• No results found

Moisture transport in wood and wood-based panels a pre-study of sorption methods

N/A
N/A
Protected

Academic year: 2021

Share "Moisture transport in wood and wood-based panels a pre-study of sorption methods"

Copied!
38
0
0

Loading.... (view fulltext now)

Full text

(1)

8712078

mpip(Q)rRTr

Liu Tong

Moisture Transport in Wood

and Wood-based Panels

A Pre-study of Sorption Methods

Trätek

(2)

L i u Tong, graduate s t u d e n t

MOISTURE TRANSPORT I N WOOD AND WOOD-BASED PANELS - A p r e - s t u d y o f s o r p t i o n m e t h o d s TräteknikCentrum, Rapport P 8712078 Keywords oomposite materials diffusion coefficient moisture movement pane Is sorption wood materials Stockholm December 1987

(3)

C O N T E N T Page SUMMARY 2 SVENSK SAMMANFATTNING 3 NOMENCLATURE 4 1. INTRODUCTION 6 2. THEORETICAL BACKGROUND 7

2.1 Moisture s o r p t i o n i n one dimension 7 2.2 M o i s t u r e s o r p t i o n i n t h r e e dimensions 9

3. EXPERIMENTAL U 3.1 Choice o f sample m a t e r i a l s 11

3.2 Choice o f s e a l a n t 13 3.3 D e t e r m i n a t i o n o f some a f f e c t i n g f a c t o r s 13

3.3.1 Temperature change o f samples i n s o r p t i o n 13

3.3.2 D i v e r s i t y o f t e s t r e s u l t s !-< 3.4 P r e p a r a t i o n o f samples 14 3.5 S o r p t i o n a l procedure 15 4. EXPERIMENTAL RESULTS 17 4.1 D i f f u s i v i t y o f t h e t e s t e d m a t e r i a l s 23 3. DISCUSSION 24 5.1 A v a i l a b i l i t y o f the s o r p t i o n methods 24 5.2 Surface r e s i s t a n c e 24 5.3 Comaprisons w i t h p r e v i o u s experiments 27 6. CONCLUSIONS 32 7. SUGGESTIONS FOR FUTURE STUDIES 33

(4)

SUMMARY

This i s a prestudy o f s o r p t i o n methods f o r measuring t h e moisture d i f f u -s i v i t y . E i g h t type-s o f wood-ba-sed panel-s and -spruce wood were mea-sured w i t h the s o r p t i o n method i n t h r e e r e l a t i v e h u m i d i t y ranges ( c l i m a t e s ) a t 20 °C. A t h r e e d i m e n s i o n a l s o r p t i o n method was a l s o t e s t e d w i t h one k i n d o f f i b e r -board. Problems such as e f f e c t i v e water vapor s e a l a n t , temperature change i n t h e s o r p t i o n process, s u r f a c e r e s i s t a n c e t o s o r p t i o n e t c t h a t might a f f e c t t h e e x p e r i m e n t a l r e s u l t s were i n v e s t i g a t e d .

The experimental r e s u l t s show t h a t t h e average moisture d i f f u s i v i t y i s ob-t a i n a b l e w i ob-t h a s o r p ob-t i o n ob-t e s ob-t . The ob-t h r e e - d i m e n s i o n a l s o r p ob-t i o n meob-thod g i v e s e s s e n t i a l l y t h e same r e s u l t s as t h e s o r p t i o n method. Density i s a very imp o r t a n t f a c t o r t h a t determines t h e moisture d i f f u s i v i t y o f woodbased imp r o -ducts .

Suggestions f o r f u t u r e s t u d i e s o f s o r p t i o n methods t o determine moisture d i f f u s i v i t y more p r e c i s e l y are made.

(5)

SVENSK SAMMANFATTNING

D i f f u s i v i t e t e n av f u k t i trä och tr'abaserade s k i v o r kan bestämmas genom s k sorptionsmätningar. Därvid mäts m a t e r i a l e n s viktändring som f u n k t i o n av t i -den v i d k o n d i t i o n e r i n g i o l i k a k l i m a t med bestämd l u f t f u k t i g h e t och tempe-r a t u tempe-r . Fötempe-r a t t sedan betempe-räkna d i f f u s i v i t e t e n f i n n s o l i k a t e o tempe-r e t i s k a an-greppssätt.

Det f i n n s också andra mätmetoder, som r e d o v i s a t s i en inledande l i t t e r a t u r -s t u d i e . Bland de-s-sa metoder v e r k a r -sorption-smetoden vara enkel a t t använda och e f t e r l i k n a r v e r k l i g h e t e n . Men d e t f i n n s några o k l a r h e t e r i tillämpning-en. Dessa har s t u d e r a t s i denna förstudie.

Förstudien k o n k r e t i s e r a r och p r e c i s e r a r d e t p r a k t i s k a tillvägagångssättet v i d sorptionsmätningar. Oli-ka t e o r e t i s k a beräkningssätt, a n t a l provkroppar, p r o v s t o r l e k , förseglingsmaterial m m har s t u d e r a t s .

R e s u l t a t e n v i s a r a t t sorptionsmetoden kan användas för a t t bestämma d i f f u -s i v i t e t e n -som f u n k t i o n av m a t e r i a l e t -s f u k t k v o t ( e l l e r av l u f t f u k t i g h e t e n v i d jämvikt). Noggrannheten i bestämningen beror på mätnoggrannheten och på t e o r e t i s k t beräkningssätt.

D i f f u s i v i t e t e n för några trabaserade s k i v o r har bestämts, både vinkelrätt mot skivans plan och p a r a l l e l l t , i e t t fåtal k l i m a t . S k i v d e n s i t e t e n är den parameter som verkar ha störst b e t y d e l s e , men s a m t l i g a data är t v p r e l i -minära .

För f o r t s a t t a s t u d i e r rekommenderas a t t mer avancerade beräkningsmetoder provas så a t t d i f f u s i v i t e t e n s fuktkvotsberoende kan bestämmas mer nogg r a n t . Dessa metoder kräver mer nonoggnoggranna mätdata än som f n f i n n s t i l l gängliga, övergångsmotståndet v i d p r o v y t a n måste dessutom studeras y t t e r l i -gare eftersom d e t kan ha s t o r b e t y d e l s e . S l u t l i g e n bör sorptionsmetoden jämföras med den s k koppmetoden som är mer e t a b l e r a d men mäter under d e l -v i s onormala b e t i n g e l s e r . På så sätt bör den lämpligaste metoden a t t be-stämma ångdiffusiviteten hos träbaserade m a t e r i a l kunna p r e c i s e r a s .

(6)

Nomenclature

a, b, c half sample thicknesses m

fl area

D moisture diffusivity based on moisture concen- m^/s

tration in the material

D* apparent diffusivity m^/s

t moisture fraction of sorption

E - (w^y - Wi)/(Wb - w j - (Uj^y - Ui)/(U|,-Ui)

E dimensionless average moisture concentration

or moisture content E - 1- E

E||, Ey, Ej the amount of E sorbed in x, y. z coordinate

^ directions in three dimensional sorption

g moisture flux kgAm^s)

L thickness of sample in diffusion direction m

sample length along air flow direction m

R gas constant J/mol*K

surface emissivity m/s

t time s

u moisture content, based on oven dry weight kg/kg

of a material

U), U2 the lower and higher moisture contents in a test kg/kg

V moisture concentration in the air kg/m^

V,, moisture concentrations on sample surface and kg/m^

in ambient air

U air velocity m/s

w moisture concentration in the tested materials. kg/m^

based on wet volume

w,, moisture concentrations on sample surface and kg/m^

in ambient air

Hf y, z space coordinates m

å critical length m

(7)

p

surface transfer coefficient of water vapor

m/s

p

density, the dry wight of a body divided by wet

volume

kg/m^

8

moisture diffusivity based on moisture

concen-tration in the air

water vapor diffusivity in the air

mVs

mVs

v

kinematic viscosoty of the air

mVs

0

relative humidity

subscript

ou

1

b

average value

iuitial value

boundary value

(8)

1. INTRODUCTION

I n the h y g r o s c o p i c a l range, namely, under the f i b e r s a t u r a t i o n p o i n t (FSP), m o i s t u r e i n wood and wood-based panels e x i s t s and moves as water vapor and bound water s i m u l t a n e o u s l y . The combined e f f e c t o f t h e movement o f these two water phases i s d e s c r i b e d as t h e e f f e c t i v e d i f f u s i v i t y ( d i f f u s i o n c o e f f i c i e n t , u s u a l l y r e f e r r e d t o as d i f f u s i v i t y f o r s i m p l i c i t y ) , since m o i s t u r e m i g r a t i o n i s a d i f f u s i o n process i n such a case. The two most com-mon techniques t o determine d i f f u s i v i t y i n s o l i d s are t h e cup method and the s o r p t i o n method. I n t h e s o r p t i o n method, the d i f f u s i v i t y i s determined when water vapor i s adsorbed i n t o o r desorbed from a m a t e r i a l : Set t h e samples t h a t have been i n moisture e q u i l i b r i u m i n a c e r t a i n c l i m a t e ( w i t h d e f i n i t e temperature and r e l a t i v e h u m i d i t y ) t o another predetermined c l i mate, measure t h e m o i s t u r e s o r p t i o n a l r a t e t i l l t h e samples reach e q u i -l i b r i u m a g a i n , and c a -l c u -l a t e t h e d i f f u s i v i t y o f the samp-les w i t h t h e sorp-t i o n a l r a sorp-t e , a c c o r d i n g sorp-t o some equasorp-tions d e r i v e d w i sorp-t h sorp-t h e law o f d i f f u s i o n , F i c k ' s law.

However, some t h e o r e t i c a l and p r a c t i c a l procedures f o r the a p p l i c a t i o n o f s o r p t i o n methods f o r wood and wood products seemed t o be u n c e r t a i n and a c l a r i f i c a t i o n was needed i n a p r e - s t u d y which i s presented here.

(9)

2. THEORETICAL BACKGROUND

2.1 M o i s t u r e s o r p t i o n i n one dimension

As wood-based panels and wood are n o n - i s o t r o p i c , i t would be necessary t o determine d i f f u s i v i t y i n t h e i r t h r e e p r i n c i p a l d i r e c t i o n s i f moisture tran-s p o r t i n any d i r e c t i o n i tran-s t o be c a l c u l a t e d w i t h Pick'tran-s law:

— = V

dt

D, 0

0

0 0 D,

vw

where Dx, Dy, Dz a r e d i f f u s i v i t y " i n t h e t h r e e p r i n c i p a l d i r e c t i o n s , W moisture c o n c e n t r a t i o n and t time.

(1)

I S

With t h e s o r p t i o n method, t h e s u r f a c e s o f r e c t a n g u l a r samples a r e g e n e r a l l y sealed except two o p p o s i t e ones, where s o r p t i o n w i l l take place unidimen-a i o n unidimen-a l l y . Under t h i s c o n d i t i o n , i f t h e d i f f u s i v i t y i s known t o be c o n s t unidimen-a n t , the s o r p t i o n a l f r a c t i o n a l moisture c o n t e n t É i n t h e samples can be analy-t i c a l l y expressed as f o l l o w s , which i s o b analy-t a i n e d by d i r e c analy-t s o l u analy-t i o n o f Pick's law w i t h v a r i a b l e s e p a r a t i o n under s o r p t i o n c o n d i t i o n s (Crank, 1975, p. 4 3 ) : n-1

1

(2n-iy

n\2n- \f

t P

a'

(2)

where u i , u^, and UQV Qre t h e moisture c o n t e n t s i n t h e sample a t i n i t i a l , at f i n a l e g u i l i b r i u m and a t time t d u r i n g t h e s o r p t i o n process, w j , w^» and w^^ a r e moisture c o n c e n t r a t i o n s i n t h e sample a t t h e same time as U i , Urn and Ut. D i s t h e e f f e c t i v e d i f f u s i v i t y and a t h e h a l f sample t h i c k n e s s i n t h e s o r p t i o n d i r e c t i o n . I t should be noted t h a t i n a s o r p t i o n process t h e mois-t u r e c o n mois-t e n mois-t o r m o i s mois-t u r e c o n c e n mois-t r a mois-t i o n i s nomois-t u n i f o r m i n mois-t h e samples, u and w here a r e t h e mean values.

Another e x p r e s s i o n o f E which i s s p e c i a l l y s u i t e d f o r s h o r t s o r p t i o n time i s d e r i v e d by s o l v i n g Pick's law w i t h Laplace t r a n s f o r m a t i o n under s o r p t i o n c o n d i t i o n s (Crank, 1975, p. 4 8 ) :

4Dt 4r + 2y(-l)"ierfc na

(3) When É i s l a r g e r than 0.667, t h e f i r s t term i n Eq(2) can be taken t o r e p r e -sent t h e whole s e r i e s and t h e d i f f u s i v i t y can be expressed as:

D= 4aJ

I d

8

. « ^ 1 - É ) .

(10)

For C l e s s than 0.5, t h e summation term i n Eg(3) becomes n e g l i g i b l y small and Eq(3) reduces t o :

(5)

However when d i f f u s i v i t y changes w i t h moisture c o n c e n t r a t i o n , as i n t h e case o f m o i s t u r e d i f f u s i o n i n t h e wood m a t e r i a l , t h e d i f f u s i v i t y c a l c u l a t e d w i t h any o f t h e f o u r equations mentioned above w i l l vary w i t h s o r p t i o n t i m e . Crank (1975) d e s c r i b e d a method t o g a i n t h e exact d i f f u s i v i t y as a f u n c t i o n o f c o n c e n t r a t i o n w i t h a s e r i e s o f s o r p t i o n experiments: always s t a r t t h e s o r p t i o n from a c e r t a i n i n i t i a l c o n c e n t r a t i o n and t e r m i n a t e them at s u c c e s s i v e l y d i f f e r e n t f i n a l c o n c e n t r a t i o n s , and then w i t h numerical d i f f e r e n t i a t i o n d e r i v e concentrationdependent d i f f u s i v i t y from the r e l a -t i o n o f -t h e average d i f f u s i v i -t y o b -t a i n e d i n each s o r p -t i o n -t e s -t .

Techniques f o r d e t e r m i n i n g concentration-dependent d i f f u s i v i t y w i t h one s o r p t i o n t e s t have a l s o been i n v e s t i g a t e d by some o t h e r workers. Duda and Vrentes (1971) developed a method w i t h weighted r e s i d u a l approach, which i s s u c c e s s f u l e s p e c i a l l y i n t h e l a t e r stage o f s o r p t i o n due t o a very f l e x i b l e t r i a l e x p r e s s i o n o f t h e c o n c e n t r a t i o n p r o f i l e . Schoeber (1976) developed a method o f r e g u l a r regime a n a l y s i s i n the s o r p t i o n process. I n t h i s method, when a s o r p t i o n t e s t has proceeded f o r a c e r t a i n t i m e , t h e c o n c e n t r a t i o n -dependent d i f f u s i v i t y i s d e r i v a b l e by a n a l y s i n g t h e moisture c o n c e n t r a t i o n p r o f i l e which i s , a c c o r d i n g t o Schoeber, c h a r a c t e r i s t i c o n l y o f the t e s t e d m a t e r i a l i n such a s o r p t i o n a l stage, i . e . t h e stage o f r e g u l a r regime. For one s o r p t i o n process, Crank (1975, p. 239) s t a t e d t h a t he had proved the v a l i d i t y o f t h e f o l l o w i n g e q u a t i o n i n g i v i n g a reasonable approximation of t h e average d i f f u s i v i t y between t h e i n i t i a l and f i n a l c o n c e n t r a t i o n s :

I 2

D= 0.0492

( t ) i

2

where ( t ) l / 2 denotes t h e time taken when t h e f r a c t i o n a l moisture o f sorp-t i o n E i s equal sorp-t o 1/2. This expression i s a c sorp-t u a l l y d e r i v e d d i r e c sorp-t l y from Eq(5) by t a k i n g t h e value o f E as 0.5 and r e f e r r i n g t h e corresponding t as ( t ) l / 2 . I t would produce a r a t h e r accurate d i f f u s i v i t y when t h e d i f f u s i v i t y i s not c o n c e n t r a t i o n dependent. Otherwise i t can p r o v i d e an approximation t o the average o f t h e v a r y i n g d i f f u s i v i t y . Another a p p r o x i m a t i o n o f the average d i f f u s i v i t y (Crank, 1975, p. 245) i s g i v e n by:

(7)

where t h e term i n t h e b r a c k e t s should be taken a t t h e i n i t i a l s o r p t i o n stage (C i s l e s s than 0.6). I f t h e curve E versus t h e square r o o t o f t shows an a p p r o x i m a t e l y l i n e a r r e l a t i o n from E=0 up t o E=0.6 f o r a m a t e r i a l , then t h e average d i f f u s i v i t y o b t a i n e d w i t h Eq(6) and Eq(7) should be s i m i

(11)

-l a r (Crank, 1975, p. 2 4 6 ) . The e x p e r i m e n t a -l r e s u -l t s o f t h i s pre-study w i -l -l show t h a t such an approximate l i n e a r i t y holds t r u e f o r wood and wood-based panels. The exact d i f f u s i v i t y a t the f i n a l stage of the s o r p t i o n process i s o b t a i n a b l e w i t h (Crank, 1975, p. 246):

. 1 - E

(8)

There are two disadvantages i n using Eq(8) ( F r e n d s d o r f f , 1964). I t g i v e s l e s s p r e c i s i o n than Eq(6) and ( 7 ) due t o a l a r g e r r e l a t i v e e r r o r of mea-sured p o i n t s near e q u i l i b r i u m . I t i s v a l i d o n l y when d i f f u s i v i t y i s not extremely concentration-dependent.

We see t h a t Eq(7) and ( 8 ) are o b t a i n e d from Eg(5) and (4) simply by making d e r i v a t i o n of f i n r e s p e c t t o t . I t i s i n t e r e s t i n g t o note t h a t by such a t r e a t m e n t t h e equations s u i t a b l e f o r constant d i f f u s i v i t y become a p p l i c a b l e f o r concentration-dependent ones.

A l l the above equations g i v e d i f f u s i v i t y based on moisture c o n c e n t r a t i o n i n the samples. Conversion w i t h t h e a i d o f s o r p t i o n isotherms w i l l be needed i f the d i f f u s i v i t y i s t o be expressed on the b a s i s of m o i s t u r e concentra-t i o n i n concentra-t h e a i r . The accuracy of such a r e c a l c u l a concentra-t i o n depends s concentra-t r o n g l y on the p r e c i s i o n o f the i s o t h e r m o f the sample m a t e r i a l .

Eq(6) and Eq(7) are mainly a p p l i e d i n t h i s r e p o r t t o c a l c u l a t e t h e average d i f f u s i v i t y . Eq(8) was a l s o employed t o c a l c u l a t e the exact d i f f u s i v i t y of the f i n a l m o i s t u r e c o n c e n t r a t i o n , but the tendency f o r the q u a n t i t y

d l n ( l - C ) / d t t o approach a s t r a i g h t l i n e seemed not t o be apparent, so a s a t i s f a c t o r y r e s u l t was not o b t a i n e d and r e p o r t e d . This might be caused by the measurement p r e c i s i o n t h a t c o u l d not meet the h i g h requirement of t h i s e q u a t i o n , or t h a t m o i s t u r e d i f f u s i v i t y i n wood m a t e r i a l s i s very s t r o n g l y c o n c e n t r a t i o n dependent.

Methods o f Duda and Vrentes, 1971, or Schoeber, 1976, t o determine d i f f u -s i v i t y - c o n c e n t r a t i o n r e l a t i o n -s w i t h only one -s o r p t i o n proce-s-s were not t r i e d i n t h i s p r e - s t u d y e i t h e r . As the experiments are mostly made i n a c l i m a t e chamber, the r e s u l t s might not have enough p r e c i s i o n t o be able t o support those s o p h i s t i c a t e d a n a l y s i s , which would have a s t i l l higher r e -quirements f o r the measurements r e s u l t s than Eq(8).

2.2 M o i s t u r e s o r p t i o n i n t h r e e dimensions

The f r a c t i o n a l m o i s t u r e o f s o r p t i o n E i s i n some cases s u b s t i t u t e d by d i -mensionless average m o i s t u r e content E:

g V b - V i v _ U b - " i y _ ^ ^ (9)

Such an expression has the advantage of making v a r i a b l e s e p a r a t i o n con-v e n i e n t l y i n t h e case of t h r e e - d i m e n s i o n a l d i f f u s i o n . As the t e s t e d

(12)

10

r e c t a n g u l a r samples a r e not sealed i n t h e t h r e e - d i m e n s i o n a l s o r p t i o n experiment, E can be expressed as:

E^ExEyE.

(10) where Ex, Ey and Ez a r e t h e dimensionless average moisture c o n c e n t r a t i o n sorbed i n t o o r from the samples through the t h r e e s u r f a c e s p e r p e n d i c u l a r t o the X, Y and Z d i r e c t i o n s . We need t o prepare the samples i n such a way, as shown i n F i g u r e 1 , t h a t f o r panel samples the X, Y, Z c o o r d i n a t e s repec-t i v e l y c o i n c i d e w i repec-t h repec-the d i r e c repec-t i o n s p a r a l l e l repec-t o repec-the panel surfaces i n repec-t h e machine d i r e c t i o n ( d u r i n g panel manufacture) as w e l l as t h e t r a n s v e r s e machine d i r e c t i o n , and p e r p e n d i c u l a r t o the panel s u r f a c e s . For wood samples t h e X, Y, Z c o o r d i n a t e s can be arranged along the r a d i a l , tangen-t i a l and l o n g i tangen-t u d i n a l d i r e c tangen-t i o n s . I n botangen-th cases tangen-the d i f f u s i v i tangen-t y i n tangen-the X and Y d i r e c t i o n s are s i m i l a r and can be approximately assumed as equal. I f the samples a r e prepared t o have i d e n t i c a l dimensions i n t h e X and Y d i r e c -t i o n s , -t h e n :

(11)

F i g u r e 1.

Sample o f the three-dimensional s o r p t i o n method.

I f the samples had i n f i n i t i v e l e n g t h s i n the X and Y d i r e c t i o n s . Ex and Ey would t h e o r e t i c a l l y be u n i t y , as then t h e r e would be no moisture s o r p t i o n along the X and Y axes. I n t h i s case E=Ez. Assign the h a l f l e n g t h s o f t h e samples along t h e X, Y axes as a and b (a = b ) , along the Z a x i s as c. At a given s o r p t i o n t i m e , p l o t a curve o f E versus the r e c i p r o c a l o f the h a l f l e n g t h a, and e x t r a p o l a t e the curve t o l/a=0 t h a t would correspond t o

samples i n f i n i t e l y long i n t h e X and Y d i r e c t i o n s , as i n F i q u r e 2. A value o f E, expressed as E-max w i l l be found t h a t equals t o Ez:

?fiiax

(12) By connecting t h e E-max values a t each measurement time t , we can d e r i v e a E-max-t r e l a t i o n , and the average d i f f u s i v i t y i n the Z d i r e c t i o n i s then o b t a i n a b l e w i t h Eq(6) o r Eq(7) by s u b s t i t u t i o n o f (1-E-max) f o r C.

The d i f f u s i v i t y i n the X and Y d i r e c t i o n s can subsequently be d e r i v e d . This i s done by d e t e r m i n a t i o n o f an imaginary c r i t i c a l l e n g t h o f the samples i n the X and Y d i r e c t i o n s , say å, a t which t h e s o r p t i o n a l amount i n the Z d i -r e c t i o n i s i d e n t i c a l t o t h e s o -r p t i o n a l amount i n t h e X o -r Y d i -r e c t i o n .

(13)

11 Ez i s always equal t o E-max f o r samples o f t h e i n f i n i t i v e l e n g t h . At any g i v e n s o r p t i o n a l t i m e , E decreases as 1/a i n c r e a s e s , s i n c e a l a r g e r f r a c -t i o n o f mois-ture i s sorbed i n o r o u -t o f -t h e samples along X and Y axes. A-t the c r i t i c a l l e n g t h å, t h e value on t h e curve E i s equal t o :

E = E x E y E 2

= (E"^)^

(13)

f i g u r e 2.

E x t r a p o l a t i o n curve o f E versus 1/a o f three-dimensio-n a l method.

S can be e v a l u a t e d by t h e above r e l a t i o n . The sample d i f f u s i v i t y i n the X

and Y d i r e c t i o n s can then be d e r i v e d w i t h t h e r e l a t i o n :

c )

xD,

(14) Dx o r Dy i s t h e average o f d i f f u s i v i t i e s i n t a n g e n t i a l and r a d i a l d i r e c t i o n s f o r s o l i d wood. Por wood based panels i t i s t h e average o f d i f f u s i -v i t i e s along machine d i r e c t i o n and across machine d i r e c t i o n , p e r p e n d i c u l a r t o panel s u r f a c e s . The t h r e e - d i m e n s i o n a l s o r p t i o n method was described and u t i l i s e d by Choong (1962). As no s e a l i n g i s necessary and s o r p t i o n takes l e s s t i m e , t h i s method i s b e l i e v e d t o be s i m p l e r t o handle and t i m e

-saving. But meanwhile, more samples a r e needed and t h e c a l c u l a t i o n i s more complex.

3. EXPERIMENTAL

The experiments a r e done w i t h both one-dimensional and three-dimensional s o r p t i o n . D i f f u s i v i t y i n a l l t h r e e p r i n c i p a l d i r e c t i o n s f o r e i g h t k i n d s o f panel m a t e r i a l s and one s o l i d wood, Swedish spruce, were measured.

3.1 Choice o f sample m a t e r i a l s I n order t o study t y , nine m a t e r i a l s f i b e r b o a r d s , t h r e e s o l i d wood, spruce d u c t s and wood. Th process) were a l s o three-dimensional t e s t e d m a t e r i a l s ,

the e f f e c t o f t h e composition and s t r u c t u r e on d i f f u s i v i -were t e s t e d w i t h t h e s o r p t i o n method: Pour k i n d s o f k i n d s o f p a r t i c l e b o a r d s , one k i n d each o f plywood and

The use o f s o l i d spruce i s f o r comparison o f panel p r o -ree k i n d s o f s p e c i a l samples made o f h a l f - h a r d board (wet

used t o i n v e s t i g a t e some f a c t o r s . The samples o f t h e s o r p t i o n method were made o n l y o f h a l f - h a r d board. The t h e i r d e n s i t y and sample s i z e s a r e l i s t e d i n Table 1 .

(14)

12

TABLE 1 . Tested m a t e r i a l s , d e n s i t y and sampl e s i z e s .

M a t e r i a l Density (kg/m^) Sample s i z e (mm)

( a b s o l u t e l y d r y ) Length Width Thickness ONE-DIMENSIONAL SORPTION FIBERBOARD 1. H a l f - h a r d board 690 120 100 12.1 (wet process) 2. I n s u l a t i o n board 210 I I M 12.9 3. MDF ( d r y process) 710 I I I I 9.8 4. Hard board 870 I I I I 6.2 PARTICLEBOARD 5. PF-glue p a r t i c l e b o a r d 670 I I I I 11.9 6. UF-glue " 610 I I I I 12.4 7. UMF-glue " 650 I I I I 12.1 PLYWOOD 8. PF-glue plywood 420 I I I I 12.0 SOLID WOOD 9. Spruce 420 100 82 6.9 SPECIAL 10. H a l f - h a r d board 700 120 100 8.2 ( s u r f a c e s m i l l e d ) 11. H a l f - h a r d board 690 I I I I 12.1 ( a b s o l u t e l y d r i e d ) 12. H a l f - h a r d board I I 60 I I 12.1 ( s m a l l l e n g t h ) THREE-DIMENSIONAL SORPTION A l l h a l f - h a r d board (wet process) 13. 690 240 240 12.1 14. I I 120 120 I I 15. I I 80 80 I I 16. I I 60 60 I I 17. I I 48 48 I I Notes:

1. M a t e r i a l s No.10, 1 1 , 12 a r e made, from t h e same boards as m a t e r i a l No.l. M a t e r i a l No.10 i s prepared by m i l l i n g o f f t h e s u r f a c e s o f t h e board by 2 mm on both s i d e s . The aim i s t o see the e f f e c t o f the densi-f i e d s u r densi-f a c e l a y e r s o densi-f wood-based panels on t h e i r d i densi-f densi-f u s i v i t y .

2. M a t e r i a l No.11 i s d r i e d a t 103'C t o zero m o i s t u r e c o n t e n t b e f o r e t h e s o r p t i o n t e s t t o i n v e s t i g a t e t h e i n f l u e n c e o f p r e v i o u s d r y i n g on d i f f u s i v i t y .

3. M a t e r i a l No. 12 i s e x a c t l y i d e n t i c a l t o No.l except f o r i t s smaller l e n g t h , along which s o r p t i o n would take place. The aim i s t o see t h e e f f e c t o f e x t e r n a l r e s i s t e n c e o f s o r p t i o n on measured d i f f u s i v i t y . 4. UF, PF, and UMF a r e a b b r e v i a t i o n s o f glues: phenol-formaldehyde,

(15)

13 3.2 Choice o f s e a l a n t

To choose an e f f e c t i v e water v a p o r - t i g h t s e a l a n t f o r t h e specimens i n one-d i m e n s i o n a l s o r p t i o n , f i v e types o f s e a l i n g m a t e r i a l s were t e s t e one-d : ( 1 ) Epoxy r e s i n g l u e , ( 2 ) s i l i c o n e r e s i n g l u e , ( 3 ) neoprene g l u e , ( 4 ) a waterbased wood lacquer w i t h t h e trademark "Trälack" and ( 5 ) a v e g e t a b l e o i l -based glue w i t h t h e trademark "Tremco Utefog".

Each of t h e t e s t e d s e a l a n t s was spread on a l l t h e s u r f a c e s o f two hardboard samples which p r e v i o u s l y had been d r i e d t o zero m o i s t u r e c o n t e n t . When they had hardened or d r i e d , t h e sealed samples were s e t i n a c l i m a t e chamber w i t h a r e l a t i v e h u m i d i t y o f RH=0.80 and a temperature o f T=40'C, a r a t h e r severe c l i m a t e c o n d i t i o n , and weighed t w i c e a day. The weights o f a l l samples increased c o n s i d e r a b l y w i t h t i m e , so none o f these are good vapor-t i g h vapor-t s e a l a n vapor-t s . S e a l i n g w i vapor-t h vapor-two, vapor-t h r e e and f o u r l a y e r s o f neoprene, epoxy and s i l i c o n e g l u e s , each spread over t h e o t h e r , was t h e r e a f t e r t e s t e d but d i d not p r o v i d e much improvement.

Among t h e samples t e s t e d w i t h one l a y e r o f s e a l a n t , those sealed w i t h epoxy r e s i n and neoprene glues showed much l e s s weight i n c r e a s e than t h e o t h e r s . Then t h e combinations o f these two glues w i t h aluminium f o i l were t e s t e d . Two d r i e d hard board samples each were sealed w i t h aluminium f o i l adhered to t h e samples w i t h epoxy r e s i n or neoprene g l u e and t e s t e d i n t h e same c l i m a t e as above. These proved t o be remarkable v a p o r - t i g h t s e a l a n t s . I n f i v e days t h e average weight o f t h e samples sealed w i t h neoprene glue and aluminium f o i l changed j u s t from 36.82 g t o 36.80 g, i . e . l e s s than

0.06 %. The o t h e r two samples sealed w i t h epoxy r e s i n and aluminium f o i l i n c r e a s e d from 36.83 g t o 36.89 g, l e s s than 0.2 %. I n another t e s t , f o u r samples o v e n d r i e d t o zero % m o i s t u r e c o n t e n t were s c a l e d w i t h neoprene glue and aluminium f o i l and then put i n t o a c l i m a t e w i t h a RH o f 0.90 at 20°C f o r one month. The weight changes were l e s s than 0.4%. The changes are so s m a l l compared w i t h t h e weight i n c r e a s e o f t h e same samples unsealed t h a t i t i s n e g l i g b l e .

The s e a l a n t o f aluminium f o i l w i t h neoprene g l u e was chosen f o r t h e main experiments. Neoprene g l u e i s much t h i c k e r and does n o t seep i n t o t h e spe-cimens so much, a great advantage over epoxy r e s i n . Besides, i t does not harden so q u i c k l y when exposed t o a i r , t h i s g i v e s g r e a t convenience when many specimens need t o be s e a l e d .

3.3 D e t e r m i n a t i o n o f some a f f e c t i n g f a c t o r s

Some u n c e r t a i n f a c t o r s t h a t might i n f l u e n c e t h e e x p e r i m e n t a l r e s u l t s were i n v e s t i g a t e d b e f o r e t h e main experiments.

3.3.1 Temperature change o f samples i n s o r p t i o n

When water vapor i s adsorbed i n t o wood m a t e r i a l , s o r p t i o n energy, i n t h e form of s o r p t i o n heat, w i l l be r e l e a s e d which might i n c r e a s e t h e tempera-t u r e o f tempera-t h e samples and a l tempera-t e r tempera-t h e measured d i f f u s i v i tempera-t y , as tempera-t h e d i f f u s i v i tempera-t y of wood m a t e r i a l i s known t o be r a t h e r s t r o n g l y a f f e c t e d by temperature. On the o t h e r hand, the s o r p t i o n r a t e o f t h e wood m a t e r i a l a t room temperature or outdoor c o n d i t i o n s i s very s m a l l and t h e a i r c i r c u l a t i o n i n t h e s o r p t i o n

(16)

14

t e s t s t r o n g , so t h e temperature change would most p r o b a b l y never be l a r g e enough t o be i n f l u e n c i a l . To c l a r i f y t h i s problem, two samples, one h a l f -hard board and one -hardboard were d r i e d t o zero m o i s t u r e content before t e s t , which would p r o v i d e a r e l a t i v e l y l a r g e s o r p t i o n amount. A thermo-couple was f a s t e n e d w i t h a s m a l l g l u e tape t o t h e s u r f a c e o f t h e f i r s t sample, and an i d e n t i c a l thermocouple was a t t a c h e d w i t h two s t a p l e s t o t h e second sample. The samples were then put i n t o a c l i m a t e chamber w i t h the c l i m a t e o f RH=0.60 and T=20°C. Two o t h e r i d e n t i c a l thermocouples were hung i n t h e c l i m a t e chamber t o measure t h e a i r temperature as a r e f e r e n c e . The temperature was recorded c o n t i n u o u s l y . The s e n s i t i v i t y o f t h i s measurement system i s 0.5°C.

I n t h e days t h a t f o l l o w e d , n o t any s l i g h t e s t temperature d i f f e r e n c e was ob-served. So i t i s c l e a r t h a t t h e s m a l l amount o f s o r p t i o n heat r e l e a s e d does not b r i n g about an observable temperature change t o t h e samples i n the

s o r p t i o n method. Released s o r p t i o n heat i s thus a n e g l i g i b l e f a c t o r i n t h e s o r p t i o n and t h e t h r e e - d i m e n s i o n a l s o r p t i o n methods, a t l e a s t a t moderate r e l a t i v e h u m i d i t i e s and room temperature.

3.3.2 D i v e r s i t y o f t e s t r e s u l t s

I n order t o decide t h e proper number o f samples i n t h e s o r p t i o n method t o make t h e measured d i f f u s i v i t y r e p r e s e n t a t i v e o f a m a t e r i a l , an i n v e s t i g a -t i o n on -t h e d i v e r s i -t y o f -t e s -t r e s u l -t s was made b e f o r e -t h e main experimen-t. H a l f - h a r d board (wet process) was chosen f o r t h i s aim once more because o f i t s r e l a t i v e l y homogeneous s t r u c t u r e . Twenty-eight samples were sealed w i t h aluminium f o i l and neoprene glue i n such a way t h a t s o r p t i o n c o u l d take place o n l y i n t h e d i r e c t i o n p e r p e n d i c u l a r t o panel s u r f a c e s . Ten samples each were sealed f o r s o r p t i o n i n t h e two d i r e c t i o n s p a r a l l e l t o panel sur-f a c e , along machine d i r e c t i o n and t r a n s v e r s e machine d i r e c t i o n . A l l t h e samples were d r i e d t o zero moisture content a t 103°C before s e a l i n g , and a f t e r s e a l i n g once again. They were then cooled down i n a d e s i c c a t o r t o room temperature and s e t i n t o a c l i m a t e chamber w i t h RH=0.60, T=20°C. The purpose o f d r y i n g t h e samples was t o c r e a t e a l a r g e m o i s t u r e s o r p t i o n r a t e i n order t o i n t e n s i f y t h e d i v e r s i t y o f t h e measured d i f f u s i v i t y .

The t e s t r e s u l t s showed t h a t the v a r i a t i o n c o e f f i c i e n t s o f the measured d i f f u s i v i t i e s were 4.5 Ä, 5.2 % and 5.7 % f o r p e r p e n d i c u l a r t o panel surf a c e , p a r a l l e l t o panel s u r surf a c e i n machine d i r e c t i o n and across machine d i -r e c t i o n , -r e s p e c t i v e l y . They we-re thus l e s s than 6 %, So i t i s c e -r t a i n t h a t the t e s t r e s u l t s o f wood p r o d u c t s w i t h t h e s o r p t i o n method i s r e l a t i v e l y homogenous and t h e d i v e r s i t y low. Based on t h i s we used f i v e samples f o r each type o f m a t e r i a l i n the main experiments.

3.4 P r e p a r a t i o n o f samples

Three k i n d s o f samples were prepared f o r each m a t e r i a l t o determine t h e i r d i f f u s i v i t y i n t h e t h r e e p r i n c i p a l d i r e c t i o n s . For every d i r e c t i o n f i v e samples were made. The l e n g t h s and w i d t h s o f a l l samples were sawn t o t h e s i z e s as l i s t e d i n Table 1 . Among them t h e h a l f - h a r d board samples were prepared i n such a way t h a t t h e sample l e n g t h s are i n t h e machine d i r e c t i o n and the w i d t h s i n t h e t r a n s v e r s e machine d i r e c t i o n . For t h e r e s t o f t h e pa-n e l m a t e r i a l s we d i d pa-n o t kpa-now t h e machipa-ne d i r e c t i o pa-n . But a l l samples were

(17)

15 taken from one l a r g e board so t h e sample l e n g t h s were a l l i n one d i r e c t i o n - e i t h e r along machine o r t r a n s v e r s e t h e machine d i r e c t i o n . The t h i c k n e s s of t h e panel samples was t h e o r i g i n a l t h i c k n e s s o f t h e m a t e r i a l s . The t h i n spruce wood samples were made from t h e same board o f spruce.

The samples o f t h e t h r e e - d i m e n s i o n a l s o r p t i o n method were prepared w i t h h a l f - h a r d board. The samples were i n f i v e s i z e s , as has been shown i n Table 1 . For each s i z e t h e r e a r e f i v e samples, t h e r e c i p r o c a l s o f t h e i r l e n g t h s were i n p r o p o r t i o n o f ;

1/240 : 1/120 : 1/80 : 1/60 : 1/48 = 1 : 2 : 3 : 4 : 5 This gave some convenience i n t h e d e t e r m i n a t i o n o f d i f f u s i v i t y .

A l l t h e samples were s e t i n a c l i m a t e o f RH=0.65, T=20°C i n a c l i m a t e room u n t i l they reached m o i s t u r e e q u i l i b r i u m . They were weighed t o t h e p r e c i s i o n of 0.01 g. Then they were a l l sealed c a r e f u l l y w i t h aluminium f o i l and neoprene glue on t h e predetermined s u r f a c e s , except f o r t h e samples o f t h r e e -dimensional s o r p t i o n , and s e t t o t h e same c l i m a t e u n t i l e q u i l i b r i u m was reached again. The samples were weighted once more, t h e weight o f t h e s e a l i n g s was equal t o t h e d i f f e r e n c e o f two weight measurements.

3.5 S o r p t i o n a l procedure

The d i f f u s i v i t y measurement w i t h t h e s o r p t i o n method i n t h e d i r e c t i o n per-p e n d i c u l a r t o t h e per-panel s u r f a c e and w i t h t h e t h r e e - d i m e n s i o n a l s o r per-p t i o n method was done i n a c l i m a t e chamber i n t h e l a b o r a t o r y o f t h e Wood

Technology Department. For these samples two c y c l e s o f measurements a t two c l i -mates were made:

(1) from RH=0.65 t o RH=0.80 T=20°C i n both c l i m a t e s (2) from RH=0.65 t o RH=0.30

As mentioned p r e v i o u s l y , t h e samples were c o n d i t i o n e d a t RH=0.65, T=20°C b e f o r e t h e s o r p t i o n experiment u n t i l t h e i r weights d i d n o t change w i t h time and m o i s t u r e e q u i l i b r i u m was reached. The samples were then p u t i n t h e c l i -mate chamber, which was s e t t o one o f t h e two f i n a l c l i m a t e s , each time t e r m i n a t e d o n l y when t h e weight change o f a l l samples was no longer ob-s e r v a b l e and e q u i l i b r a were aob-sob-sumed t o be reached. I n each c y c l e , t h e samples were p e r i o d i c a l l y taken o u t , weighed q u i c k l y and p u t back i n t o t h e chamber. The i n t e r v a l o f t h e measurement time was n o t r e g u l a r , i t was

s h o r t e r i n t h e f i r s t days as then t h e s o r p t i o n r a t e was l a r g e r . High a i r c i r c u l a t i o n (more than 3 m/s) was maintained i n t h e chamber by a f a n , and the f a n was t u r n e d o f f d u r i n g opening and weighing time t o reduce c l i m a t e changes.

The balance used has a p r e c i s i o n o f 0.01 g. The d u r a t i o n o f t h e weighing o p e r a t i o n was about 15 minutes, when a l l t h e samples were taken o u t o f t h e chamber and exposed t o t h e o u t s i d e a i r . This p e r i o d i c a l i n t e r r u p t i o n o f the s o r p t i o n process and exposure t o t h e room c l i m a t e i n e v i t a b l y caused some e r r o r .

Some t e s t s i n t h e same c l i m a t e chamber were a l s o made i n c l i m a t e s o f higher r e l a t i v e h u m i d i t y (RH=0.90), b u t i n t h e l a t e r stages o f s o r p t i o n t h e sample

(18)

16

w e i g h t s f l u c t u a t e d i n s t e a d o f changing monotonously which gave an im-p r e s s i o n t h a t e q u i l i b r i a were reached, so t h e t e s t s were ceased i n such a stage. I n l a t e r a n a l y s i s i t was found t h a t e q u i l i b r i a were a c t u a l l y not reached. This mistake was caused p a r t i a l l y by t h e g r e a t d i f f e r e n c e o f r e l a -t i v e h u m i d i -t y i n s i d e and o u -t s i d e -t h e c l i m a -t e chamber d u r i n g w i n -t e r -time when t h e r e l a t i v e h u m i d i t y i n t h e l a b o r a t o r y was r a t h e r low; p a r t i a l l y by l a c k o f experience o f such experiment. These t e s t r e s u l t s were d i s c a r t e d , but we learned something from t h e f a i l u r e .

D i f f u s i v i t y measurement o f t h e s o r p t i o n method i n t h e p a r a l l e l t o surface d i r e c t i o n was c a r r i e d o u t i n a c l i m a t e room i n t h e Swedish I n s t i t u t e f o r Wood Technology Research. Only one c y c l e w i t h RH from 0.65 t o 0.90, T=20'C was used. O r i g i n a l l y two c l i m a t e s had been planned (RH from 0.65 t o 0.90 and from 0.90 t o 0.65) b u t t o reach e q u i l i b r i u m i n t h e f i r s t r u n took an unexpected long t i m e , owing"to t h e t o o l a r g e l e n g t h and w i d t h o f t h e samples, so t h e second c y c l e was c a n c e l l e d . Smaller s i z e s should be used i n f u t u r e study. The measurements were made i n a s i m i l a r way as those per-formed i n t h e c l i m a t e chamber. The o n l y two d i f f e r e n c e s were t h a t t h e samples were weighed i n s i d e the c l i m a t e room, so the s o r p t i o n process was not d i s t u r b e d d u r i n g t h e measurements, and t h e r e s u l t s should t h e r e f o r e be

b e t t e r . The a i r c i r c u l a t i o n v e l o c i t y was s m a l l e r , approximately 1.4 m/s, which would presumably render a l a r g e r r e s i s t a n c e o f t h e boundary a i r

(19)

17 4. EXPERIMENTAL RESULTS

For t h e s o r p t i o n method, t h e f r a c t i o n a l moisture c o n t e n t versus time and m o i s t u r e c o n t e n t versus square r o o t o f time i n a s o r p t i o n c y c l e were c a l c u

-l a t e d and p -l o t t e d , two examp-les o f which a r e shown i n F i g u r e 3 and

F i g u r e 4. Average d i f f u s i v i t y o f t h e t e s t e d m a t e r i a l s i n each o f the t h r e e s o r p t i o n processes was c a l c u l a t e d w i t h E q ( 6 ) , by t h e ( t ) l / 2 values obtained from the s o r p t i o n curves. D i f f u s i v i t y was a l s o c a l c u l a t e d w i t h Eq(7) f o r comparison. Both s e t s o f data a r e l i s t e d i n Table 2, where the d i f f u s i v i t y o b t a i n e d w i t h Eq(7) are placed i n b r a c k e t s .

With the method o f t h e t h r e e d i m e n s i o n a l s o r p t i o n the samples reached e q u i -l i b r i a much f a s t e r than t h e samp-les o f the s o r p t i o n method. A t each mea-surement t i m e , a r e g r e s s i o n a l l i n e a r e q u a t i o n was d e r i v e d w i t h f a i r l y l a r g e c o r r e l a t i o n c o e f f i c i e n t s ( l a r g e r than 0.94) from t h e data o f dimensionless moisture c o n t e n t E and the r e c i p r o c a l o f sample l e n g t h s ( f i v e s i z e s ) . I n F i g u r e 3A, t h e f i r s t f i v e r e g r e s s i o n a l l i n e s f o r t h e t h r e e - d i m e n s i o n a l s o r p t i o n i n the c l i m a t e o f RH from 0.65 t o 0.80 a r e p l o t t e d . The i n t e r c e p t s of t h e l i n e s a r e t h e dimensionless moisture c o n t e n t E-max o f i n f i n i t e l y long samples, which was r e a d i l y o b t a i n a b l e from the r e g r e s s i o n a l equa-t i o n s . The slopes o f equa-t h e l i n e a r equaequa-tions i n F i g u r e 5A are n o equa-t equal. For an imaginary l i n e w i t h an i n t e r c e p t o f E=0.5, t h e slope was c a l c u l a t e d from the slopes o f two nearest l i n e s by t a k i n g weighted averages. Then the c r i -t i c a l l e n g -t h o f -the imaginary l i n e was c a l c u l a -t e d and -the d i f f u s i v i -t y i n the d i r e c t i o n p a r a l l e l t o the panel s u r f a c e s was o b t a i n e d w i t h Eq(14). The d i f f u s i v i t y measured w i t h the t h r e e - d i m e n s i o n a l s o r p t i o n was a l s o l i s t e d i n Table 2.

In F i g u r e 3B two (l-Emax)-t curves o f such i n f i n i t e l y long samples were p l o t t e d t o g e t h e r w i t h the E-t curves o f h a l f - h a r d board (wet process) t e s t e d w i t h t h e s o r p t i o n method i n the same c l i m a t e . I t can be seen t h a t the curves f i t each o t h e r almost p e r f e c t l y .

The d i f f u s i v i t y values c a l c u l a t e d w i t h Eq(6) ad (7) i n Table 2 a r e based on the m o i s t u r e c o n c e n t r a t i o n i n t h e t e s t e d m a t e r i a l s . When they are converted i n t o the d i f f u s i v i t y based on the moisture c o n c e n t r a t i o n i n the a i r by t h e r e l a t i o n :

dv

8 = D ^

(15)

t h e i r order o f magnitude a r e about 10,000 times l a r g e r . Here J and D are the moisture d i f f u s i v i t y based on m o i s t u r e c o n c e n t r a t i o n i n the a i r and i n the t e s t e d m a t e r i a l s , r e s p e c t i v e l y .

The converted d i f f u s i v i t i e s a r e presented i n Table 3. As the s o r p t i o n i s o -therms o f the sample m a t e r i a l s were n o t known, t h e s o r p t i o n iso-therms o f T v e i t (1966) and Kollmann (1975) f o r the same m a t e r i a l s were used. Some e r r o r would a r i s e as these isotherms might n o t f i t the m a t e r i a l s t e s t e d en-t i r e l y , b u en-t such e r r o r would probably n o en-t be so l a r g e as en-t o a f f e c en-t en-t h e r i g h t order o f magnitude.

(20)

18

A

PF-glue particleboard

4b 80 120 léo 200 240 200 3^0 300 400 440 480 520 5é0 6Ö0 640 6é0 7^0 700 800 S o r p t i o n Time Hour RH: 0.65 -> 0.30. T - 20 •€ : 0.65 -> 0.»0. T - 20 •€

B

Spruce plywood (PF-glue)

Ö 40 80 120 160 2Ö0 240 280 320 360 4Ö0 440 4Ö0 520 560 6Ö0 6^0 eéo 7é0 760 edo

S o r p t i o n Time Hour

r i g u r e 3. Curves o f t h e f r a c t i o n a l moisture o f s o r p t i o n i n r e l a t i o n t o s o r p t i o n t i m e . S o r p t i o n d i r e c t i o n : P e r p e n d i c u l a r t o panel sur-faces.

(21)

19 1 .9 i ! A a **

c

5

.7 ca o e ••i •8 .5 .4 .3 .2 .1

PF-glue particleboard

I B T i 5 2 5 2 H ~ BB 4 0 ^

Square Root o f S o r p t i o n Tine eqr (HOUR)

1 .9 .8 .7 .6 .5 .4 .3 .2 .1 0 F i g u r e 4. c

5

c 3 m

Spruce plywood(PF"-glue)

3 iB 20 2B 15 §5 4 5 ~ ~4b Square Root o f S o r p t i o n Tine eqr (HOUR)

Curves o f t h e f r a c t i o n a l m o i s t u r e o f s o r p t i o n versus t h e square r o o t o f t h e s o r p t i o n time.

(22)

20

TABLE 2. Average d i f f u s i v i t y based on m o i s t u r e c o n c e n t r a t i o n i n t h e m a t e r i a l s ( u n i t 10~iO m2/s).

Outside b r a c k e t s : c a l c u l a t e d w i t h E q ( 6 ) . I n s i d e b r a c k e t s : c a l c u l a t e d w i t h Eq(7).

S o r p t i o n d i r e c t i o n : P e r p e n d i c u 1 a r P a r a l l e l

Test c o n d i t i o n : Climate chamber Climate room Climate room

Climate: 0.65-0.80 0.65-0.30 0.65-0.90 0.65-0, .90

ONE DIMENSIONAL Width Length

SORPTION d i r e c t i o n d i r e c t i o n FIBERBOARD 1. H a l f - h a r d board 0.34 0.72 0.43 3.3 4.0 wet process (0.48) (0.64) (0.56) ( 3 . 8 ) (4.8) 2. I n s u l a t i o n board 1.60 2.70 18 20 (1.80) (2.10) (19) (23) 3. MDF ( d r y process) 0.19 0.60 3.1 3.4 (0.22) (0.56) (3.7) (4.0) 4. Hardboard 0.08 0.28 3.2 3.0 (0.11) (0.22) (4.0) (3.5) PARTICLEBOARD 5. PF-glue p a r t i c l e - 0.14 0.30 3.4 4.8 board (0.20) (0.31) (2.4) (6.3) 6. UF-glue p a r t i c l e - 0.88 1.7 3.0 3.8 board (1.00) (1.3) (3.0) (5.2) 7. UMF-glue p a r t i c l e - 1.0 board (1,2) PLYWOOD 8. PF-glue plywood 0.24 0.76 3.8 4.5 (0.40) (0.76) (4.1) (7.6) SOLID WOOD 9. Spruce 0.38 0.88 8.8 (0.52) (0.76) (10) l o n g . SPECIAL 10. H a l f - h a r d board 0.30 0.64 s u r f a c e s m i l l e d (0.40) (0.56) 11. H a l f - h a r d board 0.38 0.80 a b s o l u t e l y d r i e d (0.52) (0.64) 12. H a l f - h a r d board 2.7 s m a l l l e n g t h (2.9) THREE DIMENSIONAL SORPTION H a l f - h a r d board 0.34 0.76 (0.48) (0.64) 1.10 (1.60) 1.6 (1.3) p a r a l l e l II Notes: 1. P a r a l l e l and p e r p e n d i c u l a r imply t h e s o r p t i o n d i r e c t i o n i n r e l a t i o n t o the panel s u r f a c e s .

2. For spruce, t h e value i n column 5 i s t h e l o n g i t u d i n a l one, a l l t h e r e s t are t r a n s v e r s e ( r a d i a l o r t a n g e n t i a l ) .

(23)

21 TABLE 3. Average d i f f u s i v i t y based on m o i s t u r e c o n c e n t r a t i o n i n the a i r

( u n i t 10-6 m2/s).

S o r p t i o n d i r e c t i o n : P e r p e n d i c u 1 a r P a r a l l e l

Test c o n d i t i o n : Climate chamber Climate room Climate room

C l i m a t e : 0.65-0.80 0.65-0.30 0.65-0.90 0.65-0, .90

ONE DIMENSIONAL Width Length

SORPTION d i r e c t i o n d i r e c t i o n FIBERBOARD 1. H a l f - h a r d board 0.21 0.29 0.38 1.7 2.2 wet process (0.30) (0.25) (0.67) ( 2 . 0 ) (2.6) 2. I n s u l a t i o n board 1.0 1.4 11 14 (1.-3) (1.2) (12) (16) 3. MDF ( d r y process) 0.12 0.23 1.6 1.8 (0.14) (0.22) (1.9) (2.1) 4. Hardboard 0.10 0.21 2.8 2.6 (0.12) (0.16) (3.6) (2.9) PARTICLEBOARD 5. PF-glue p a r t i c l e - 0.16 0.22 5.2 7.7 board (0.21) (0.22) (3.9) (9.9) 6. UF-glue p a r t i c l e - 0.87 1.1 4.4 5.6 board (0.95) (0.92) (4.0) (7.2) 7. UMF-glue plywood 0.15 (7.2) (0.17) PLYWOOD 8. PF-glue plywood 0.27 0.60 4.8 5.3 (0.45) (0.60) (4.8) (8.8) SOLID WOOD 9. Spruce 0.15 0.24 l o n g . 9.2 (0.20) (0.16) l o n g . (10) l o n g . SPECIAL 10. H a l f - h a r d board 0.19 0.26 s u r f a c e s m i l l e d (0.26) (0.23) 11. H a l f - h a r d board 0.24 0.31 a b s o l u t e l y d r i e d (0.32) (0.26) 12. H a l f - h a r d board 1.4 small l e n g t h (1.5) THREE DIMENSIONAL SORPTION H a l f - h a r d board 0.21 0.29 (0.30) (0.25) 0.72 0.44 p a r a l l e l (1.0) (0.37) II Notes: Same as i n Table 2.

Each d i f f u s i v i t y value i s r e c a l c u l a t e d from the c o r r e s p o n d i n g data i n Table 2.

(24)

22

4.5 i 5.8 é

Reciproctl of half sample length

- .6

8

0.65 -> 0.«0. 0.65 -> 0.30 Tltfee Dia. Sorpcioa: Curve 1.

O m Dm. SorpciM ; CurveJ, Curve2 Curved

o 30 6b 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

S o r p t i o n Time Hour

F i g u r e 5. Test curves o f t h e t h r e e - d i m e n s i o n a l method w i t h h a l f - h a r d f i b e r b o a r d samples.

Above; F i r s t f i v e r e g r e s s i o n a l l i n e s o f 1^ vs 1/a r e l a t i o n s i n c l i m a t e RH=0.65 t o 0.80, T=20°C.

Below: Comparison o f t h e f r a c t i o n a l m o i s t u r e o f s o r p t i o n i n ré-l a t i o n t o s o r p t i o n time o f t h e s o r p t i o n method and the t h r e e - d i m e n s i o n a l method.

(25)

23 4.1 D i f f u s i v i t y of the t e s t e d m a t e r i a l s

As f o r t h e measured d i f f u s i v i t y of the m a t e r i a l s t e s t e d , some general r e -marks are made:

For a l l t h e wood-based panels the d i f f u s i v i t y i n the p e r p e n d i c u l a r t o panel s u r f a c e d i r e c t i o n i s about 5 t o 25 times l a r g e r than t h a t i n the p a r a l l e l t o s u r f a c e d i r e c t i o n . D i f f u s i v i t y i s g e n e r a l l y l a r g e r f o r panels of low d e n s i t y .

The most apparent f e a t u r e o f f i b e r b o a r d s i s t h a t t h e i r d i f f u s i v i t y depends s t r o n g l y and c h i e f l y on t h e i r d e n s i t y . Hardboard showed an e x t r a o r d i n a r i l y low d i f f u s i v i t y i n the p e r p e n d i c u l a r t o s u r f a c e d i r e c t i o n . The reason might be t h a t when the d e n s i t y increases above a c e r t a i n l e v e l t h e r e would be almost no gaps between f i b e r s , so t h a t m o i s t u r e d i f f u s i o n has t o take place e n t i r e l y through the compressed wood c e l l s .

The t e s t e d PF-glue p a r t i c l e b o a r d showed a lower d i f f u s i v i t y even though i t s d e n s i t y i s a b i t l a r g e r than t h e UF-glue panels. This may have something t o do w i t h the f a c t t h a t PF-glue i s g e n e r a l l y more m o i s t u r e r e s i s t a n t than UF-g l u e .

The plywood used i n t h i s experiment i s made from PF-glue and spruce wood. The d e n s i t y of the t e s t e d plywood i s a b i t l a r g e r than the spruce. I t s d i f -f u s i v i t y i n the p e r p e n d i c u l a r t o s u r -f a c e d i r e c t i o n , which corresponds t o the r a d i a l d i r e c t i o n of the wood, d i f f e r s not very much from t h a t of spruce i n the t r a n s v e r s e d i r e c t i o n . This conforms t o Lehmann's reasoning (1972) t h a t glue f i l m between p l y s are not c o n t i n u o u s , and i t s c o n t r i b u t i o n i n r e -ducing the d i f f u s i v i t y i s not e s p e c i a l l y l a r g e as i t would be i f the f i l m were c o n t i n u o u s .

Spruce wood i n the t r a n s v e r s e d i r e c t i o n seems not t o p r o v i d e an a p p a r e n t l y lower d i f f u s i v i t y than wood-based panels except f o r i n s u l a t i o n board, even though i t s b i o l o g i c a l s t r u c t u r e has not been d i s o r d e d as i n panel mate-r i a l s . I n the l o n g i t u d i n a l d i mate-r e c t i o n i t s d i f f u s i v i t y i s l a mate-r g e s t , non-sumate-r- non-sur-passed by any panel except i n s u l a t i o n board.

For a l l the panel m a t e r i a l s , t h e d i f f u s i v i t y i n the two p a r a l l e l t o s u r f a c e d i r e c t i o n s showed a f a i r l y s m a l l d i f f e r e n c e ( t h e data i n the l a s t two co-lumns of Table 2 ) . An unexpected r e s u l t i s t h a t the d e n s i t y of h a l f - h a r d board w i t h i t s s u r f a c e m i l l e d ( m a t e r i a l No. 10) i s l a r g e r than t h a t o f the u n m i l l e d board ( m a t e r i a l No. 1 ) . G e n e r a l l y the d e n s i t y of panels decreases from s u r f a c e t o middle l a y e r . The u n u s u a l l y h i g h d e n s i t y of the m i l l e d pa-nel (Table 1) might e x p l a i n i t s lower d i f f u s i v i t y . The h a l f - h a r d board t h a t was d r i e d t o zero m o i s t u r e c o n t e n t (No. 11) b e f o r e the s o r p t i o n t e s t showed a d i f f u s i v i t y which d i f f e r s l i t t l e from the same board u n d r i e d ( N o . l ) . D r y i n g does t h e r e f o r e not seem t o a l t e r the d i f f u s i v i t y of the panel pro-ducts a p p a r e n t l y , p r o b a b l y because they have a l r e a d y been hot-pressed du-r i n g manufactudu-re.

The average d i f f u s i v i t y measured i n the c l i m a t e RH=0.65 t o 0.30 i s about t w i c e as l a r g e as t h a t i n the c l i m a t e RH=0.65 t o 0.80. This i s c o n t r a d i c t o -ry t o the g e n e r a l concept t h a t d i f f u s i v i t y i n t h e wood m a t e r i a l increases w i t h the m o i s t u r e c o n c e n t r a t i o n . But i t conforms w i t h the known f a c t f o r wood t h a t d i f f u s i v i t y o b t a i n e d w i t h d e s o r p t i o n i s l a r g e r than t h a t w i t h ad-s o r p t i o n . So i t might be e x p l a i n e d aad-s t h a t the l a t t e r e f f e c t dominatead-s i n t h i s case.

(26)

24

5. DISCUSSION

I t i s well-known t h a t the moisture d i f f u s i v i t y i n wood m a t e r i a l i s concent r a concent i o n d e p e n d e n concent . D l f f u s i v i concent i e s i n an a d s o r p concent i o n o r d e s o r p concent i o n process a l so appears t o be d i f f e r e n t t o some e x t e n t . These phenomena l a y some l i m i t a -t i o n s -t o our a n a l y s i s o f e x p e r i m e n -t a l r e s u l -t s as we have o n l y l i m i -t e d da-ta from the t h r e e s o r p t i o n c y c l e s a t d i f f e r e n t r e l a t i v e h u m i d i t y l e v e l s . But some u s e f u l i n f o r m a t i o n about the s o r p t i o n method i s s t i l l obtained w i t h the experiment. I t a l s o p r o v i d e d some data f o r a r e l a t i v e l y l a r g e number of t y p i c a l panel m a t e r i a l s .

5.1 A v a i l a b i l i t y o f the s o r p t i o n methods

The approximate average d i f f u s i v i t y c a l c u l a t e d w i t h Eq(6) and Eq(7) are r a t h e r s i m i l a r . As i n the a p p l i c a t i o n of these two equations, d i f f e r e n t data from the experiment were f e d , t h i s s i m i l a r r e s u l t i m p l i e s t h a t the c a l c u l a t e d d i f f u s i v i t y i s b a s i c a l l y c o r r e c t . The d i f f u s i v i t y i n Table 2 can t h e r e f o r e be accepted as the approximate average d i f f u s i v i t y w i t h the

e f f e c t o f s u r f a c e r e s i s t a n c e unseparated i n the t e s t e d c l i m a t e s . This i n t u r n proved the a v a i l a b i l i t y of Eq(6) and ( 7 ) i n the s o r p t i o n method i n g i v i n g the average d i f f u s i v i t y . From t h i s s t a r t i n g p o i n t , d i f f u -s i v i t y - c o n c e n t r a t i o n r e l a t i o n -s can be d e r i v e d when a -s e r i e -s o f -s o r p t i o n ex-periments w i t h s u c c e s s i v e l y changing c l i m a t e s i s a p p l i e d .

The t h r e e - d i m e n s i o n a l s o r p t i o n method y i e l d s the same d i f f u s i v i t y as the s o r p t i o n method. This i s remarkable s i n c e i n t h i s method a d i f f e r e n t c a l c u -l a t i o n procedure i s emp-loyed. From F i g u r e 5B we can see t h a t the E! curves o b t a i n e d w i t h these two methods n e a r l y o v e r l a p i n a l l the ranges where such curves can be drawn w i t h the t h r e e - d i m e n s i o n a l method. As E approaches 1, the r e g r e s s i o n a l l i n e a r e q u a t i o n o f the t h r e e - d i m e n s i o n a l method i s no longer o b t a i n a b l e as then the E d i f f e r e n c e between samples of d i f f e r e n t s i z e s vanishes. So the t curves (equal t o (l-Emax)-t curves) of t h i s method are not complete. But we can say t h a t the t h r e e - d i m e n s i o n a l s o r p t i o n method g i v e s the same average m o i s t u r e d i f f u s i v i t y as the one-dimensional s o r p t i o n method.

5.2 Surface r e s i s t a n c e

The s u r f a c e r e s i s t a n c e from the boundary l a y e r on the sample s u r f a c e i n the a d s o r p t i o n and d e s o r p t i o n processes may cause some e r r o r i n measured d i f f u -s i v i t y . We apply f i r -s t l y the boundary l a y e r t h e o r y and then Newman'-s equa-t i o n i n equa-t h i s case equa-t o analyse equa-the e r r o r caused by equa-the s u r f a c e r e s i s equa-t a n c e i n measured d i f f u s i v i t y .

According t o t h e o r i e s i n t h i s f i e l d s u r f a c e r e s i s t a n c e can e i t h e r be de-s c r i b e d by de-s u r f a c e t r a n de-s f e r c o e f f i c i e n t o f water vapor 8 (Minede-s and Maddox, 1985) or by s u r f a c e e m i s s i v i t y Se (Choong and Skaar, 1972; Rosen, 1979):

8 = P ( v , - V , ) = S e ( W , - W j (16) where g i s the moisture f l u x through boundary l a y e r . Vs and Ws are the s u r

-face moisture c o n c e n t r a t i o n s and Va and Wa are the moisture c o n c e n t r a t i o n i n the b u l k a i r . B and Se are r e l a t e d v i a s o r p t i o n i s o t h e r m :

(27)

25

Se =

P

V , - V (17)

This r e l a t i o n enables us t o c a l c u l a t e Se from B. Then by u t i l i z i n g Newman's r e l a t i o n (Choong and Skaar, 1972), which i s o r i g i n a l l y a p p r o x i -mated from t h e a n a l y t i c a l s o l u t i o n o f t h e d i f f u s i o n equation f o r constant d i f f u s i v i t y under t h e c o n d i t i o n o f given s u r f a c e r e s i s t a n c e :

± _ 1 ^'^

D S , a (18)

i t w i l l be p o s s i b l e t o c a l c u l a t e d i s s u s i v i t y D from The measured apparent d i f f u s i v i t y D*. According t o t h e boundary l a y e r t h e o r y , t h e s u r f a c e c o e f f i -c i e n t o f water vapor t r a n s f e r B i n laminar f l o w regime i s equal (Hines and Maddox, 1985, p. 185) t o :

8. ,

. y

p= 0.664

(19)

where a i s water vapor d i f f u s i v i t y i n b u l k a i r . L f i s t h e sample l e n g t h along a i r f l o w d i r e c t i o n and k i n e m a t i c v i s c o s i t y o f t h e a i r . U i s t h e a i r v e l o c i t y . boundary layer

/Cux

W « . V a W0. Vfl F i g u r e 6. Boundary l a y e r on t h e sur-face o f t h e sample and t h e d i f f e r e n c e o f moisture c o n c e n t r a t i o n between t h e

two s i d e s o f t h e l a y e r .

I t should p r o b a b l y be s t r e s s e d t h a t t h e above e q u a t i o n i s v a l i d o n l y f o r laminar f l o w o f t h e a i r over t h e sample s u r f a c e . I t has been shown ( L i u Tong, 1988) t h a t f o r t h e samples o f t h e s o r p t i o n method, t h e a i r f l o w over them a r e always l a m i n a r .

Here we take spruce as an example t o e v a l u a t e t h e s u r f a c e r e s i s t a n c e and i t s e f f e c t on t h e measured d i f f u s i v i t y w i t h t h e above equations.

The sample l e n g t h i n a i r f l o w d i r e c t i o n i s 100 mm, a i r v e l o c i t y i s

1.4 m/s. Apply Simpson's (1971) s o r p t i o n i s o t h e r m t o c a l c u l a t e t h e q u a n t i t y dVs/dWs i n Eq(17). The c a l c u l a t i o n procedure (from l e f t t o r i g h t ) and r e -s u l t -s a r e given a-s f o l l o w -s .

RH o f a i r i n 6 dVs/dWs Se D* D

s o r p t i o n (10-2 X m/s) ( x l O - * ) (10-6 m/s) (10-10 m2/s) (10-10 m2/s)

0.80 1.35 1.30 1.76 0.380 0.386

(28)

26

From the c a l c u l a t i o n s above we can see t h a t the d i f f e r e n c e of the apparent d i f f u s i v i t i e s D* which c o n t a i n the e f f e c t o f s u r f a c e r e s i s t a n c e and the d i f f u s i v i t i e s D are very s m a l l . I f the boundary l a y e r t h e o r y i s c o r r e c t i n t h i s case, then t h i s can be i n t e r p r e t e d as t h a t the s u r f a c e r e s i s t a n c e i s so small compared w i t h the i n t e r n a l d i f f u s i o n a l r e s i s t a n c e i n the s o r p t i o n process t h a t i t i s p r a c t i c a l l y n e g l i g i b l e , as long as s u f f i c i e n t a i r c i r c u -l a t i o n i s m a i n t a i n e d .

However, i n a r e c e n t l y p u b l i s h e d paper ( A v r a m i d i s and Siau, 1987) e n t i r e l y d i f f e r e n t c o n c l u s i o n s were gained w i t h respect t o s u r f a c e r e s i s t a n c e under e x p e r i m e n t a l c o n d i t i o n s s i m i l a r t o the ones i n t h i s pre-study. Avramidis and Siau found t h a t the average d i f f u s i v i t y measured w i t h s o r p t i o n method increases when sample t h i c k n e s s o f the same m a t e r i a l increases. For example f o r Western w h i t e p i n e they measured r a d i a l d i f f u s i v i t i e s o f 0.352 x lO'J-O, 0.407 X 10-10 and 0.609 x 10-^0 „hen sample t h i c k n e s s e s are 5, 10 and 20 mm, r e s p e c t i v e l y , a t 0.063 moisture c o n t e n t and 30 'C under the a i r ve-l o c i t y of 2.5 m/s. F o ve-l ve-l o w i n g the arguments o f Choong and Skaar (1972), they regarded t h i s d i f f e r e n c e as being p u r e l y caused by s u r f a c e r e s i s t a n c e and reasoned t h a t the t h i c k e r samples must have been a f f e c t e d l e s s by the s u r -face r e s i s t a n c e than the t h i n n e r ones which made the t h i c k e r samples have l a r g e r apparent d i f f u s i v i t y . They regarded t h a t by using Newman's equation a l o n e , i t would be p o s s i b l e t o c a l c u l a t e the t r u e d i f f u s i v i t y from the apparent d i f f u s i v i t y o f s e v e r a l samples having d i f f e r e n t t h i c k n e s s . Guided by such argument, they c a l c u l a t e d the t r u e d i f f u s i v i t y of

0.927 X lO'lO fT)2/8 from the above quoted apparent d i f f u s i v i t y of Western

w h i t e p i n e and concluded t h a t the s u r f a c e r e s i s t a n c e s i s not n e g l i g a b l e but very i n f l u e n t i a l .

Here we are c o n f r o n t e d w i t h a troublesome problem: i s s u r f a c e r e s i s t a n c e i n f l u e n t i a l or n e g l i g i b l e i n the s o r p t i o n method? Should we accept the r e -s u l t -s of boundary l a y e r t h e o r y or Newman'-s equation? Thi-s complicated problem cannot be solved d e f i n i t i v e l y here because i t i s impossible t o do w i t h o u t some profound i n v e s t i g a t i o n . But i t i s f e l t u s e f u l t o make some reasoning i n order t o s e t some l i g h t on the p r e s e n t l y u n s o l v a b l e problem. I n the boundary l a y e r t h e o r y , the modern mass t r a n s f e r t h e o r y i s a p p l i e d t o c a l c u l a t e the r e s i s t a n c e of vapor movement through the f l o w i n g a i r l a y e r a d j a c e n t t o the sample s u r f a c e . No c o n s i d e r a t i o n i s taken t o the t r a n s i e n t m o i s t u r e d i f f u s i o n i n s i d e the sample i t s e l f . When Newman's equation i s used i n the way as Avramidis and Siau (1987), the s u r f a c e r e s i s t a n c e i s not con-s i d e r e d d i r e c t l y from the boundary a i r l a y e r , but i n d i r e c t l y from the d i f f u s i v i t y change of the sample. However, i t i s commonly known t h a t the appearance and v a r i a t i o n of moisture g r a d i e n t i n a sample i n e v i t a b l y cause s t r e s s e s . As s t r e s s e s a l t e r the molecular c o n f i g u a r a t i o n of sample mate-r i a l , they w i l l a l s o i n f l u e n c e the d i f f u s i o n . So i n a t mate-r a n s i e n t d i f f u s i o n process, d i f f u s i o n and s t r e s s v a r i a t i o n s are coupled, some k i n d of i n t e r -a c t i o n must e x i s t between them which m-akes the d i f f u s i v i t y d i f f e r t o some e x t e n t from a pure d i f f u s i o n case. This i s known as the e f f e c t of s t r e s s r e l a x a t i o n on d i f f u s i v i t y (Crank, 1953, Comstock, 1962). This e f f e c t w i l l be discussed more i n next s e c t i o n . The drawback i n a p p l y i n g Newman's equat i o n alone equat o c a l c u l a equat e s u r f a c e r e s i s equat a n c e i s equat h a equat equathe e f f e c equat of s equat r e s s r e -l a x a t i o n o f d i f f u s i o n i s m i s t a k i n g -l y a t t r i b u t e d t o s u r f a c e r e s i s t a n c e t h a t has n o t h i n g t o do w i t h the sample i t s e l f , which may produce c o n s i d e r a b l e e r r o r . Therefore the c o r r e c t n e s s of d i r e c t l y u t i l i z i n g Newman's equation t o c a l c u l a t e s u r f a c e r e s i s t a n c e i s very much q u e s t i o n a b l e , and so are the r e -s u l t -s of Avramidi-s' and Siau'-s paper.

References

Related documents

With Europe’s ambition to create a carbon-neutral building industry, wood is an excellent choice of construction material due to its low carbon footprint, its renewable

The use of the existing algorithm for the dry weight moisture content on density data from the CT-scanning during high and low temperature drying in the climate chamber showed

Källa STRADA (polisrapporterade olyckor preliminära värden). Risken att skadas och dödas i trafiken är enligt resultatet högst för gruppen 13–14 år, nästan 2 gånger så

The fundemental purpose of the thesis is to address privacy issues on SNSs with the focus on individual users perception of privacy risks. Within the topic, we would

The reasoning behind this is based on Figure 4.10 and Figure 4.12: It seems that the biggest dierence between the GPUs might be in the computational time for larger

An investigation was finally made in which the flow around the fibre bundle was captured with good results although the velocity near the fibres is much lower than the bulk flow,

Här insåg jag också att sex och ilska verkade höra ihop när flera av tjejerna resonerade kring att män använder sex för att få utlopp för olika saker, medan tjejer inte på