4): p. 318-20.

106. Bolanos-Meade, J., et al., Hydroxychloroquine causes severe vacuolar myopathy in a patient with chronic graft-versus-host disease. Am J Hematol, 2005. 78(4): p. 306-9.

107. Masiero, E., et al., Autophagy is required to maintain muscle mass. Cell Metab, 2009. 10(6): p. 507-15.

108. Nakai, A., et al., The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med, 2007. 13(5): p. 619-24.

109. Dhesi, P., et al., How does the heart (not) die? The role of autophagy in cardiomyocyte homeostasis and cell death. Heart Fail Rev. 15(1): p. 15-21.

110. Tannous, P., et al., Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation, 2008. 117(24): p. 3070-8.

111. Raben, N., et al., When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease. Autophagy, 2009. 5(1): p. 111-3.

112. Raben, N., et al., Enzyme replacement therapy in the mouse model of Pompe disease. Mol Genet Metab, 2003. 80(1-2): p. 159-69.

113. Raben, N., et al., Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet, 2008. 17(24): p. 3897-908.

114. Christiane Nüsslein-Volhard, R.D., Zebrafish: A Practical Approach. 2002 115. Lee, L.M., et al., The fate of human malignant melanoma cells transplanted into

zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn, 2005. 233(4): p. 1560-70.

116. Stoletov, K., et al., High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA, 2007. 104(44): p.

17406-11.

117. Arisawa, Y., et al., Hepatic artery dexamethasone infusion inhibits colorectal hepatic metastases: a regional antiangiogenic therapy. Ann Surg Oncol, 1995.

2(2): p. 114-20.

118. Wolff, J.E., et al., Dexamethasone inhibits glioma-induced formation of capillary like structures in vitro and angiogenesis in vivo. Klin Padiatr, 1997.

209(4): p. 275-7.

119. Badruddoja, M.A., et al., Antiangiogenic effects of dexamethasone in 9L

gliosarcoma assessed by MRI cerebral blood volume maps. Neuro Oncol, 2003.

5(4): p. 235-43.

120. Nakao, S., et al., Dexamethasone inhibits interleukin-1beta-induced corneal neovascularization: role of nuclear factor-kappaB-activated stromal cells in inflammatory angiogenesis. Am J Pathol, 2007. 171(3): p. 1058-65.

121. American Cancer Society. Available from:

http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documen ts/document/acspc-029771.pdf.

122. Cramer, D.W., et al., Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev Res (Phila), 2011. 4(3): p. 365-74.

123. Zhu, C.S., et al., A framework for evaluating biomarkers for early detection:

validation of biomarker panels for ovarian cancer. Cancer Prev Res (Phila), 2011. 4(3): p. 375-83.

124. Kao, S.C., et al., Malignant mesothelioma. Intern Med J, 2010. 40(11): p. 742-50.

125. Chovil, A. and C. Stewart, Latency period for mesothelioma. Lancet, 1979.

2(8147): p. 853.

126. Allan, E., Breast cancer: the long latent interval. Eur J Cancer, 1977. 13(8): p.

839-45.

127. Meng, S., et al., Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res, 2004. 10(24): p. 8152-62.

128. Demicheli, R., et al., Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol, 2007.

4(12): p. 699-710.

129. Retsky, M.W., et al., Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS, 2008. 116(7-8): p. 730-41.

130. Muto, A., et al., Forward genetic analysis of visual behavior in zebrafish. PLoS Genet, 2005. 1(5): p. e66.

131. Rihel, J., et al., Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science, 2010. 327(5963): p. 348-51.

132. Imeri, L. and M.R. Opp, How (and why) the immune system makes us sleep. Nat Rev Neurosci, 2009. 10(3): p. 199-210.

Institutionen för mikrobiologi, tumör- och cellbiologi

The zebrafish as a model to elucidate human diseases and development

AKADEMISK AVHANDLING

som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i styrelserummet, 03-18A, IMCB

Fredagen den 7 oktober, 2011, kl 15.00

av

Samantha Lin Chiou LEE

Huvudhandledare:

Professor Birgitte Lane Karolinska Institutet

Institutionen för mikrobiologi, tumör- och cellbiologi

Sweden

Institute of Medical Biology, A*STAR, Singapore

Bihandledare:

Professor Philip Ingham

Institute of Molecular and Cell Biology, A*STAR, Singapore

Fakultetsopponent:

Professor Peter Currie Monash University

Australian Regenerative Medicine Institute Australia

Betygsnämnd:

Professor Lorenz Poellinger Karolinska Institutet

Institutionen för cell- och molekylärbiologi Sweden

Professor Sven Pettersson Karolinska Institutet

Institutionen för mikrobiologi, tumör- och cellbiologi

Sweden

Docent Christoph Winkler National University of Singapore Department of Biological Sciences Singapore

Stockholm 2011

ABSTRACT

This thesis explores the zebrafish as a model organism to illuminate our understanding of processes that orchestrate the progression of cancer metastasis and myogenesis.

First, I describe the successful establishment of a cancer metastasis model in the zebrafish, specifically to study intravasation - one of the earliest steps in the metastatic cascade. Fluorescently labeled tumour cell are transplanted into pervitelline space of 2 days post fertilisation (dpf) zebrafish embryos before they are exposed to normoxic or hypoxic conditions, allowing us to study the effect of hypoxia on tumour-induced angiogenesis and metastasis. Hypoxia elicited an enhanced angiogenic response and neovascularisation to the transplanted tumour and escalated the extent of metastasis in the living zebrafish embryo. Loss of function experiments such as vascular endothelial growth factor (VEGF) blockade using a clinically available drug – Sunitinib or VEGF morpholino knockdown attenuated tumour-induced angiogenesis and metastasis. The in vivo metastasis assay in zebrafish delivers numerous unique advantages over conventional in vitro cell-based or biochemical chemotaxis assays. The transparent embryo facilitates the tracking of the entire intravasation process in real time within a living organism, allowing us to explore the dynamic interplay of tumour cells and the environmental cues that drive metastasis. This model can be further employed to discriminate between tumour cells of different metastatic potential and to identify novel factors that present as impetus for the earliest step of the metastatic cascade.

Next, I demonstrate the analysis of one class of motility mutants originally identified in the 1996 Tübingen genetic screen that potentially serve as models for human myopathies and dystrophies. Two of these mutants have previously been cloned and shown to encode proteins involved in muscle fibre attachment whilst a third has been found to encode the molecular chaperone Heat shock protein (HSP) 90. I describe the phenotypic and molecular characterization of another of these zebrafish motility mutants, frozen (fro). I present evidence that the frot027c mutation disrupts the locus encoding the autophagy pathway component Atg10. This analysis implicates Atg10 in the assembly of both skeletal and cardiac muscle fibers suggesting a previously uncharacterized role for the autophagy pathway in this process.

Together, my findings illustrate the utility of the zebrafish as a model organism that complements established mammalian and invertebrate models. The fecundity and amenability of the zebrafish to genetic manipulation together with the rapid development and translucency of its embryos combine to provide a powerful system with which to unravel and inform the underlying mechanisms that govern fundamental biological processes and shed light on our understanding of human development and diseases.

ISBN 978-91-7457-429-6

Related documents