• No results found

Coating fine particles

N/A
N/A
Protected

Academic year: 2021

Share "Coating fine particles"

Copied!
33
0
0

Loading.... (view fulltext now)

Full text

(1)

 

 

(2)

 

 

 

Teknisk- naturvetenskaplig fakultet UTH-enheten Besöksadress: Ångströmlaboratoriet Lägerhyddsvägen 1 Hus 4, Plan 0 Postadress: Box 536 751 21 Uppsala Telefon: 018 – 471 30 03 Telefax: 018 – 471 30 00 Hemsida: http://www.teknat.uu.se/student Abstract Beläggning av små partiklar Coating fine particles Andrea Bergqvist

Controlled release of an active is used in many applications. An example is drug delivery were it is desirable to release the active substance close to the target. In paints can anti-mold substances be encapsulated and released slowly during a long time which can extend the lifetime of the paint. This work investigated a coating process of loaded particles with as low leakage of the active substance as possible. It was also studied if the coating process was scalable. The particles in use were porous silica that was coated with sodium dodecyl sulphate (SDS), polyethyleneimine (PEI) and tetraethyl orthosilicate (TEOS). To fill particles, the active was dissolved in a solution and the particles were added. The active adsorbed into the pores of the particle. The coating principle was about the same for all layers. The coating molecules were dissolved in a solvent and the particles were added during stirring. After centrifugation the coated particles were separated from the solvent and left to dry. The thermogravimetric analyzer (TGA) was used to calculate the amount of adsorbed polymers on the particle surface. UV/VIS spectrometer analyzed the release rate of the active.

As the recipe was optimized, SDS could be excluded from the process. An adsorption isotherm for PEI on the particle surface showed that 0.5 g PEI/ g particle the ratio required for covering the surface completely. It was proved that if the active was dissolved in all coating solutions during the coating, less leakage appear and makes the coating process more controlled. A higher amount of both PEI and TEOS improves the encapsulation of the active, which reduces the release rate. The coating process is proved to be scalable as the particle concentration is increased from 4.72 % to 16.5 % without too much agglomeration.

ISSN: 1650-8297, UPTEC K14009 Examinator: Mats Boman Ämnesgranskare: Karin Larsson Handledare: Anders Larsson

(3)

Svensk  sammanfattning  

Summary  in  Swedish

 

Kontrollerad  frisättning  av  ett  aktivt  ämne  är  vanligt  förkommande  i  många  

applikationer.  Några  exempel  är  inkapsling  av  läkemedel  för  transport  i  kroppen  där   frisättningen  ska  ske  så  nära  ”målet”  som  möjligt.  I  målarfärg  kapslas  anti-­‐mögelmedel   in  för  att  läcka  ut  långsamt  och  motverka  mögelväxt  under  en  längre  tid.  

Detta  examensarbete  är  en  granskning  av  en  beläggningsprocess  av  fyllda  partiklar.   Beläggningen  ska  göras  med  så  lågt  läckage  av  det  aktiva  ämnet  som  möjligt.  

Beläggningsprocessen  optimerades  och  slutligen  undersöktes  om  den  var  skalbar.         Porösa  kiseloxidpartiklar  användes  som  bärare  av  det  aktiva  ämnet  vilket  i  detta  fall  var   o-­‐vanillin.  För  att  fylla  partiklarna  löstes  vanillinet  i  ett  lösningsmedel  och  partiklarna   tillsattes.  Det  aktiva  ämnet  adsorberas  på  porernas  ytor  inne  i  partikeln.  Partiklarna   separerades  sedan  från  vätskan  med  vanillinet  kvar  i  porerna.  De  fyllda  partiklarna   belades  sedan  med  en  tensid  (natrium  dodecyl  sulfat,  SDS),  ett  polymerlager  

(polyethleneimin,  PEI)  och  ett  silikalager  (tetraetyl  ortosilikat,  TEOS).  Beläggningarna   utfördes  på  ungefär  samma  sätt.  Respektive  beläggningsämne  löstes  upp  i  ett  

lösningsmedel  där  partiklarna  sedan  tillsattes  under  omrörning.  Efter  centrifugering  och   tvätt  separerades  de  belagda  partiklarna  för  att  torka.  Termogravimetrisk  analys  (TGA)   användes  för  att  bestämma  mängd  adsorberad  polymer  på  partikelytan.  UV/VIS  

spektrometer  använder  för  analys  av  frisättningshastigheter.    

Vid  optimering  av  processen  kunde  SDS  uteslutas.  En  adsorptionsisoterm  för  PEI  på   tomma  partikelar  visade  att  då  partikelytan  var  mättad  var  ca  10  %  av  den  totala  vikten   polymer.  Med  större  mängd  PEI  och  TEOS  på  partikeln  blir  inkapslingen  av  det  aktiva   ämnet  bättre  och  frisättningshastigheten  minskas.  En  betydligt  mer  kontrollerad   beläggningsprocess  erhölls  då  det  aktiva  ämnet  löstes  i  alla  omgivande  

beläggningslösningar  under  processen  då  det  bidrog  till  lägre  läckage.  Slutligen   bevisades  att  processen  är  skalbar  då  partikelkoncentrationen  ökades  från  4.72  %  till   16.5  %.    

(4)

Table  of  Contents  

1.  Aim  of  this  work  ...  5  

2.  Introduction  ...  6  

2.1  Colloidal  stability,  instability  and  agglomeration  ...  6  

2.1.1  Electric  double  layer  ...  6  

2.1.2  Electrostatic  stabilization  ...  7  

2.1.3  Steric  stabilization  ...  7  

2.1.4  Agglomeration  ...  7  

2.2.  Loading  and  release  of  the  active  ...  8  

2.2.1  Loading  of  an  active  ...  8  

2.2.2  Release  of  an  active  ...  9  

2.3  Applications  ...  10  

3.  Materials  and  methods  ...  11  

3.1  Chemicals  ...  11  

3.2  Methods  ...  11  

3.2.1  Loading  of  particles  ...  11  

3.2.2  Coating  the  particles  ...  11  

3.2.3  Analysis  ...  12  

4.  Experiments  ...  14  

4.1  SDS  ...  14  

4.2  Adsorption  isotherm  of  PEI  ...  14  

4.3  Coating  with  TEOS  ...  15  

4.4  Increased  particle  concentration  ...  16  

5.  Results  ...  17  

5.1  SDS  ...  17  

5.2  Adsorption  isotherm  –  PEI  ...  17  

5.3  Release  rate  of  o-­‐vanillin  from  PEI  coated  composite  particles  ...  18  

5.4  Encapsulation  with  TEOS  ...  19  

5.5  Increased  particle  concentration  ...  21  

6.  Discussion  ...  23  

6.1  SDS  ...  23  

6.2  Adsorption  isotherm  PEI  ...  23  

6.3  Encapsulation  with  TEOS  ...  25  

6.4  Increased  particle  concentration  ...  27  

7.  Conclusions  ...  29  

8.  Suggestions  for  further  work  ...  31  

9.  Acknowledgements  ...  32  

9.  References  ...  33    

(5)

1.  Aim  of  this  work    

The  aims  of  this  diploma  work  are  as  follows:    

• To  study  if  this  coating  process  is  scalable  by  increasing  the  particle   concentration  from  5  %  to  over  10  %.    

• To  coat  particles  with  as  low  leakage  of  the  active  as  possible.   • To  optimize  the  coating  parameters.  

• To  document  the  process.      

(6)

2.  Introduction  

Controlled  delivery  and  release  of  active  compounds  have  become  an  area  of  huge   interest  both  industrially  and  academically.  For  instance  the  taste  of  a  chewing  gum  is   lost  within  a  few  minutes.  If  you  could  control  the  release  rate  of  the  active  providing   taste  say  for  one  hour,  a  market  opportunity  will  arise  for  producers  of  chewing  gums.   Microbial  control  on  growth  of  mold  on  painted  houses,  barnacle  growth  in  the  sea  and   so  on  can  be  achieved  for  limited  time  periods  today.  One  reason  for  loss  of  surface   protection  is  that  the  biocides  protecting  the  surface  simply  leach  out  of  the  coated   surface  too  fast.  A  slower  release  of  the  biocide  would  prolong  the  protection  of  the   surface.  

If  the  process  of  loading  and  coating  these  particles  could  be  done  with  increased   concentration  it  would  be  scalable.  In  this  work  we  will  investigate  whereas  that  is   possible  and  also  try  to  achieve  as  low  leakage  of  the  active  compound  as  possible.   Below,  some  theory  is  described  about  the  parameters  that  need  to  be  taken  into   account.    

2.1  Colloidal  stability,  instability  and  agglomeration      

A  colloidal  dispersion  is  a  heterogeneous  system  where  particles  are  dissolved  in  a   solution  and  remains  dispersed.  An  example  of  a  colloidal  dispersion  is  dust  in  air  or  as   in  this  case,  silica  particles  in  water.  A  colloidal  dispersion  can  be  stable  or  unstable.  A   stable  colloidal  system  is  well  dispersed  without  any  agglomeration  of  the  particles.  An   unstable  dispersion  tries  to  decrease  the  total  energy  of  the  system.  One  way  is  due  to   agglomeration  of  the  particles.  As  agglomeration  occur,  the  surface/bulk  energy  ratio   decreases.  Small  particles  that  have  a  high  energy  ratio  agglomerates  to  bigger  clusters.   The  ratio  is  thereby  reduced  and  the  total  energy  of  the  system  is  decreased.  

Aggregation  may  also  occur  due  to  attractive  van  der  Waals  forces.  If  polar  particles  are   close  enough  they  arrange  themselves  so  that  aggregation  can  occur  as  an  attempt  to   decrease  the  energy  of  the  system.  To  describe  the  mechanisms  of  stability  and   instability  more  in  detail,  the  electric  double  layer  of  a  charged  particle  will  be   described.    

2.1.1  Electric  double  layer    

When  a  charged  particle  is  in  a  polar  solution  containing  ions,  the  counter  ions  will  be   attracted  to  the  particle  and  the  co  ions  will  be  repelled.  The  counter  ions  are  strongly   attracted  to  the  surface  and  form  a  rather  hard,  compact,  immobile  layer  close  to  the   surface.  Further  away,  the  ions  are  more  mobile.  The  counter  ions  want  to  be  close  to   the  surface,  but  the  maximization  of  entropy  wants  the  ions  to  be  distributed  evenly  in   the  solution.  This  competition  occur  in  the  diffuse  layer  where  the  counter  ion  

concentration  drops  from  a  high  value  close  to  the  particle  surface  down  to  the   equilibrium  ion  concentration  in  the  solution  further  away  from  the  surface,  (1).  We   show  In  Figure  1  the  charge  distribution  of  ions  around  a  negatively  charged  particle.  

(7)

 

Figure  1  The  electric  double  layer  is  schematically  described  for  a  negatively  charged  particle.      2.1.2  Electrostatic  stabilization      

Colloidal  dispersions  tend  to  aggregate  due  to  attractive  van  der  Waals  forces.  In  a  polar   solvent  where  some  molecules  have  permanent  dipoles  they  structure  themselves  so   that  attraction  occur.  The  dipoles  induce  dipoles  in  other  molecules  as  well,  which   results  in  further  attraction.  However,  it  is  possible  to  overcome  agglomeration  by  long-­‐ range  repulsive  forces  like  electrostatic  repulsion.  If  the  electric  double  layer  of  two   particles  starts  to  overlap  and  has  the  same  charge,  repulsion  occurs.  This  is  called   electrostatic  stabilization  and  occur  only  if  the  repelling  force  is  stronger  than  the   attractive  van  der  Waals  force.  (2)  

2.1.3  Steric  stabilization    

Steric  stabilization  requires  adsorption  of  polymers  on  the  particle  surface.  Adsorption   is  a  spontaneous  process,  which  means  that  Gibbs  free  energy  is  below  zero,  see  Eqn  (1).   Even  if  the  process  is  spontaneous,  it  is  a  risk  that  desorption  of  the  adsorbent  occur  if   the  coated  particles  collide.  

∆𝐺 = ∆𝐻 − 𝑇∆𝑆          (1)  

Gibbs  free  energy  can  be  divided  into  an  enthalpy  part  and  an  entropy  part.  When   particles  collide,  the  attached  polymer  chains  are  compressed  which  reduces  the  

available  configurations  for  the  chains,  leading  to  a  decreased  entropy.  With  decreasing   entropy,  ΔG  increases,  which  indicates  that  it  is  not  preferable  for  the  polymers  to  be  in   touch  with  each  other.    

Water  molecules  that  are  adsorbed  on  the  polymers  are  released  in  a  collision.  The   release  increases  the  entropy  so  that  Gibbs  free  energy  is  decreased  and  agglomeration  

is  less  favorable.  (2)      

2.1.4  Agglomeration    

As  it  costs  energy  to  have  particles  spread  in  a  solution  agglomeration  occur  to  decrease   the  total  energy  in  the  system.  Agglomeration  can  happen  in  many  ways  and  below  some   of  them  are  explained.    

(8)

Homocoagulation  is  when  particles  of  the  same  charge  coagulate.  This  often  occur  if  the   electrostatic  repulsion  is  weak  and  can  be  induced  by  changing  pH  or  salt  concentration.   By  changing  pH,  charges  may  change  or  become  neutral,  which  may  lead  to  less  

repulsion.  When  salt  concentration  is  increased,  the  screening  effect  increases  which   also  favors  aggregation  (1,3).    

When  particles  of  opposite  charge  coagulate,  it  is  called  heterocoagulation.  As  small,   strongly  charged  polymers  adsorb  on  oppositely  charged  colloids,  patches  of  opposite   charge  may  form  on  the  particle  surface.    Patches  of  oppositely  charges  on  different   particles  can  bind  to  each  other  and  cause  patch  flocculation.  When  large  polymers  bind   to  more  than  one  particle,  the  polymer  bridge  binds  the  particle  together  and  

aggregation  occurs.  This  mechanism  is  called  bridging  flocculation.    

Another  type  of  agglomeration  is  depletion  flocculation.  In  a  solution  with  free  polymers   and  free  uncoated  particles  the  particles  can  come  closer  to  each  other  than  the  

diameter  of  the  polymer,  and  nothing  but  almost  pure  solvent  is  in  the  space  between   the  particles.  This  very  small  volume  of  almost  pure  solvent  has  a  higher  potential  than   the  solvent  in  the  bulk,  and  therefore  it  will  diffuse  out  to  the  surroundings  and  the   particles  are  forced  together.    

The  character  of  the  solvent  is  another  parameter  to  have  in  mind.  If  the  solvent  is  bad,   the  solubility  of  the  particles  is  low  and  it  is  therefore  preferable  for  the  particles  to  be   with  each  other  rather  than  with  the  solvent.  For  a  good  solvent,  the  particles  are  fine  to   have  a  lot  of  contact  with  the  solvent  and  agglomeration  is  not  favored.  (4)  

2.2.  Loading  and  release  of  the  active  

An  active  is  a  compound  that  has  a  specific  function.  It  can  be  a  drug  for  pharmaceutical   use,  an  anti-­‐mold  compound  in  paints  etc.  To  optimize  the  performance  the  active   should  reach  the  target  and  be  used  at  lowest  possible  effective  concentration.  It  can  be   achieved  by  incorporation  of  the  active  into  different  types  of  carriers.  Controlled   release  can  be  obtained  by  encapsulation  of  the  active  substance.  There  are  different   ways  to  achieve  these  encapsulation  and  some  examples  are  described  below.     2.2.1  Loading  of  an  active  

An  active  can  be  carried  in  different  types  of  delivery  vehicles.  An  example  is  

encapsulation  by  a  microsphere.  To  achieve  a  filled  microsphere,  the  active  is  dissolved   in-­‐situ  in  the  process.  Coacervation  or  phase  separation  of  polymer  and  active  occur  as   the  active  is  dissolved  in  a  solvent.  Other  methods  are  built  on  self  assembly  techniques,   as  for  lipids  or  block  polymers.  For  all  these  methods,  the  solvent  is  evaporated  and  the   amphiphillic  molecules  close  up  around  the  active.  As  the  solvent  is  totally  evaporated,   spheres,  or  other  encapsulating  shapes,  are  generated  with  the  active  inside.  Capsules  of   surfactants  often  result  in  fast  release  whereas  block  polymers  generate  a  more  

sustained  release.  

(9)

property  is  to  achieve  a  material  with  controlled  pore  size  distribution.  Two  examples   where  the  pore  size  is  well  controlled  are  ordered  inorganic  mesoporous  materials  and   metal-­‐organic  framework.  The  most  studied  inorganic  porous  material  is  silica  where   common  pore  structures  are  hexagonal  and  bicontinous  cubic.  Mesoporous  silica  has   preferable  properties  as  an  inert  and  non-­‐toxic  material  and  is  used  as  a  carrier  in  drug   delivery.    

Metal  organic  frameworks  consist  of  a  network  of  metal  ions  that  are  connected  by  a   stiff  organic  molecule.  The  most  common  metal  ions  are  Zn2+  and  Cu2+  as  di-­‐  and  three-­‐

carboxylates  are  often  used  as  organic  molecules.  These  materials  are  crystalline  and   studied  for  storage  of  hydrogen  and  methane  and  are  a  recent  research  topic  for  drug   delivery  applications.  (5)  

A  common  way  to  load  porous  particles  with  an  active  is  to  dissolve  the  active  in  a   solvent  where  it  is  completely  dissolved.  The  particles  are  then  added  and  the  mixture  is   stirred  for  about  24  hours.  The  active  is  going  into  the  pores  by  diffusion,  and  adsorbs   on  the  internal  and  external  surfaces  until  equilibrium  is  reached.  Centrifugation   separates  the  particles  from  the  solvent  and  a  washing  step  follows  to  remove  all   residues  (6).  

2.2.2  Release  of  an  active    

Many  parameters  affect  the  release  rate  of  a  polymeric  encapsulated  active.  As  the  active   diffuses  out  through  voids  in  the  shell,  the  morphology  of  the  microcapsule  is  of  big   importance.  The  thicker  the  shell  is,  the  longer  will  the  diffusion  length  be  for  the  active,   which  lowers  the  release  rate.  If  the  active  has  a  low  solubility  in  the  coating  the  release   rate  will  be  lower  than  for  good  solubility.  (7)  If  the  shell  is  porous,  the  release  is  fast.  To   sustain  the  release  of  an  active  in  a  polymeric  capsule,  the  diffusion  coefficient  can  be   minimized.  Equation  2  describes  the  parameters  that  affect  the  diffusion  coefficient;  D.   D0  is  the  free  diffusion  of  the  active.  The  porosity  is  described  as  ε  and  the  tortuosity,  τ,  

describes  the  trajectory  of  the  diffusion.  The  pore  size  is  of  big  importance  and  is  

included  in  KS  where  rp  is  the  pore  size  and  ri  is  the  size  of  the  active,  eqn  2  and  3.  As  the  

active  can  interact  with  the  coating  by  coordinate  interactions  or  hydrogen  bonds  and  a   small  fraction  stays  in  the  shell,  described  by  KBeq.  There  is  a  number  of  binding  sites  in  

the  shell  and  is  described  as  the  concentration  cB.  Combining  KBeq  and  cB.  gives  us  KB,  eqn  

4.     𝐷 = 𝐷!!!𝐾!𝐾!       (2)   𝐾! = (1 − 𝜆)! = (1 −!! !!) !     (3)   𝐾! = (1 + 𝐾!!"𝑐!)!!       (4)  

Inorganic  capsules  are  not  permeable  and  the  diffusion  occurs  through  the  pores.  When   the  pore  size  is  increased,  the  release  rate  increases.  As  the  particles  are  small,  the  ratio   of  pore  opening  to  particle  volume  is  increased  which  favors  release.  Molecules  can  be  

(10)

attached  on  the  surface  inside  the  pores  and  interact  with  the  active  to  slow  down  the   release.  The  release  rate  can  be  decreased  by  adding  a  polymer  layer  around  the  particle   that  acts  as  a  lid  on  the  pore  openings.  By  that,  the  release  rate  is  dependent  on  the   properties  of  the  inorganic  particle  as  well  as  the  properties  of  the  polymer  coating   described  earlier.  (5)  

As  a  particle  is  encapsulated  with  a  polymer  coating,  the  amount  of  adsorbed  polymer  is   often  presented  with  an  adsorption  isotherm  in  a  graph.  The  adsorbed  amount  is  plotted   against  pressure  or  concentration  of  the  active  in  the  solution.  When  the  curve  levels   out,  all  available  sites  on  the  surface  are  taken  and  no  more  adsorption  occurs.  The   isotherms  can  show  different  character,  for  example  the  formation  of  monolayer  or   multilayer  and  if  the  adsorption  is  strong  or  weak.  An  optimal  isotherm  for  a  formation   of  a  monolayer  is  a  steep  slope  in  the  beginning  that  flatten  out  as  the  surface  is  

saturated.    

2.3  Applications    

In  many  applications,  controlled  release  of  an  active  compound  is  an  important  factor.   One  example  is  drug  delivery,  where  it  is  preferable  if  the  active  substance  is  released   close  to  the  target.  Another  example  is  chewing  gum,  where  controlled  release  of  the   flavoring  agent  could  extend  the  time  that  the  chewing  gum  tastes.  Also,  paints  can   extend  their  lifetime  if  the  release  rate  of  mold  controlling  active  is  decreased.    

In  this  project,  silica  particles  are  used.  Commercial  porous  amorphous  silica  particles   are  preferable  in  many  ways;  they  are  safe  for  human  health,  exist  in  huge  quantities  and   the  pore  size  is  possible  to  control.  Silica  as  a  porous  material  has  low  density,  large  pore   volume  and  a  high  specific  internal  surface  area.  The  inner  surface  area  of  the  pores  can   be  100-­‐1000  m2/g  whereas  the  external  surface  area  is  about  1-­‐2  m2/g.  Depending  on  

the  production  process,  the  pore  size  and  pore  size  distribution  can  be  controlled.  This   makes  it  preferable  for  the  role  as  a  carrier  of  an  active.  (8)  

(11)

3.  Materials  and  methods    

3.1  Chemicals    

The  chemicals  used  in  this  project  are  shown  in  Table  1  were  also  the  properties  of   interest  are  mentioned.  The  used  recipe  and  ingredients  are  from  a  recipe  that  SP  used   in  another  project  and  needs  to  be  optimized.  

Chemical  and  supplier   Molecular  structure     Properties  of  interest  

Porous  silica  SD  4859,  PQ   Corporation  

 

  Particle  size  3  μm,  pore  

volume  2  mL/g   Sodium  dodecyl  sulphate  

(SDS),  Sigma  Aldrich    

   

288.372  g/mole  

Polyethyleneimine  1800   (PEI),  Aldrich  chemistry  

 

1800  g/mole  

Tetraethyl  orthosilicate   (TEOS),  Aldrich  chemistry  

 

Negatively  charged  above   pH  2-­‐3.  

Ortho  vanillin,  Aldrich   chemistry           152.15  g/mole   Solubility  4.5645  g/L  water    

Hydrochloric  acid,  Analar  

Normapur     37  %  

Ethanol,  Solveco     95  %  

Table  1.  The  chemicals  used  in  this  project  are  listed  and  some  properties  of  interest  are  mentioned.     3.2  Methods  

An  original  recipe  is  used  for  loading  silica  particles  with  an  active  and  coating  them   with  three  different  layers.  The  processes  of  loading  and  coating  are  described  below.     3.2.1  Loading  of  particles  

When  loading  particles,  the  active  is  dissolved  in  acetone  and  silica  particles  are  added   to  the  solution.  The  active  absorbs  into  the  pores  of  the  particles.  The  solution  is  stirred   for  10  minutes  and  placed  in  an  ultrasonic  bath  for  30  minutes.  The  particles  are  

filtrated  from  the  solution  and  left  to  dry  in  air.  Filled  particles  are  further  called   composite  samples.    

3.2.2  Coating  the  particles    

The  first  layer  consists  of  SDS.  The  surfactant  is  dissolved  in  NaCl  solution  (0.1  M).   Particles  are  added  to  the  solution  and  put  in  to  an  ultrasonic  bath  to  improve  

(12)

The  second  layer  is  cationic  PEI.  The  polymer  is  first  dissolved  in  NaCl  solution  and  the   particles  are  added.  The  mixture  is  stirred  for  30  minutes  followed  by  centrifugation.     For  the  silica  encapsulation,  TEOS  is  added  to  a  solution  of  ethanol  and  hydrochloric  acid   and  left  to  stir  for  1  hour.  The  PEI  coated  particles  are  added  to  the  negatively  charged   TEOS  solution  and  pH  is  changed  to  pH  4  with  NH4OH.The  mixture  is  stirred  on  a  “shake  

table”  for  3  days  to  cover  the  particles  with  silica.  After  three  days  the  solution  is  

centrifuged,  washed  three  times  with  a  1:1  ethanol/water  solution  and  then  left  to  dry  at   room  temperature.    

3.2.3  Analysis  

The  Thermogravimetric  analyzer,  Pyris  1  TGA,  is  used  to  analyze  the  adsorbed  amount   on  the  particles.  The  TGA  calculate  the  weight  loss  in  percent  of  the  composite  particles   that  are  heated  to  a  certain  temperature  with  a  controlled  rate  of  heating.  

The  UV/VIS  spectrometer,  Lambda  650,  analyze  the  release  rate  of  the  active  from  the   loaded  particles.  Deareated  Milli-­‐Q  water  is  pumped  through  the  spectrometer  with  a   flow  rate  of  6.09  ml/min  and  back  to  the  bottle.  The  composites  are  added  to  the  water   and  the  active  starts  to  diffuse  out  from  the  pores  into  the  solution.  A  filter  with  pores  of   0.45  μm  is  placed  at  the  inlet  to  prevent  particles  to  go  through  the  spectrophotometer.   As  the  solution  pumps  through  the  spectrometer,  absorption  is  measured  at  262  nm,   which  is  the  specific  wavelength  for  o-­‐vanillin.  The  experimental  setup  is  schematically   described  in  Figure  2.  This  setup  was  used  for  the  PEI  coated  samples.  As  a  TEOS  layer   was  added,  no  pump  was  used.  Instead  1  ml  sample  was  taken  out  every  hour  with  a   syringe  through  a  filter.    

  Figure  2.  Experimental  setup  for  analysis  of  the  release  rate  on  filled  particles.    

(13)

 

Table  2.  The  original  recipe  for  loading  and  coating  of  the  particles  is  described  shortly.

 

 

 

Loading  of  particles  

Dissolve  o-­‐vanillin  in  acetone,  10  wt  %     Add  1  g  particles  

Stir  for  10  min,  ultrasonic  bath  for  30  minutes     Filtration  with  Büchner  funnel    

 

Coating  particles  -­‐  PEI  

Dissolve  20  mg  SDS  in  20  ml  water  (0.1  M  NaCl)   Add  1  g  particles    

Ultrasonic  bath  for  1  min,  washing  with  water  (0.1  M  NaCl)   PEI  dispersion:  add  1  mg  PEI  to1  ml  water  (0.1  M  NaCl)   1  g  particles  for  20  ml  PEI  dispersion    

Stir  for  30  minutes  

Centrifuge  3500  rpm  in  5  minutes  

Wash  with  water  (0.1  M  NaCl),  20  ml  per  g  particles    

Silica  encapsulation    

Mix  72  ml  HCl  with  8  ml  ethanol,  stir  for  10  minutes   Add  4  ml  TEOS  during  vigorous  stirring,  stir  for  1  h   Add  the  PEI  coated  particles  

With  NH4OH,  adjust  to  pH  4   Stir  for  three  days  

Centrifuge,  3500  rpm  for  5  minutes   Wash  three  times  with  1:1  ethanol:water   Leave  to  dry  in  room  temperature    

(14)

4.  Experiments  

In  order  to  optimize  the  original  recipe  for  loading  and  coating  the  particles,  some  of  the   process  steps  were  investigated.  Furthermore,  the  particle  concentration  was  increased   to  check  if  the  recipe  is  scalable.    

4.1  SDS  

We  checked  the  impact  of  the  surfactant  SDS  on  agglomeration,  particles  where  coated   either  with  SDS  or  PEI  or  a  mixture  of  SDS  and  PEI.  The  samples  were  analyzed  with  TGA   and  the  turbidity  was  measured  with  a  spectrophotometer  to  see  if  agglomeration  

occurs  in  the  absence  of  SDS.  

In  order  to  measure  the  turbidity,  a  NaCl-­‐solution  (0.1  M)  with  SDS  (1  g/L  NaCl  solution)   was  put  into  a  spectrophotometer  and  a  wavelength  scan  were  conducted  in  

transmittance  mode.  The  wavelength  chosen  for  turbidity  measurement  was  one  where   no  absorption  occurred.    

4.2  Adsorption  isotherm  of  PEI  

We  checked  when  the  particle  surface  is  saturated  with  PEI,  a  number  of  solutions   containing  different  ratios  PEI/particles  were  prepared,  all  without  SDS  addition.  The   amount  of  particles  was  held  constant  but  the  amount  of  PEI  was  varied.  This  was  done   for  both  empty  and  loaded  particles.  For  loaded  particles,  samples  were  done  with  the   active  dissolved  in  solutions  in  the  coating  process  (to  avoid  leakage  of  active  during  the   process).  The  active  was  dissolved  in  the  NaCl  solution,  1.52  g/L  water  and  it  had  to  be   heated  to  70    ͦC  to  be  completely  dissolved.  We  used  this  solution  as  washing  solution   and  as  solvent  for  PEI.    

PEI/particle  ratios  for  each  batch  are  shown  in  Table  3,  Table  4  and  Table  5.  Apart  from   the  batch  containing  dissolved  active  in  the  surrounding  solutions,  the  coating  process   was  performed  as  described  in  section  5.2.2.    

 

Concentration  

PEI  (g/L)   Empty  particles  (g)   PEI/particles  (g/g)  

0.20   0.250   0.01   0.80   0.250   0.03   2.05   0.251   0.08   4.00   0.250   0.32   8.03   0.250   0.40   10.00   0.250   0.56   14.00   0.251   0.81   20.17   0.250   1.08   27.05   0.250   1.08  

Table  3.  Concentrations  and  ratio  PEI  (g)/particles  (g)  for  adsorption  isotherm  of  empty  particles  

(15)

Concentration   PEI  (g/L)   Loaded   particles  (g)   PEI/composite     (g/g)   0.21   0.249   0.01   0.49   0.505   0.02   0.81   0.254   0.03   1.54   0.251   0.06   3.98   0.251   0.16   8.07   0.253   0.32   10.02   0.250   0.40   14.13   0.253   0.56   26.57   0.253   1.05   27.03   0.250   1.08   50.47   0.507   0.10   83.50   0.500   3.34  

Table  4.  Concentrations  and  ratio  PEI  (g)/sample  (g)  for  adsorption  isotherm  of  loaded  particles.     Concentration   PEI  (g/L)   Loaded   particles  (g)   PEI/composite   (g/g)   0.21   0.250   0.01   0.81   0.251   0.02   2.03   0.254   0.03   3.98   0.251   0.06   7.99   0.250   0.16   10.02   0.251   0.32   14.13   0.250   0.40   27.03   0.252   0.56   26.57   0.252   1.05   50.47   0.249   1.08  

Table  5.  Concentrations  and  ratio  PEI  (g)/composite  (g)  for  adsorption  isotherm  of  loaded  particles  were  the   active  is  dissolved  in  all  solutions.  

TGA  was  used  to  analyze  the  amount  of  PEI  that  adsorbs  on  the  particle  surface.  About   2-­‐5  mg  sample  was  used  per  analysis  and  the  temperature  interval  was  from  20-­‐900  ͦC   and  then  held  constant  until  the  curve  became  constant.  The  release  rate  of  the  active   was  analyzed  with  a  spectrophotometer;  see  the  experimental  setup  in  Figure  2.  A  bottle   containing  200  ml  deaerated  Milli-­‐Q  water  was  used  for  these  composite  samples.    

4.3  Coating  with  TEOS    

TEOS  was  coated  on  the  PEI  layer  on  loaded  particles.  To  investigate  the  effect  of  the   TEOS  layer  on  the  particles,  three  different  TEOS/composite  ratios  were  prepared,  see  

Table  6.  For  every  TEOS/composite  ratio,  two  different  PEI/composite  ratios  were  used.   The  coating  was  executed  following  original  recipe,  described  in  Table  2,  where  no  active   was  dissolved  in  the  coating  solutions.  However,  for  two  samples,  the  active  was  

dissolved  in  both  TEOS  and  PEI  solutions  and  for  two  others;  none  of  the  surrounding   solutions  contained  the  active.  The  release  rate  was  analyzed  to  see  the  impact  of  these   different  parameters.    

(16)

Vanillin  was  dissolved  in  the  washing  and  PEI  solution  as  described  in  section  4.2.  When   TEOS  solutions  were  prepared  with  vanillin,  1.52  g/L  was  dissolved  into  the  TEOS   solution  during  heating.  The  mixture  was  cooled  down  by  stirring  for  2  hours  before   coating  of  the  particles.  For  the  release  measurements,  bottles  with  100  ml  Milli-­‐Q  water   were  used.    

 

PEI/composite  

(g/g)       TEOS/composite  (g/g)   Active  in  PEI  solutions   Active  in  TEOS  solution    

0.03   1.90   Yes     No   1.00   1.90   Yes   No   0.03   3.74   Yes   No   1.00   3.74   Yes     No   0.03   5.5   Yes   No   1.00   5.5   Yes     No   1.00   3.74   Yes   Yes   0.03   5.5   Yes   Yes   0.03   5.5   No   No   1.00   3.74   No   No  

Table  6.  The  samples  containing  loaded  particles  coated  with  different  amounts  of  PEI  and  TEOS.    

4.4  Increased  particle  concentration    

As  the  particle  concentration  was  increased,  two  different  PEI/composite  ratios  were   used,  see  Table  7.  Both  the  chosen  ratios  correspond  to  when  the  surface  of  the  particles   is  completely  covered  with  PEI.  These  ratios  will  show  if  it  is  a  difference  between  just   completely  covered  surfaces  and  completely  covered.    

No  SDS  was  used  in  the  coating  process.  Because  of  the  viscous  solutions  at  high  particle   concentration  magnets  were  used  for  stirring  instead  of  the  shaking  table.  These  

samples  were  prepared  without  SDS  and  with  the  active  solved  in  all  solutions.  As  the   release  rate  was  studied,  the  samples  were  dispersed  in  100  ml  Milli-­‐Q  water  and   samples  were  taken  out  once  per  hour.    

PEI/composite   (g/g)   Particle  concentration  (%)   0.50   4.72   0.51   8.99   0.50   12.88   0.50   16.50   1.01   4.72   1.01   8.99   1.00   12.88   1.00   16.50  

Table  7.  Particle  concentration  in  PEI  solutions  for  two  different  PEI/sample  ratios.  

(17)

5.  Results    

5.1  SDS  

We  made  turbidity  measurements  to  check  whether  the  surfactant  SDS  improve  the   dispersion  of  silica  particles  in  solution  or  not.  The  chosen  wavelength  was  450  nm  and   we  measured  the  transmittance.  The  transmittance  did  not  change  significantly  over   time  and  therefore  we  calculated  the  average  values.  Furthermore  the  non-­‐filled   composite  particles  containing  silica,  PEI  and  SDS  were  analyzed  with  TGA.  But  as  SDS   and  PEI  evaporate  at  about  the  same  temperature,  it  was  impossible  to  calculate  the   respective  amount  of  each  component.  However,  the  total  weight  loss  was  calculated   from  the  TGA  data,  see  Table  8.  

Sample   %  Transmittance   Total  weight  loss  during  heating,  20-­‐900  °C  

Particle  +  SDS  +  

PEI   80.58  

4.9  %  

Particle  +  PEI     82.86   4.6  %  

Table  8.  The  average  of  %  transmittance  for  PEI  coated  particles  with  and  without  SDS.   5.2  Adsorption  isotherm  –  PEI  

We  investigated  the  amount  of  PEI  that  adsorbs  on  the  silica  particles.  In  the  coating   process,  empty  particles  were  exposed  to  solutions  containing  different  amounts  of  PEI.   The  adsorbed  amount  of  PEI  was  calculated  from  TGA  data  where  the  total  weight  loss   between  214-­‐900  °C  was  measured.  As  the  temperature  reached  900  °C  it  was  held   there  until  the  curve  flattened  out.  The  adsorption  isotherm  is  constructed  by  plotting   the  total  percentage  of  adsorbed  PEI  (on  the  particles)  against  the  concentration  of  PEI   in  the  coating  solution  in  Figure  3.    

 

Figure  3.  The  adsorption  isotherm  for  PEI  on  empty  particles  plotted  against  the  initial  PEI  concentration.     We  made  an  attempt  to  construct  an  adsorption  isotherm  for  loaded  particles  in  the   same  way  as  for  empty  particles.  Unfortunately  it  was  not  possible  to  separate  vanillin   from  PEI  in  the  TGA  graph  and  therefore,  the  respective  adsorbed  amount  of  PEI  could  

-­‐2   0   2   4   6   8   10   12   0   10   20   30   40   50   60   70   80   90   %   PE I  a ds ob ed     PEI  concentra:on  g/L  

(18)

not  be  calculated.  Even  as  we  calculated  the  total  amount  of  PEI  +  vanillin  no  significant   trend  was  observed  and  no  adsorption  isotherm  could  be  constructed.  

5.3  Release  rate  of  o-­‐vanillin  from  PEI  coated  composite  particles  

The  release  rate  of  o-­‐vanillin  was  analyzed  for  loaded  particles  coated  with  different   amounts  of  PEI.  The  preparation  of  these  samples  were  made  both  with  and  without  o-­‐ vanillin  dissolved  at  the  coating  stage.  In  Figure  5,  we  plot  the  amount  of  released  vanillin   against  time.  The  assumption  made  is  that  all  vanillin  is  released  when  the  absorbance   become  constant.  In  this  case  no  vanillin  was  added  to  the  PEI  solution  during  the   particle  coating  stage.  In  Figure  5  we  plot  the  amount  of  released  vanillin  against  time.  In   this  case  vanillin  was  added  to  the  PEI  solution  during  the  particle  coating  stage.  

Furthermore,  the  absorbance  of  the  active  at  100  %  release  is  normalized  against  1  gram   composite  particles  and  reported  in  Table  9.  We  vary  the  amount  of  PEI  in  these  graphs   and  table.  

  Figure  4.  The  percentage  released  o-­‐vanillin  as  a  function  of  time.  No  vanillin  added  to  the  PEI  particle  coating   solution.  

  Figure  5.The  percentage  released  o-­‐vanillin  as  a  function  of  time.  Vanillin  was  added  to  the  PEI  particle   coating  solution.       0   20   40   60   80   100   0   20   40   60   80   100   120   140   %   Re le as e   t  (min)  

Release  -­‐  no  vanillin  in  coa:ng  solu:ons  

No  PEI-­‐coa`ng    0,159  g  PEI/g  composite   0,3196  g  PEI/g  composite   0,5653  g  PEI/g  composite   1,054  g  PEI/g  composite   0   20   40   60   80   100   0   20   40   60   80   100   120   140   %   Re le as e     t  (min)  

Release  -­‐  vanillin  in  coa:ng  solu:ons  

No  PEI-­‐coa`ng   0,032  g  PEI/g  composite   0,321  g  PEI/g  composite   0,400  g  PEI/g  composite   0,558  g  PEI/g  composite   1,082  g  PEI/g  composite  

(19)

 

PEI/composite  (g/g)   No  active  in  solutions  

Abs(100%)/g  sample   PEI/composite  (g)   The  active  in  solutions  

Abs  (100%)/g   composite   0.03   8.07   0.03     4.96   0.16   12.42       0.32   3.12   0.32   24.80   0.40   3.03   0.40   5.86   0.57   0.16   0.56   6.89   1.07   1.04   0.81   6.86   1.05   5.40   1.08   3.17  

Table  9.  Absorbance  at  100  %  release  per  gram  composite  particles  are  listed  for  PEI  coated  particles  with   and  without  the  active  dissolved  in  the  PEI  coating  solutions.    

5.4  Encapsulation  with  TEOS    

The  release  rate  of  the  active  o-­‐vanillin  was  analyzed  for  PEI  and  TEOS  coated  particles.   Absorbance  was  measured  as  a  function  of  time  as  the  samples  were  exposed  to  water.   In  Figure  6,  the  percentage  release  of  active  as  a  function  of  time  is  shown.  The  

assumption  is  that  all  active  is  released  when  the  absorbance  become  constant.  Samples   with  0.03  g  PEI/composites  (g/g)  are  plotted  and  only  the  two  highest  TEOS  contents   showed  a  curve  of  release.  The  sample  with  lowest  amount  of  TEOS  did  not  show  any   absorbance  in  the  spectrophotometer  and  is  therefore  not  showed  in  the  plot.    In  the   graph  in  Figure  7,  the  absorbance  at  262  nm  is  plotted  against  time  since  the  curves  do   not  flatten  out  during  the  measuring  time  (up  to  24  h).  The  graph  shows  PEI/composite   particle  ratio  equal  to  1.  Only  the  sample  with  the  lowest  content  of  TEOS  did  flatten.   The  two  samples  with  higher  TEOS/sample  ratio  were  still  increasing  in  absorbance   after  24  hours.    

Particles  coated  with  PEI  and  TEOS  were  also  made  with  and  without  the  active   dissolved  in  solutions  used  in  the  coating  processes.  When  no  active  was  dissolved  in   solutions,  the  0.03  PEI/composite  with  3.74  TEOS/composite  showed  a  release  curve   with  a  total  release  at  10-­‐20  hours.  The  corresponding  sample  with  the  active  solved  in   the  solutions  showed  the  same  behavior.  The  results  are  schematically  described  in  

Table  10.      

(20)

  Figure  6.  The  graph  shows  the  release  percentage  of  the  active  during  time  for  samples  containing  0.03  g   PEI/g,  coated  with  three  different  amounts  of  TEOS.  

 

Figure  7.    The  graph  shows  absorbance  during  time  for  particles  with  1.00  g  PEI/g  sample,  encapsulated  with   three  different  amounts  of  TEOS.  Absorbance  was  measured  at  262  nm.    

    0   20   40   60   80   100   120   0   5   10   15   20   25   30   %   Re le as e     t  (h)  

0.03  g  PEI/g  sample,    

Vanilin  in  PEI  solu:ons    

3.7  g  TEOS/g  sample   5.5  g  TEOS/g  sample   0   0,05   0,1   0,15   0,2   0,25   0,3   0   5   10   15   20   25   30   Ab s,  2 62  n m   t  (h)  

1.00  g  PEI/g  sample,    

Vanillin  in  PEI  solu:ons  

1.9  g  TEOS/g  sample   3.7  g  TEOS/g  sample   5.5  g  TEOS/g  sample  

(21)

PEI(g)/g  

sample   TEOS  (g)/g  sample   The  active  solved  in  coating   solutions   Abs(100  %)/g   Time   where  the   curve   plateau  (h)   Notations     0.03           1.90     PEI     Random  data   points,  all  with   very  low   absorption,   (Abs  =  0.02  -­‐   0.05)     Failed   encapsulation   of  the  active  

3.74   PEI     0.07   10-­‐20  h     5.50   PEI     0.92   10  h     1.00     1.90   PEI     3.05   10-­‐20  h     3.74   PEI  

  0.87  (t=25h)     Does  not  plateau      

5.50   PEI  

  1.18  (t=25h)   Does  not  plateau       0.03   3.74   No  active  solved  in  

any  solution     0.11   10-­‐20  h     1.00  

  5.50   TEOS  PEI   3.69   About  10-­‐20h      

Table  10.  Data  from  absorption  measurements  to  analyze  the  release  rate  of  the  active  for  the  different  TEOS   coated  particles  

5.5  Increased  particle  concentration    

As  the  particle  concentration  was  increased  during  the  PEI  coating  process  the  samples   with  highest  concentrations  became  very  viscous.  All  the  samples  turned  brown  

overnight  during  stirring  and  no  visible  large  aggregates  were  observed.  The  release  is   shown  in  Figure  9  for  the  ratios  0.5  and  1.0  PEI  (g)/composite  particles  (g).  The  

absorbance  at  complete  release  per  gram  composite  particles  is  listed  in  Table  11.    

 

Figure  8.  Graph  over  the  release  of  the  active  from  particles  with  increased  particle  concentration  in  the   coating  process  ,  0.6  g  PEI/  g  composite.    

0   20   40   60   80   100   120   0   2   4   6   8   10   %   Re le as e   t  (h)  

0,6  PEI/composite  (g/g)  

4.72  wt  %     8.99  wt  %   12.88  wt  %   16.50  wt  %  

(22)

 

Figure  9.  Graph  over  the  release  of  the  active  from  particles  with  increased  particle  concentration  in  the   coating  process,  1.0  PEI  (g)/sample  (g).  

PEI  (g)/  sample   (g)     %  composite   in     PEI  solution       Abs  (100  %)/g   composite   (magnet  stirrer)     Abs  (100%)/g   composite     (Shaking  table)   0.6   4.72   24.24   13.79   8.99   8.32     12.88   17.82     16.50   13.69     1.1   4.74   4.06   6.41   8.99   7.30     12.88   8.87     16.50   10.04     Table  11.  Absorbance  per  gram  sample.    

 

 

0   20   40   60   80   100   120   0   2   4   6   8   10   %   Re le as e   t  (h)    

1,1  PEI/composite  (g/g)  

4.74  wt  %   8.99  wt  %   12.88  wt  %   16.50  wt  %  

(23)

6.  Discussion      

6.1  SDS  

Regarding  the  turbidity  measurements,  the  sample  with  SDS  showed  a  slightly  lower   transmittance  than  the  sample  without  SDS.  With  increasing  transmittance,  turbidity   decreases  and  the  samples  are  more  dispersed.  This  means  that  the  solution  without   SDS  is  just  a  little  more  dispersed  than  the  solution  with  SDS.  When  heated  in  the  TGA,   PEI  and  SDS  seem  to  evaporate  at  about  the  same  temperature,  which  makes  it  hard  to   calculate  the  amount  of  each  substance.  However,  the  total  weight  loss  could  be  

calculated.  The  result  showed,  that  the  total  weight  loss  excluding  water  was  only   slightly  higher  for  the  sample  with  SDS,  see  Table  8.  These  results  indicate  that  no  SDS,   or  only  little,  is  adsorbed  on  the  silica  surface.  The  explanation  is  that  SDS  is  anionic  and   as  silica  particles  in  water  with  pH  above  pH  2-­‐3,  are  negatively  charged,  repulsion   occurs.  Therefore,  the  recipe  contained  no  SDS.  (2)  

6.2  Adsorption  isotherm  PEI    

In  the  graphs  of  the  adsorption  isotherm  of  PEI  in  Figure  3,  a  trend  is  noticed  as  the  curve   can  be  divided  into  three  regions.  First  a  very  strong  adsorption,  a  second  where  the   adsorption  is  a  little  less  strong,  followed  by  a  third  region  where  the  curve  seems  to   level  out  and  no  more  adsorption  occurs  on  the  particles  as  PEI  concentration  is   increased.    

The  PEI  molecules  are  positively  charged  and  as  the  silica  particles  are  negatively   charged  in  water  above  pH  2-­‐3,  the  polymer  adsorbs  on  the  particle  by  electrostatic   attraction.  (2)  A  theory  behind  this  behavior  is  that  molecules  adsorbs  flatly  on  the   particle  at  low  concentrations.  When  further  adsorption  occurs,  newly  arrived  polymers   pushes  the  adsorbed  ones  aside  and  force  them  to  loosen  their  grip  of  the  surface.  At  this   stage,  the  polymers  are  partly  flat  against  the  surface  and  correspond  to  region  two  in   the  graph.  As  more  polymers  adsorb  at  the  surface,  they  push  the  adsorbed  polymers   even  more  and  force  them  to  attach  to  the  particle  with  just  an  “arm”,  see  a  schematic   scheme  in  Figure  10.    

(24)

  Figure  10.  The  adsorption  isotherm  with  the  three  different  regions  marked  and  with  describing  pictures   over  how  PEI  adsorbs  to  the  surface  

A  driving  force  for  diffusion  of  active  out  of  particles  during  the  coating  process  exists.   As  the  concentration  of  active  is  much  higher  inside  the  particles  than  in  the  solution,   the  driving  force  for  diffusion  is  high.  If  the  active  is  dissolved  in  all  solutions,  the   difference  in  concentration  will  not  be  as  big,  which  decreases  the  driving  force  for   diffusion.  The  obtained  result  of  release  rate  from  filled  particles  is  showed  in  Figure  5.   When  no  active  is  dissolved  in  the  solutions  during  the  coating  process,  the  release  rate   increases  as  the  amount  of  PEI  decreases.  The  opposite  trend  was  seen  for  the  samples   were  the  active  is  dissolved  in  the  coating  solutions.  An  explanation  to  this  behavior  is   that  vanillin  interacts  with  the  PEI  coating.  As  no  active  is  dissolved  in  coating  solutions,   the  coatings  have  many  sites  for  adsorption  of  vanillin.  When  the  amount  of  PEI  

increases  on  the  particle,  more  vanillin  is  trapped  in  the  coating.  This  results  in  an  

increase  of  trapped  vanillin  as  the  PEI  amount  increases.  As  a  result,  less  vanillin  are  free   to  leak  out  and  the  release  rate  increases  with  increased  amount  of  PEI.    

This  implies  that  the  impact  of  the  active  in  coating  solutions  is  big.  Vanillin  seems  to   interact  with  the  coating  and  prevent  further  adsorption  of  the  active  during  the  release   as  the  coatings  are  already  saturated  with  the  active.  The  loading  of  particles  is  done   with  better  control  if  the  active  is  dissolved  in  all  solutions  that  are  in  contact  with  the   particles  during  the  coating  process.    

The  type  of  adsorption  of  PEI  is  correlated  to  the  release  rate  for  samples  where  the   active  is  dissolved  in  all  solutions.  At  low  PEI/composite  ratios,  the  release  rate  is  high   when  the  active  is  dissolved  in  coating  solutions.  As  the  PEI/composite  ratio  is  

increased,  the  release  rate  is  decreasing.  This  can  be  connected  to  the  diffusion  

coefficient.  When  the  polymers  are  flatly  adsorbed  on  the  surface,  the  tortuosity  is  low   which  makes  the  diffusion  coefficient  high.  As  more  polymers  adsorbs,  they  are  standing  

(25)

up  rather  than  laying  down  on  the  surface,  making  the  tortuosity  higher.  As  the  coating   gets  thicker,  the  concentration  of  binding  sites  in  the  shell  increases  which  also  

decreases  the  diffusion  coefficient.  Less  leakage  occurs  as  the  polymer  coating  gets   thicker.    

The  absorbance  at  complete  release  per  gram  composite  is  compared  between  coated   particles  with  and  without  the  active  solved  in  coating  solutions.  The  samples  containing   active  in  coating  solutions  had  narrower  distribution  of  absorbance/g  composite.  This  is   a  weak  indication  that  a  higher  amount  active  can  be  filled  into  the  particles  when  the   active  is  dissolved  in  the  process  solutions.    

6.3  Encapsulation  with  TEOS  

0.03  g  PEI/g  sample  

The  samples  with  a  PEI  content  of  0.03  PEI/composite  (g/g),  with  different  amounts  of   TEOS  showed  different  release  behavior.  The  composite  with  least  amount  of  TEOS   showed  very  low  absorption  in  the  spectrophotometer  and  the  data  points  did  not  show   any  correlation.  This  indicates  that  there  is,  if  any,  a  very  small  amount  of  the  active  in   the  particles.  It  is  therefore  assumed  that  the  adsorbed  layer  is  incomplete  and  that  the   active  leaks  out  during  the  coating  process.    

However,  when  the  amount  of  TEOS  increases,  curves  of  release  rate  were  obtained,  see   Figure  7.  The  sample  containing  5.5  TEOS/composite  (g/g)  shows  a  more  uniform  curve   compared  to  the  composite  with  3.7  TEOS/composite  that  shows  a  wider  distribution  of   the  data  points.  That  is  an  indication  that  the  release  is  more  controlled  when  the  

surface  is  covered  with  higher  amount  of  TEOS  compared  to  if  there  are  gaps  in  the   TEOS  and  PEI  layers  where  the  active  can  leak  out.  Both  samples  level  out  at  between   10-­‐20  hours.  As  the  samples  release  rates  were  analyzed  for  24  hours  and  sampling  was   done  hourly,  no  samples  were  taken  during  night.  Therefore,  it  is  hard  to  say  exactly   when  the  curve  level  out.  

1.00  g  PEI/g  sample:  

The  graphs  of  release  rate,  Figure  7,  shows  that  the  sample  with  lowest  amount  of  TEOS   level  out  between  10-­‐20  hours  whereas  the  samples  with  higher  TEOS  content  still   showed  a  linear  increase  in  absorbance  at  24  hours.  For  these  samples,  the  amount  of   PEI  is  higher  which  seems  to  improve  the  encapsulation  of  the  active.  It  is  seen  that  the   sample  with  least  amount  of  TEOS  encapsulates  the  active  and  achieves  a  release  curve   as  were  for  the  sample  with  low  PEI  content  and  the  lowest  amount  of  TEOS  did  not   show  any  encapsulation  success.  It  can  be  assumed  that  the  PEI  layer  is  complete  at  the   PEI/composite  ratio  of  1.00  and  comes  with  low  permeability  compared  to  lower   amount  adsorbed  PEI,  as  the  schematic  picture  of  region  3  shows  in  Figure  10.   The  absorption  at  100  %  release  per  gram  composite  is  seen  in  Table  10.  For  the  

PEI/composite  ratio  1.00  with  1.90  TEOS/composite,  the  absorption/g  was  3.0485.  This   value  is  higher  than  the  values  for  all  the  0.03  PEI/composites.  It  cannot  be  compared  to   the  other  1.0  samples  as  they  did  not  level  out.  If  to  take  these  two  values  into  account,  a  

References

Related documents

sition to mixed lubrication at even higher entrainment speeds compared to the lower temperature, especially in the cases when the rougher DLC coated discs are used.. With

In this work, specimens coated with the same DLC coating, but with different coating thickness, are investi- gated in terms of friction reduction in full film EHL and compared

At higher entrainment speeds where full film lubrication was assumed the Si-DLC also showed lower friction coefficients than the uncoated surface even though there was no

Abstract: The objective of the research presented in this paper is to characterize the machinability of TOOLOX 44 during cutting with PALBIT inserts with focus on how

In order to obtain fundamental understandings of the random deposition processes on a rough surface, such as in paper, a generic particle deposition model was developed,

In the special case of this design, the consideration of chemical properties such oxidation and corrosion resistant, toxicity and flammability must be considered carefully due to

One commonly known SPC-paint was based on copolymerization of Tributyltin and an acrylate (TBT) which was heavily used on many boats in the 80s and early 90s but was

The transmittance factor, T F , in the 300-385 nm region of coating colours containing unbleached or bleached kaolin clay (Astra-Plus), GCC (Carbital 90) or PCC (Opti-Cal