• No results found

Stabilitet och tillåten rörelse hos flervåningsbyggnader: Analys av höga byggnaders begränsningar till dynamiska krafter och svängningar

N/A
N/A
Protected

Academic year: 2021

Share "Stabilitet och tillåten rörelse hos flervåningsbyggnader: Analys av höga byggnaders begränsningar till dynamiska krafter och svängningar"

Copied!
62
0
0

Loading.... (view fulltext now)

Full text

(1)

ISRN UTH-INGUTB-EX-B-2018/09-SE

Examensarbete 15 hp

Juni 2018

Stabilitet och tillåten rörelse

hos flervåningsbyggnader

Analys av höga byggnaders begränsningar

till dynamiska krafter och svängningar

Frida Andersson

(2)
(3)
(4)
(5)

Teknisk- naturvetenskaplig fakultet UTH-enheten Besöksadress: Ångströmlaboratoriet Lägerhyddsvägen 1 Hus 4, Plan 0 Postadress: Box 536 751 21 Uppsala Telefon: 018 – 471 30 03 Telefax: 018 – 471 30 00 Hemsida: http://www.teknat.uu.se/student

Abstract

Stability and permissible movement in multi-storey

buildings

Frida Andersson

One of the challenging design areas of high buildings is the determination of its stability and response to dynamic forces. These factors affect the horizontal deformations and fluctuations that the building will result in. This report examines the demands placed on the stability and deformations of high buildings through a literature study as well as examines these requirements with a reference building built into FEM-Design.

The literature study shows that quite a few standards have to be taken into account and used in the design of tall buildings.

Regarding limit values, only SS-ISO 10137 specifies maximum values for a building's peak acceleration relative to its own frequency. Limit values for transient deformations are not available.

Furthermore, the literature study shows that plenty of studies of human perception and tolerance to movements in buildings have been performed. The movements have been shown to cause physical and mental discomfort if exaggerated, which SS-ISO 10137 bases its limits after.

The 75-meter reference building, modeled in FEM-Design, was built to calculate the building's own frequency, transient deflection, and self-weight. The wind loads have been calculated separately and entered into the program. Calculations for the building's peak acceleration have then been calculated and compared to the limit values in SS-ISO 10137.

The structure of the reference building, consisting of 25-storeys in concrete, met the standard requirements for housing and should be able to be built without the risk of discomfort among the residents. Other inputs were 250 and 200 mm floor and wall

thickness in C25 / 30 and VKR pillar in each corner, 200x200x10 mm in quality S355. The plan levels are square 21.8m wide and

identical to all 25 levels.

The model-building met the requirements for living space according to SS-ISO 10137 with respect to peak acceleration and frequency. However, the calculated horizontal deformations did not have any limit values to be compared to and were therefore not compared to any restrictions.

Tryckt av: Polacksbackens Repro Uppsala universitet ISRN UTH-INGUTB-EX-B-2018/09-SE

Examinator: Caroline Öhman Mägi Ämnesgranskare: Per Isaksson Handledare: Fredrik Säfström

(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)

Bilaga 1

Vindlastberäkningar

Indata ≔ h 75 Husets höjdb 21.8 Husets breddd b=21.8 Husets djuphplan 3 Höjd per våningsplann 25 Antal våningsplan

Referenshöjder Tabell 4.4.2a, s.54, Byggkonstruk on enligt eurokoderna

hstrip ―――(( −h 2 b))= 4 7.85 ≔ z = h + b 4 hstrip + b 3 hstrip + b 2 hstrip + b hstrip b ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 75 53.2 45.35 37.5 29.65 21.8 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦

Terrängtyper och terrängparametrar Tabell 4.4.1a, s.47, Byggkonstruk on enligt eurokoderna

Terrängtyp III ≔

z0 0.3

zmin 5

Terrängfaktorn Ekva on 4.5, SS‐EN 1991‐1‐4, 4.3.2

z0.II 0.05 ≔ Kr 0.19⋅ = ⎛ ⎜ ⎝ ――z0 z0.II ⎞ ⎟ ⎠ 0.07 0.22

Referensvindhas gheten Figur 4.4.1d, s.50, Byggkonstruk on enligt eurokoderna

νb 24 ―

B.1.1

(56)

Bilaga 1

Medelvindhas gheten ≔ cr Kr⋅ln⎛ = ⎝ ―z z0 ⎞ ⎟ ⎠ 1.189 1.115 1.081 1.04 0.989 0.923 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ Ekva on 4.4, SS‐EN 1991‐1‐4, 4.3.2c0 1.0 Ekva on 4.3, SS‐EN 1991‐1‐4, 4.3.1νm crc0νb= 28.542 26.767 25.942 24.959 23.745 22.155 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ― Ekva on 4.3, SS‐EN 1991‐1‐4, 4.3.1

Turbulensintensiteten Ekva on 4.7, SS‐EN 1991‐1‐4, 4.4

k1 1.0 ≔ Iv ――――k1 = ⋅ c0 ln⎛ ⎝ ―z z0 ⎞ ⎟ ⎠ 0.181 0.193 0.199 0.207 0.218 0.233 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦

Karakteris skt has ghetstryck Ekva on 4.8, SS‐EN 1991‐1‐4, 4.5

ρ 1.25 ―― 3 ≔ qp = → ― ― ― ― ― ― ⋅ ⋅ ⋅ ⎛⎝ +1 6 Iv⎞⎠ ⎝― 1 2 ⎞ ⎟ ⎠ ρ νm 2 1.062 0.967 0.923 0.873 0.813 0.736 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― 2 B.1.2

(57)

Bilaga 1

B.1.2 Formfaktorer utvändig vindlast Tabell 7.1, SS‐EN 1991‐1‐4, 7.2.2 = ―h d 3.44 Interpolering av kolumn E ger:cpe.10E −0.5+―――――((−0.7−−0.5)) = − 5 1 ((3.44−1)) −0.622 ≔ cpe.10D 0.8 ≔

cpe.10 cpe.10Dcpe.10E=1.422

Vindlast Ekva on 4.8, SS‐EN 1991‐1‐4, 4.5

we qpcpe.10= 1.511 1.375 1.313 1.242 1.156 1.047 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― 2 Utbredd vindlast per våningsplan ≔ Q0 1.092 ――⋅ = 2 ⎛ ⎜ ⎝― 1 2 ⎞ ⎟ ⎠hplan 1.638 ―― ≔ Q1_6 1.092 ――⋅ = 2 hplan 3.276 ―― ≔ Q7 1.092 ――⋅ + = 2 2.3 1.206 ――2 ⋅0.7 3.356 ―― ≔ Q8_9 1.206 ――⋅ = 2 hplan 3.618 ―― ≔ Q10 1.206 ――⋅ + = 2 1.15 1.295 ――2 ⋅1.85 3.783 ―― ≔ Q11_12 1.295 ――⋅ = 2 hplan 3.885 ―― ≔ Q13_14 1.37 ――⋅ = 2 hplan 4.11 ―― ≔ Q15 1.37 ――⋅ + = 2 1.85 1.434 ――2 ⋅1.15 4.184 ―― B.1.3

(58)

Bilaga 1

B.1.3 ≔ Q16_17 1.434 ――⋅ = 2 hplan 4.302 ―― ≔ Q18 1.434 ――⋅ + = 2 0.7 1.576 ――2 ⋅2.3 4.629 ―― ≔ Q19_24 1.576 ――⋅ = 2 hplan 4.728 ―― ≔ Q25 1.576 ――⋅ = 2 ⎛ ⎜ ⎝― 1 2 ⎞ ⎟ ⎠ hplan 2.364 ―― B.1.4

(59)

Bilaga 2

Beräkningar toppaccelera on

Indata ≔ n1 0.758 Första modens egenfrekvens, given från FEM‐Designhref 10 Referenshöjdz hhplan=72 ≔ Iv_75 0.181 Turbulensintensiteten på höjden 75 m Fz 118409 Given från FEM‐Designg 9.82 ― 2 Övriga indata samt förklaringar och beräkningar, se vindlastberäkningar Bilaga 1 Medelvindhas gheten Stycke 6.3.2 (1), EKS 10, Kap. 1.1.4

Omvandling från återkoms d på 50 år  ll 1 år enl. ISO 10137/6897Ta 5 ≔ νm.5ar 0.75⋅νb⋅ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾1−⎛ = ⎝ ⋅ 0.2 ln⎛ ⎝ −ln⎛ ⎝ − 1 ⎛ ⎝ ―1 Ta ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ 20.523 ― ≔ νm.1ar νm.5ar⋅0.72=14.777 ―

Has ghetstrycket Stycke 6.3.1 (1) Anm. 3, EKS 10, Kap. 1.1.4

qm ⎛⎝ +1 6⋅Iv_75⎞⎠⋅⎛ ⋅ ⋅ = ⎝― 1 2 ⎞ ⎟ ⎠ ρ ⎛⎝νm.1ar⋅1.215⋅c0⎞⎠ 2 0.42 ―― 2 Bakgrundsrespons Stycke 6.3.1 (1) Anm. 3, EKS 10, Kap. 1.1.4B ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾exp⎛ = ⎝ + −0.05 ⎛ ⎝ ――h href ⎞ ⎟ ⎠ ⎛ ⎜ ⎝1−― b h ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ + 0.04 0.01⋅⎛ ⎝ ――h href ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ 0.864 = B2 0.746

Modfunk onen vid lägsta egenfrekvensen Ekva on F.13, SS‐EN 1991‐1‐4, F.3

ζ 1.5 ≔ Φ1 = ⎝― z h ⎞ ⎟ ⎠ ζ 0.941 B.2.1

(60)

Bilaga 2

B.2.1

Ekvivalent massa Ekva on F.17, SS‐EN 1991‐1‐4, F.5 En approxima on av μeges av bärverkets massa 

per ytenhet i sni et med den största utböjningen:mbärverkFz= g ⎛⎝1.206 10⋅ 7⎞⎠μe ―――mbärverk= ⋅ h b ⎛⎝7.375 10⋅ 3⎞⎠ ―― 2 ≔ me μeb=⎛⎝1.608 10⋅ 5⎞⎠ ―

Formfaktor Ekva on 7.9, SS‐EN 1991‐1‐4, 7.6

φ ――(( ⋅b d))= ⋅

b d 1 Ekva on 7.28, SS‐EN 1991‐1‐4, 7.13Enskilda delars A/bru oarea. 

Fyllnadsgraden antas 1,0λ 70 Tabell 7.16, SS‐EN 1991‐1‐4, 7.13 Prametrarna ovan ger:ψλ 0.92 Figur 7.36, SS‐EN 1991‐1‐4, 7.13ψr 1.0 Figur 7.24, SS‐EN 1991‐1‐4, 7.6  Byggnaden saknar avrundade hörncf.0 −0.7121 ln⋅ ⎛ + = ⎝― d b ⎞ ⎟ ⎠ 2.1460 2.146 Figur 7.23, SS‐EN 1991‐1‐4, 7.6cf cf.0ψrψλ=1.974 Logaritmiska dekrement ≔ δs 0.1 ≔ δd 0 ≔ δa ―――――⎛⎝cfρ νm.1ar⎞⎠= ⋅ ⋅ 2 n1 μe 0.003 Ekva on F.18, SS‐EN 1991‐1‐4, F.5δ δa+δs+δd=0.103 Ekva on F.15, SS‐EN 1991‐1‐4, F.5 B.2.2

(61)

Bilaga 2

Resonansrespons Stycke 6.3.1 (1) Anm. 3, EKS 10, Kap. 1.1.4R ‾‾‾‾‾‾‾‾‾‾‾‾‾ ――――――⎛⎝2⋅ ⋅F ϕbϕh⎞⎠ + δs δa där:yC ―――⎛⎝150⋅n1⎞⎠ = νm.1ar 7.695 ≔ ϕh ―――――1 = ⎛ ⎜ ⎝ + 1 ――――⎛⎝2⋅n1h⎞⎠ νm.1ar ⎞ ⎟ ⎠ 0.115 ≔ ϕb ――――――1 = ⎛ ⎜ ⎝ + 1 ――――⎛⎝3.2⋅n1b⎞⎠ νm.1ar ⎞ ⎟ ⎠ 0.218 ≔ F ――――――⎛⎝ ⋅4 yC⎞⎠ = ⎛ ⎝ +1 70.8⋅yC 2 ⎠ ―5 6 0.029 ≔ R = ‾‾‾‾‾‾‾‾‾‾‾‾‾ ――――――⎛⎝2⋅ ⋅F ϕbϕh⎞⎠ + δs δa 0.212 = R2 0.045 Medelvärde av uppkorsningsfrekvensen Stycke 6.3.1 (1) Anm. 3, EKS 10, Kap. 1.1.4ν n1⋅――――R = ‾‾‾‾‾‾‾B2+R2 0.181 ―1 Spetsfaktor Stycke 6.3.1 (1) Anm. 3, EKS 10, Kap. 1.1.4T 600 Ekva on B.4, SS‐EN 1991‐1‐4, B.2kp ‾‾‾‾‾‾‾‾‾2 ln (( ⋅⋅ ν T))+―――――0.6 = ‾‾‾‾‾‾‾‾‾2 ln (( ⋅ ν T)) 3.258 där: kp≥3 OK! B.2.3

(62)

Bilaga 2

Modfunk onen vid lägsta egenfrekvensen Stycke 6.3.2 (1), EKS 10, Kap. 1.1.4

ϕ1 = ⎝― z h ⎞ ⎟ ⎠ 1.5 0.941 Standardavvikelse Stycke 6.3.2 (1), EKS 10, Kap. 1.1.4σa.x ――――――――⎛⎝3⋅Iv_75R qmb cfϕ1⎞⎠= me 0.012 ―2 Maximal accelera on Stycke 6.3.2 (1), EKS 10, Kap. 1.1.4X kpσa.x=0.04 ― 2 B.2.4

References

Related documents

This approach is related to fundamental analysis research in accounting, which involves determining the intrinsic value of a firm without reference to the stock

“language” for communicating the vision, business plan and strategy throughout the organisation.. The information contained in the balanced scorecard needs to be

This study adopts a feminist social work perspective to explore and explain how the gender division of roles affect the status and position of a group of Sub

Pipe sounds are shaped by a practitioner called a voicer, in a process that is essentially one of gradual transformation of sound; that process is called voicing.. The task of

improvisers/ jazz musicians- Jan-Gunnar Hoff and Audun Kleive and myself- together with world-leading recording engineer and recording innovator Morten Lindberg of 2l, set out to

”But I promise you one thing, my lady, I will never hurt you.” Han fortsätter sedan med: “Do you drink wine?”, varpå Sansa svarar: ”When I have to.”, och Tyion

The moving cartoon is a subgenre within drawn animation and pivoted around the purely visual humour and its gags and puns developed in caricatures and caption-less cartoons.. The

Supplying source code of the target application allows for more sophisticated fuzzing, such as detecting new execution paths which will improve code coverage.. The outcome of a