• No results found

Smell, memory and games. Exploring the potential of the sense of smell in memory games

N/A
N/A
Protected

Academic year: 2021

Share "Smell, memory and games. Exploring the potential of the sense of smell in memory games"

Copied!
53
0
0

Loading.... (view fulltext now)

Full text

(1)

 

 

 

 

 

Smell, Memory

and Games

 

Exploring  the  potential  of  the  sense  of    

smell  in  memory  games  

 

Maxime  Barnier  

 

 

 

 

Master  thesis  project  -­‐  Interaction  Design  Master  at  K3     Malmö  University  -­‐  Sweden  2015  

                 

Supervisor:  Simon  Niedenthal   Examiner:  Jonas  Löwgren   Examination:  2nd  June,  2015  

(2)

Table of contents

Abstract  ...  4  

1.Introduction  ...  5  

2.  Research  focus  ...  6  

3.  Literature  overview  and  related  works  ...  8  

3.1  An  Understanding  of  smell  and  scents  in  our  society  ...  8  

How  the  sense  of  smell  works  ...  9  

The  classification  of  smell  ...  10  

The  power  of  smell  ...  12  

3.2  The  human  memory  ...  13  

Long-­‐term  store  and  Chunking  ...  15  

Training  the  memory  of  smells  ...  16  

3.4  Learning  with  games  ...  16  

Game  and  Gamification  ...  16  

Tangible  product  ...  19  

3.5  Smell  in  game  design  ...  21  

4.  Methodology  ...  25  

4.1  Research  through  design  ...  25  

4.2  A  Game  design  approach  ...  25  

5.  Process  and  results  ...  27  

5.1  Defining  an  olfactory  game  sharpening  the  memory  ...  27  

Guess  my  face  ...  27  

Gameplay  ...  28  

5.2  Experiments  ...  32  

Prototype  1  ...  32  

Prototype  2  ...  39  

(3)

7.  Reflect  ...  49   Conclusions  ...  49   Discussion  ...  50   Further  works  ...  51   Acknowledgments  ...  52   References  ...  53      

 

(4)

 

Abstract  

 

This  study  is  focused  on  the  impact  of  smell  on  the  memory  in  the  context  of  games.   The  aim  is  to  understand  what  the  effects  of  smell  on  human’s  memorization  and   learning  process  are.  The  research  topic  is  explored  through  creating  a  memory  game   designed  specifically  for  the  study:  “Guess  My  Face”.    In  this  game,  the  players  have  to   memorize  pictures  of  faces  parts  using  their  specific  scents.  The  game’s  goal  is  to   manage  to  compose  a  random  face  provided  by  the  game  with  the  face  parts  that  the   players  learned.  However,  the  difficulty  lies  in  the  fact  that  the  players  do  not  see  the   face  parts  pictures  during  the  game  and  so,  have  to  rely  on  their  sense  of  smell  alone.    

The  game  intends  to  contribute  to  the  research  area  in  different  ways.  First,  it  provides   a  technological  solution  for  involving  the  inclusion  of  smell  in  games  by  using  smell   boxes  connected  to  the  computer.    Second,  the  playtestings  of  the  game  highlight   issues  that  a  game  designer  has  to  take  account  by  involving  smell:  balancing  the   strengths  of  the  scents,  participants  experiencing  dizziness  after  smelling  a  lot  of   different  scents,  the  amount  of  time  that  smells  remain  in  the  air,  the  fact  that  coffee   can  be  used  to  neutralize  scents.  Finally,  the  game  contributes  to  the  exploration  of   the  way  that  smell  triggers  memories  and  how  it  could  help  for  enhancing  learning.      

Through  the  iterations  of  testing,  the  study  reveals  that  smell  is  a  sense  that  people  do   not  often  rely  on  for  memorizing  and  they  prefer  visual  memory.  Moreover,  we  learn   that  players  memorize  pictures  more  easily  when  scent  is  involved,  as  they  use  several   cognitive  strategies  or  reflexes:  characterizing  the  scents  with  adjectives  or  identifying   their  origin  (fruits,  woods),  involving  emotions  (disgust,  strangeness),  and  relying  on   personal  experience  (creating  a  link  between  a  scent  and  picture  thanks  to  the  

memory  of  a  person/object/event).  This  cognitive  behaviour  shows  that  smell  has  the   potential  to  enhance  memory  by  creating  meaningful  knowledge  and  making  the   assimilation  of  information  easier,  an  arena  that  has  been  dealt  with  by  George  Miller   in  his  ’chunking  theory’  (Thompson  et  al.,  2005).  

 

       

(5)

1.Introduction    

 

Since  I  started  to  work  in  interaction  design,  I  intended  to  understand  and  explore  the   game  design  arena.  This  choice  is  based  on  the  idea  that  games  could  be  an  efficient   way  to  motivate  people  arouse  their  interest  in  a  particular  subject  or  activity  that  they   usually  would  not  deal  with.    For  example,  my  last  master  project  was  focused  on   gamification  and  the  learning  process  for  children  with  Down’s  syndrome.  I  analyzed   the  ways  games  could  be  adapted  for  this  purpose.  For  this  study,  I  wanted  to  go  a   step  further  by  dealing  with  game  design  in  more  detail  and  exploring  its  limits.   Working  with  the  sense  of  smell  was  a  proposition  of  Simon  Niedenthal,  a  researcher   in  the  area  of  smell  and  games  at  Malmö  University.  I  chose  to  explore  this  topic,  as  it   was  an  opportunity  for  me  to  deal  with  games  from  a  different  perspective.  However,  I   saw  that  current  trend  in  the  digital  area  is  to  use  smell  for  immersion  enhancing.  A  lot   of  products  and  concepts  started  to  come  out,  such  as  diffusion  devices  for  laptops.   Moreover,  most  of  the  previous  work  involving  smell  in  digital  media  has  dealt  with   immersion  enhancement  and,  unfortunately,  proposed  experiences  that  did  not  work   or  caused  too  many  issues  (Niedenthal,  2012).  As  such,  I  understood  that  smell  

remains  opened  for  studies  and  could  even  open  up  potentials  other  than  immersion.  I   remembered  that  smell  has  the  particularity  to  bring  back  people’s  memories.  I  saw   this  as  a  potential  enhancement  of  games  which  uses  memory  and  by  extension,  in  my   own  work,  another  way  to  help  the  learning  process  within  games.    

 

This  study  aims  to  create  a  game  that  explores  the  potential  of  scents  in  human   memory.  As  such,  I  would  like  to  contribute  for  several  domains.  The  first  one  is  the   game  design  area,  as  the  project  could  contribute  to  a  personal  investigation  of   combining  smell  and  games  through  rules,  challenges,  etcetera.  Secondly,  the  

potential  effects  of  smell  on  memory  could  contribute  to  psychological  knowledge  and   could  open  up  on  new  ways  of  learning.  Finally,  the  domain  of  interaction  design  could   be  enriched  by  the  technology  developed  during  the  project  (combining  smell  and   digital  devices)  and  moreover,  the  project  could  contribute  to  the  creation  of  new   interaction  design  projects  involving  the  effect  of  smells  on  memory.  

                 

(6)

2.  Research  focus  

 

In  the  field  of  interaction  design,  olfaction  is  a  topic  still  open  for  studies.  The  idea  of   combining  scents  and  technologies  appeared  in  the  middle  of  the  20th  century  with  

projects  such  as  Aromarama1,  which  intended  to  add  an  olfactory  immersion  in  a  

theatre.  However,  the  potential  of  such  a  combination  remains  blurry  and  researchers   continue  to  build  prototypes  looking  into  the  topic2.  

 

The  gaming  industry  is  currently  evolving  thanks  to  new  technologies  which  improve   players’  experiences  through  the  means  of  immersion.  A  noteworthy  example  is  the   Oculus  Rift,  which  simulates  real  human  vision  in  video-­‐games,  and  is  currently   developing  the  means  to  extend  its  immersion  potential  to  olfactics  with  the  FeelReal   add-­‐on  (see  Figure1).  

 

   

Figure1.  FeelReal  prototype,  an  Oculus  Rift  add-­‐on  providing  seven  different  smells  for  game  immersion   (Ocean,  Jungle,  Fire,  Grass,  Powder,  Flowers,  Metal),  as  well  as  cool  or  hot  blasts  of  air.  

 

However,  it  seems  that  smell  in  games  could  provide  more  than  just  the  potential  of   immersion.  Smell  has  other  impacts  on  human  behavior  that  could  expand  on  original   gameplays,  or  even  train  cognitive  processes  through  gamified  applications  or  more   serious  games.    

 

Smell  and  the  memorization  of  past  experience  have  a  close  connection,  as  illustrated   by  Jean-­‐Pierre  Royet  et  al.  (2013)  in  their  study  of  the  impact  of  expertise  in  olfaction:        

«  […]  the  development  of  cerebral  imaging  techniques  has  enabled  the  

identification  of  brain  areas  and  neural  networks  involved  in  odor  processing,  revealing   functional  and  structural  modifications  as  a  function  of  experience.  »  

                                                                                                               

1  Henry Hart (2014). Innovations in Cinema: "AromaRama" - National Board of Review. 2015.

Available at: http://www.nationalboardofreview.org/2014/01/innovations-cinema-aromarama/

[Accessed 16 March 2015].

2   http://www.digital-olfaction.com/news-about-digital-olfaction/among-presentations-at-dos-2nd-world-congress-2014  

(7)

 

In  the  novel  ‘In  Search  of  Lost  Time’  (Proust,  1913),  the  author  uses  madeleine  cakes  as   a  vehicle  to  illustrate  the  ability  of  smell  to  trigger  past  memories.  In  the  same  way,   using  smell  in  games  could  be  a  way  to  handle  memorization  processes  and  perhaps  to   train  the  memorization  of  specific  information.  

 

Such  a  study  could  contribute  on  different  levels.  Firstly,  as  smell  remains  a  sense  with   unknown  potential,  exploring  the  impact  of  olfactory  interaction  on  memory  could   help  researches  to  go  deeper  in  the  understanding  of  the  relation  between  smell  and   cognitive  processes.  Secondly,  as  it  seems  that  the  brain  shows  improved  potential  for   elasticity  if  we  train  our  memory  (Belleville  et  al.  2010)  providing  an  example  of   memory  training  through  games  could  open  up  the  creation  of  tools  for  aiding  the   treatment  of  memory  disorders,  such  as  Alzheimer’s  Disease.  

 

Specifically,  this  study  will  explore  the  effects  of  scent  on  human  memory  and   cognitive  processes  in  order  to  create  a  specific  olfactory  memory  game.    

The  method  will  follow  a  game  design  approach  as  the  research  will  be  fed  thanks  to   playtestings  of  game  prototypes.  These  playtestings  will  highlight  issues  and  feedback   about  the  game  experience  and  the  manner  in  which  smell  interacts  with  the  players’   memorization  mechanics.  This  information  will  then  open  up  on  game  improvements   and  new  iterations  of  play  testing.  

 

Research  question:      

How  can  a  game  be  enriched  by  the  effect  of  smell  interaction  on  human   memorization  mechanics?    

 

The  study  will  first  outline  current  understanding  of  the  sense  of  smell,  and  will  then   focus  on  theories  of  human  memory  in  order  to  understand  more  precisely  how  smell   has  an  impact  on  human  cognitive  processes  for  memorization.  Moreover,  as  the   research  aim  is  to  create  a  memory  game,  we  will  talk  about  designing  games  and   game  knowledge  that  could  improve  the  final  product.  

               

(8)

3.  Literature  overview  and  related  works  

 

3.1  An  Understanding  of  smell  and  scents  in  our  society  

 

Humans  do  not  rely  often  on  their  smell.  This  is  understandable  as  3.5%  of  the  

information  about  our  environment  comes  from  our  sense  of  smell,  as  opposed  to  83%   from  sight  and  11%  from  hearing  (Gould  and  Roffrey-­‐Barentsen,  2014).  Smell  can   provide  effective  information  for  detecting  danger  (for  example,  smoke  or  gas)  or   checking  food  quality  (rotten  meat,  soured  milk),  but  society  has  moved  away  from   using  this  sense  as  the  primary  alert  for  this  kind  of  danger  through  such  measures  as   expiration  dates  on  food  packaging  and  installing  fire  alarms  in  buildings.  

 

In  the  ‘Foul  and  the  Fragrant’  (Corbin,  1986),  the  author  criticizes  how  the  society   came  to  deodorize  the  environment  through  the  suppression  of  odours  in  public  places   and  how  that  process  made  people  intolerant  to  new  scents.  One  of  the  sources  in  the   book  refers  to  epidemics,  such  as  Cholera  in  1832  France,  which  to  led  people  avoiding   crowds,  public  smells  and  sources  of  disease,  and  supported  keeping  to  private,  clean   areas,  i.e.  houses.  The  idea  of  keeping  away  scents  was  sustained  by  the  bourgeoisie   social  class  who  intended  to  maintain  the  “Purity  rule.”  This  law  involved  using   fragrance  and  fresh  clothes  in  order  to  get  rid  of  natural  body  scents  and  secretions   referring  to  human’s  bestial  origin.  Today,  the  tradition  continues  through  the  

expansion  of  the  advertisement  and  manufacture  of  deodorisation  products  for  use  in   the  home  and  personal-­‐hygiene.    

 

However,  even  if  humans  being  try  as  much  as  possible  to  limit  their  sense  of  smell,  it   remains  the  most  important  sense  for  other  animals.  Animals  use  this  powerful  sense   for  detecting  prey  and  food,  as  well  as  for  understanding  their  surrounding  area  and   some  species  have  a  more  developed  sense  of  smell  than  others  (Van  Brakel  et  al.,   2014).  The  dog’s  nose,  for  example,  is  sensitive  enough  to  smell  and  identify  some   forms  of  cancer  in  other  species.  Likewise,  the  bee  has  a  very  acute  sense  of  smell,   which  is  sensitive  enough  to  identify  the  bacteria  from  human  breath.  Mosquitoes  use   their  sense  of  smell  to  detect  chemicals  to  evaluate  the  stress  level  and  the  presence   of  disease  in  potential  prey,  allowing  them  to  choose  the  most  desirable  blood.      

As  we  have  seen,  the  human  sense  of  smell,  as  well  as  its  role  in  our  culture,  is  

comparatively  limited.  Nevertheless,  a  powerful  potential  remains  in  that  the  sense  of   smell  can  trigger  memories  in  human’s  cognitive  process.    

     

(9)

How  the  sense  of  smell  works    

If  we  want  to  understand  the  origin  of  smells,  we  need  to  zoom  in  to  the  atomic  level.   Indeed,  through  the  eyes  of  biologists,  smelly  elements  are  actually  simple  chemical   components  made  from  specific  atoms.  It  seems  it  is  possible  to  count  on  one  hand   the  atoms  that  contribute  to  smells  detectable  by  humans:  nitrogen,  sulphur,  oxygen,   carbon  and  hydrogen.  Different  combinations  of  these  elements  create  the  entire   olfactory  spectrum  that  we  experience  in  our  world.  Although  the  identification  of   these  “smell  molecules”  seems  to  be  clear  and  understood  in  the  scientific  community,   the  specific  way  that  these  molecules  are  interpreted  by  the  human  brain  is  not  fully   understood.  Two  different  theories  exist  which  attempt  to  define  it,  the  first  is  focused   on  molecule  shapes  being  detected  by  our  olfactory  sensors,  and  the  other  deals  with   the  wavelengths  of  the  atoms.  According  to  Luca  Turin  (2005),  biophysicist  in  the   science  of  smell,  experiments  have  evidenced  that  smell  molecules  are  specific   depending  on  the  vibrations  they  induce  in  our  olfactory  sensors.  In  that  way,  the   smell  molecules  send  neuron  messages  by  triggering  electron  transfers  thanks  to  their   particular  vibrations.  

 

From  a  biological  perspective,  the  area  responsible  for  smell  detection  and   identification  is  situated  above  the  nasal  cavity.  This  small  system  is  comprised  of   olfactory  nerve  fibres  that  are  stimulated  by  smelly  components  and  detect  around   350  signals.  The  stimulation  of  these  nerves  enable  the  identification  of  thousands  of   odours.  The  signals  gathered  in  the  olfactory  bulb  are  sent  to  the  brain  via  the  nerves   and  interpreted  in  order  to  identify  a  specific  smell  (see  Figure  2).  

 

   

Figure  2.  Representation  of  the  human  olfactory  system,  University  of  Delaware.    

It  is  important  to  highlight  the  role  of  pheromones  as  they  contribute  an  important   behavioural  impact  on  life  beings,  and  are  an  essential  means  of  communication  for  

(10)

animals.  Pheromones  do  not  have  to  be  mingled  with  scents  and  have  different   characteristics  compared  to  that  of  scents.  This  idea  is  supported  by  the  fact  that   pheromone  sensors  are  separated  from  the  olfactory  bulb,  even  if  they  exist  in  the   same  area  of  the  nose  (Van  Brakel  et  al.,  2014).  Pheromones  are  used  by  animals   mostly  to  find  a  mate  in  order  to  reproduce.  Ants  rely  on  pheromones  to  communicate   with  each  other  and  find  food.  However,  for  human  beings  the  effect  of  pheromones  is   still  a  controversial  subject,  even  if  some  maintain  that  they  have  an  impact  on  

behaviour.  As  an  example,  an  experiment  showed  that  employees  became  cheerful,   happier  and  more  social  when  love  pheromones  were  secretly  spread  in  their  office.   Although  pheromones  remain  a  topic  of  interest  and  are  still  open  to  exploration,  they   will  not  be  studied  throughout  this  project,  as  they  do  not  act  on  emotions  and  

memorization,  but  rather  on  behaviour.  

 

The  classification  of  smell    

There  is  a  complexity  around  the  analysis  and  classification  smell.  Indeed,  there  is  no   efficient  ways  to  describe  a  smell.  As  Jospeh  Kay  (2004)  explains  in  his  study  of  scent  in   HCI  (Human  Center  Interface):  

 

“The  difficulty  is  that  we  have  no  good  

abstract  or  higher-­‐level  categories,  other  than  the  smells   themselves.  What  does  mint  taste  like?  Well...mint.”  (Kay,  2004)  

 

In  addition,  smells  are  subjective  and  this  interferes  with  any  attempts  to  make  a  smell   classification  system  as  everyone  has  their  own  opinions  and  tastes  regarding  scents.   For  example,  a  scent  described  as  “floral”  could  not  be  identified  as  such  if  someone   perceives  it  as  unpleasant.  In  that  way,  it  seems  that  the  scientific  area  still  struggles  to   create  a  reproducible  and  rigorous  classification  scheme  for  smells  (Kay,  2004).    

 

The  domain  of  perfumery,  however,  creates  its  own  classifications  based  on  human’s   perception  of  smells.  One  of  the  most  known  smell  graphs  comes  from  Michael   Edwards  (see  Figure  3).  Most  perfumes  today  are  based  on  this  representation  as  it   provides  a  clear  vocabulary  and  logic  for  identifying  and  describing  scents.  

(11)

   

Figure  3.  The  Fragrance  wheel  developed  by  Michael  Edwards  in  1983.  This  representation  is  a  modern   one  as  the  schema  comes  from  “Fragrances  of  the  world”  published  in  2010.  

 

For  Laura  Dona  (2009),  who  works  as  a  fragrance  coach  by  formulating  the  language  of   scent  for  customer  services,  smell  is  not  as  relative  as  people  think.  She  presents  the   work  of  Zarzo  and  Stanson  that,  for  her,  found  an  efficient  solution  for  developing  a   common  scent  classification.  Based  on  the  previous  classification  theories  of  Paul   Jellinek  (Smell  mapping  created  in  1951)  and  the  database  of  Boelens-­‐Haring  (list  of   scents  compounds),  they  created  a  two  dimensional  sensory  map  of  odor  descriptors   (see  Figure  4).  

(12)

   

Figure  4.  Two  dimensional  sensory  map  of  odors  descriptors  by  Zarzo  and  Stanson.    

But  this  representation  remains  complicated  for  laypeople,  and  while  the  mapping   provides  a  clear  and  detailed  development  of  scent  compounds,  the  simplicity  of   Michael  Edwards’  wheel  delivers  a  simple  method  for  classifying  scents.  

 

The  power  of  smell    

Previously,  we  saw  that  smell  for  humans  is  limited  and  minimized  in  society  compared   to  the  other  senses.  However,  the  loss  of  smell  could  have  serious  consequences  on   human’s  health  and  psychology.  In  fact,  without  smell,  humans  could  experience  a   great  change  in  quality  of  life  quality  and  behaviour.  A  study  has  shown  that  patients   with  olfactory  impairment  can  experience  social  isolation  and  anhedonia  (the  inability   to  experience  pleasure).    

 

From  a  biological  perspective,  smell  has  an  impact  on  our  eating  behaviour  as  it   triggers  the  craving  of  a  specific  food  depending  on  which  nutrients  an  individual  may   be  lacking.  This  particularity  extends  to  the  stimulation  of  appetite  for  similar  food:   after  exposure  to  a  specific  odour,  such  as  banana,  we  develop  an  appetite  for  the   food  in  question  and  related  sweet  products,  for  example,  a  chocolate  brownie.    

(13)

What  is  of  interest  in  this  study  is  the  potential  of  smell  to  trigger  memories.  This   particular  experience  is  often  illustrated  through  the  example  of  Proust’s  madeleine   cakes.  In  his  book  ‘In  Search  of  Lost  Time’  (1931)  the  author  talks  about  how  the  smell   of  cake  dipped  in  tea  brings  back  strong  memories  from  his  childhood.  Madeleine   episode  became  a  touchstone  for  smell-­‐memory  studies  and  inspired  poets  as  well  as   psychologists.  Indeed,  psychologists  saw  in  Proust’s  novel  a  concept  to  explore  in  order   to  understand  the  effect  of  scent  on  human  memory.  However,  through  the  analysis  of   psychologist  Avery  Gilbert  (2008),  it  seems  that  what  Proust  describes  is  not  what   most  people  experience  when  memories  are  triggered  in  their  minds  thanks  to  

particulars  scents.  Gilbert  describes  the  fact  that,  in  the  process  of  reminiscing  through   scents,  the  emotional  experience  is  automatic  unlike  Proust’s  experience  of  him  

himself  triggering  the  memories.  Moreover,  Avery  Gilbert  highlights  that  Proust’s   experience  deals  first  with  pleasure  and  emotions,  and  second  with  experiences,   pictures,  sounds  and  mood.  Through  this  analysis,  Avery  Gilbert  concludes  on  the  fact   that  the  scientific  community  used  to  base  their  research  on  a  complex  neuronal   process  that  does  not  seem  to  be  the  one  that  people  commonly  experience  by   smelling  scents.  

 

Scientists  explain  that  smell  can  trigger  pictures,  people,  sounds  and  moods  in  our   minds  because  of  the  proximity  between  the  brain  area  responsible  of  the  olfaction   and  the  area  dealing  with  emotions  (Thompson  et  al.,  2005).  Another  aspect  shows   that  olfaction  is  connected  with  memory:  a  study  has  shown  that  the  loss  of  smell   precedes  the  onset  of  Alzheimer’s  disease  and  other  forms  of  dementia  (Belleville  et   al.,  2011).  

 

Since  the  relation  between  smell  and  memory  appears  to  be  linked,  we  will  continue   on  an  understanding  of  human  memory  and  its  cognitive  mechanisms.  

 

3.2  The  human  memory  

   

For  Thompson  et  al.  (2005),  memory  is  the  origin  of  consciousness  since  without   memory,  beings  can’t  have  minds.  The  development  of  the  memory  seems  to  be  at  the   very  origin  of  the  evolution  of  complex  forms  of  life,  as  it  remains  at  the  genetic  level.   For  example,  some  animals’  reflexes  and  behaviours  appear  to  be  assimilated  at  their   birth.  This  understanding  involves  the  fact  that  memory  is  not  limited  to  the  

memorization  of  simple  information  (pictures,  sounds),  but  that  it  involves  more   complex  processes  and  capacities.  

According  to  Thompson  et  al.,  memory  is  divided  into  several  kinds  of  memory  which   deal  with  specific  memorization  mechanisms  and  occur  in  different  parts  of  the  brain   (see  Figure  5).  

(14)

   

Figure  5.  Schema  of  the  different  types  or  forms  of  memory  and  the  respective  brain  structure  involved   (Memory:  The  key  of  Consciousness,  2005)  

 

On  the  one  hand,  we  talk  about  declarative  or  explicit  memories.  This  memory  is  the   one  that  we  are  conscious  of,  that  we  can  access  just  as  easily  as  opening  drawers   from  labelled  shelves.  This  explicit  memory  is  composed  by  semantic  memories:  the   total  knowledge  of  semantic  sets  (words,  numbers,  names)  and  episodic  memory,   dealing  with  memorizing  events  and  experiences  (What  did  you  eat  for  breakfast?   Which  music  did  you  listen  yesterday?).  According  to  Thompson  et  al.  (2005),   declarative  memory  is  made  up  of  short-­‐term  or  “working”  memory.  This  particular   memory  is  the  one  that  we  often  use  to  remember  tiny  pieces  of  information  such  as   addresses,  phone  numbers  etcetera,  and  it  remains  for  just  few  seconds.  The  authors   highlight  that  this  memory  is  responsible  for  consciousness  or  awareness  and  even   general  intelligence.  

 

On  the  other  hand  is  Implicit,  or  Non-­‐declarative,  memory  dealing  with  knowledge  and   information  that  we  are  not  directly  aware  of.  As  an  example,  Thompson  et  al.  (2005)   talks  about  people  who  could  refer  to  information  that  they  heard  during  unconscious   phases  (Priming  learning).  Moreover,  this  kind  of  memory  seems  to  be  responsible  for   learning  to  walk  and  talk.  In  that  domain,  Pavlov’s  work  on  conditioning  comes  into   play.  Conditioning  was  focused  on  behavioural  changes  induced  by  stimuli:  The   experiments  from  this  research  area  showed  that  a  subject  could  “learn”  a  specific   behaviour  by  being  stimulated  by  the  same  stimulus  that  triggered  the  behaviour  in   question.    

Conditioning  is  dividing  in  several  kinds  of  learning:  the  habituation  (becoming   insensitive  to  a  repeated  stimulus),  associative  learning  (acting  in  response  to  a  

(15)

stimulus),  emotional  learning  (the  stimulus  involves  emotions),  instrumental  learning   (acting  before  the  stimulus  occurs),  priming  (presented  above)  and  probability  and   category  learning  (get  the  right  stimulus  pattern  the  more  you  are  stimulated).  These   aspects  shows  how  declarative  memory  deals  with  unconscious  memories  and   knowledge:  we  are  not  aware  of  these  behaviours  and  reflexes,  but  our  nerves   become  more  and  more  familiar  with  these  stimuli.  Further  proof  that  this  non-­‐ declarative  memory  process  is  innate  for  living  beings  can  be  found  in  that  scientists   discovered  that  foetuses  became  less  and  less  sensitive  to  loud  noises  the  more  they   were  stimulated.  

 

The  memory  involved  in  this  study  refers  mostly  to  declarative  memory  and,  more   specifically,  to  “working  memory”.  

 

Long-­‐term  store  and  Chunking    

Working  memory  has  two  aspects:  short-­‐  and  long-­‐term  storage.  The  short-­‐term  store   refers  to  data  that  we  keep  for  few  seconds  or  minutes.    

In  our  study,  we  are  going  to  focus  on  the  understanding  of  long-­‐term  storage.   The  most  common  way  to  memorize  is  through  repeating  information.  This  process,   called  “maintenance  rehearsal”  is  limited,  as  a  single  distraction  could  erase  the   retained  information.  

However,  studies  show  that  there  are  other  methodologies  that  help  in  the   memorization  of  information  long-­‐term.  George  Miller,  a  specialist  in  cognitive   psychology  devised  the  chunking  memory,  also  translated  as  “psychological  or  

perceptual  unit”  from  Thompson  et  al.  (2005).  This  theory  explains  that  we  memorize   through  chunks  of  information  (units  of  information).  In  the  example  presented  by   Thompson  et  al.  (2005),  there  are  twelve  chunks  (12  letters).  However,  as  the  order   creates  simple  words,  the  chunk  is  reduced  to  3  (see  Figure  6).  The  logic  is  the  smaller   a  chunk  is,  the  easier  it  is  to  memorize.  

 

   

Figure  6.  The  original  test  involved  twelve  different  letters.  In  this  case,  the  letters  form  three  distinctive   words  that  make  the  letters  memorization  easier.  

 

The  process  to  reduce  the  chunk  remains  in  our  ability  to  recode  information  into   something  familiar  and  meaningful.  The  example  from  the  Thompson’s  book  (2005)   presents  an  amateur  runner  that  memorized  about  70  digits  by  linking  the  number   pattern  with  times  made  in  world  record  running.  

(16)

Based  on  the  theory  of  chunks,  the  ability  to  memorize  depends  on  the  depth  of   processing,  or  in  other  words,  how  many  layers  of  logic  are  needed  to  reach  the   information  to  memorize.  In  that  way,  chunking  is  a  way  to  learn  which  draws  upon   the  knowledge  we  have  already  assimilated.  

 

Training  the  memory  of  smells    

According  to  cognitive  science,  working  memory  is  trainable  and  could  improve  several   cognitive  skills  depending  on  specific  exercises  (Morrison  &  Chein,  2010).  In  this  way,  it   seems  that  mental  tasks  such  as  multitasking,  attention  or  the  speed  of  mental  

processing  could  be  trained  and  improved.  The  long-­‐term  store  seems  open  for   training  the  acquisition  of  specifics,  chunking  or  mnemonic  process  like,  for  example,   memorising  smells.  

 

Thompson  et  al.  (2005)  explain  that  a  short-­‐term  sensory  memory  for  smell  exists,  but   has  the  same  default  compared  to  the  visual  one  as  it  can  preserve  information  for   brief  periods,  and  could  be  subject  to  a  lot  of  interferences.  

However,  using  the  chunking  process  could  be  a  way  to  assimilate  smells:  as  scent  can   be  described  with  knowledge  of  basic  adjectives  (wood,  floral,  oriental,  fresh)  the   process  seems  easy.  However,  according  to  Joseph  Kay,  using  adjectives  for  describing   smells  is  not  that  effective.  A  better  option  would  be  to  assimilate  scent  with  known   object  or  person  (leather,  tomato,  roses).  

 

There  exists  another  way  to  memorize  smell,  but  it  involves  prior-­‐knowledge  of  a  basic   smell  classification  system.  This  process  involves  identifying  smell  components,  but   this  strategy  is  very  limited  because,  as  Andrew  Livermore  and  David  G.Laing  (1998)   explain  in  their  study,  most  people  can  identify  around  3  or  4  different  scents  from  a   mixture,  even  if  it  is  made  of  just  a  few  molecules.  This  is  the  associative  process.  If  this   limit  is  reached  we  will  experience  the  mixture  as  a  whole  scent  (associative  process).    

 

Through  this  analysis,  training  the  memorization  of  smell  seems  to  rely  first  on  training   the  assimilation  of  the  scents  with  objects  and  elements  known  and  second,  on  

extending  its  own  vocabulary  for  classifying  the  scents.    

3.4  Learning  with  games  

Game  and  Gamification    

Before  getting  deeper  into  the  understanding  of  gamification,  we  are  going  to  focus  on   the  basic  definition  of  “what  is  a  game?”  For  Caillois  (2001),  the  answer  is  clear  and   involves  six  parameters:  free,  separate,  uncertain,  unproductive,  governed  by  rules,   and  make-­‐believe.  

(17)

A  game  is  free  as  it  is  not  mandatory,  the  player  has  the  choice  to  get  involve  or  not   within  the  game.  A  game  is  separate  with  limits  of  space  and  time  that  were  defined  in   advance.  ‘Uncertain’  refers  to  the  fact  that  the  outcomes  of  games  are  not  previously   known  or  defined.  A  game  is  unproductive  as  no  good  is  created  within  the  game.   Rules  are  set  and  practicable  only  within  the  game.  And  finally,  a  game  puts  the   players  in  a  fake  reality  as  opposed  to  real  life.  

 

Additionally,  Caillois  (2001)  defined  different  categories  of  game:  Agôn  (competitive   games),  Alea  (games  of  chance),  Mimicry  (mimic  games),  and  Ilinx  (games  involving   sensations  such  as  fear,  dizziness,  etcetera).  Moreover,  Caillois  (2001)  makes  a   distinction  between  two  different  kinds  of  “play”.  While  one  (Ludus)  refers  to  ruled   and  measured  activities,  the  other  (Paidia)  allows  the  player  to  create  and  improvise.   Combined  with  the  four  categories,  Paidia  and  Ludus  play  offer  a  large  range  of  games,   defined  in  Caillois’s  table  (see  Figure  7).  This  definition  of  play  has  been  a  basis  in  the   game  design  arena  as  it  enables  the  categorisation  of  practically  all  games.  

 

   

Figure  7.  Caillois’  categories  of  play  table.  (Caillois,  2001)    

This  classification  is  used  by  Katie  Salen  (2004).  Compared  to  Caillois’  table,  the  

authors  make  a  distinction  between  play  and  games,  and  present  their  relation  to  each   other.  There  are  two  ways  of  thinking:  game  is  part  of  game  or  play  is  part  of  game.   However  a  general  thought  underlines  the  definition  of  each  term:  On  one  hand,   “Play”  refers  to  every  kind  of  playful  activity  more  or  less  organized  and  mostly  open   to  “free”  actions  exploration.  On  the  other  hand,  games  refers  to  playful  activities  with   clear  and  explicit  rules.  Specifically,  the  author  shares  a  clear  definition  of  game:    

«  A  game  is  a  system  in  which  players  engage  in  an  artificial  conflict,  defined  by  rules,   that  results  in  a  quantifiable  outcome.  »  

(18)

Conversely,  Katie  Salen  (2004)  describes  toys  as  a  kind  of  play  that  does  not  have  rules   or  specific  goals.  

From  this  understanding,  the  author  highlight  one  particular  kind  of  game:  puzzles.  For   them,  puzzle  games  are  special  in  the  way  that  there  is  a  single  solution  for  succeeding   within  the  game  system.  

 

With  the  development  of  the  Internet  and  the  rise  of  video  games,  the  beginning  of   the  20th  century  welcomed  a  new  form  of  playing.  Games  started  to  be  integrated  in  

our  daily  life  by  way  of  gamification.  Gamification  was  known  has  a  manner  to   motivate  and  arouse  the  interest  of  people  for  non-­‐ludic  activities.  

 

From  the  perspective  of  Sebastian  Deterding  (2011),  gamification  can  be  defined   through  two  parameters,  “game”-­‐“play”(understood  as  “ludus”  and  “paidia”  from   Caillois’s  definition)  and  “whole”-­‐“part”  (see  Figure  8).  By  such,  Deterding  explains  that   what  makes  gamification  different  from  toys,  serious  game,  and  games  is  its  focus  on   game  design  elements  rather  than  a  whole  game.  

 

   

Figure  8.  Gamification  definition  schema  (Deterding,  2011)    

 

More  precisely,  gamification  uses  components  or  elements  from  games  that  arouse   interest  and  motivation.  Some  examples  of  these  elements  are  known  as  leader   boards,  profile  statuses,  ranks  and  badges.  But  the  list  remains  blurry  as  people  from  

(19)

different  domains  (games,  marketing)  define  their  own  “motivating  game  elements”   depending  on  their  own  marketing  strategies  (Priesbatsch,  2010).  

 

According  to  Sean  A.  Munson  et  al.  (2014),  the  efficiency  of  gamification  comes  from   its  power  to  change  tedious  activities  into  meaningful  and  motivating  experiences.  By   using  the  example  of  health  care,  the  author  defines  the  potential  of  the  gamification   for  making  people  change  their  behaviour.  Munson  et  al.  (2014)  base  their  research  on   behavioural  theories  and  explains  that  gamification  has  the  role  of  triggering  the  right   psychological  lever  in  order  to  make  people  motivated.  

 

For  Munson  et  al.  (2014),  there  are  three  different  ways  for  health  tracking:  personal   informatics,  games  and  gamification.  Personal  informatics  is  defined  as  a  tool  that   collects  and  interprets  data  from  one  person  (step  counter,  sleep  tracker,  etcetera).  In   that  case,  the  concept  is  simply  providing  information  to  the  user.  On  the  other  hand,   games  are  presented  as  engaging  fantasies  that  motivate  the  player  through  its  task  by   providing  goals  and  fast  feedback  on  the  accomplished  task  to  succeed  in  these  goals.   The  challenges  that  games  provide  through  their  goals  make  failure  fun.  The  

motivation  power  of  games  is  also  highlighted  in  the  idea  that  they  could  make   activities  really  immersive  thanks  to  well-­‐written  stories.  In  that  way,  emotions  in   games  have  an  actual  impact  on  the  player’s  motivation.  Moreover,  games  could   display  statuses  that  make  the  evolution  of  the  player  progressing  in  the  game  visible.   This  opens  the  possibilities  of  ranking  and  competition  that,  in  turn,  make  the  activity   even  more  challenging  and  motivating.  This  also  explains  that  sharing  and  competition   make  the  activity  more  social,  and  make  the  player  think  that  they  are  part  of  a  

community  with  players  who  support  each  other.  From  this  understanding  of  games,   the  author  explains  that  gamification  is  situated  between  personal  informatics  and   games.  In  other  words,  gamification  could  have  the  role  of  providing  actual  

information  from  the  “real  world”  while  providing  a  singular  playful  experience  that   motivates  the  player  to  gather  and  play  with  this  data.  

This  opens  the  possibilities  of  how  many  mechanics  gamification  could  keep  from   games  in  order  to  provide  the  motivation  required  for  the  players.  

 

As  we  saw,  gamification  provides  an  interesting  aspect  of  games  regarding  a  potential   to  arouse  interest  and  motivate  the  players  to  do  tasks  and  activities.  In  this  way,   elements  from  gamification  seem  to  be  accurate  for  the  development  of  this  thesis   project,  as  it  involves  an  assimilation  of  scents  from  the  player.  

 

Tangible  product    

Embody  interaction  is  a  concept  described  by  Paul  Dourish  (2001)  and  defined  as:    

(20)

 

In  other  words,  embody  interaction  refers  to  how  digitalized  systems  integrate  our   physical  and  social  environment.  In  our  case,  embody  interaction  could  be  understood   as  the  potential  of  using  tangible  object  for  digital  game.  

 

As  Dourish  (2001)  explains  through  the  example  of  MIT  Media  Lab’s  project  “Tangible   Bits”  (see  Figure  9),  there  is  a  trend  that  intends  to  digitalise  tangible  tool  we  

commonly  use.  The  watch  is  one  of  the  examples,  as  the  time  is  now  displayed  on   most  applications.  However,  it  explains  that  even  if  digital  and  physical  media  seems  to   be  informationally  the  same  (they  provide  the  same  information)  the  manner  of  how   we  interact  with  them  is  different:  they  are  not  interactionally  equivalent.  That  is  to   say,  extracting  digital  elements  and  making  them  tangible  is  actually  meaningful  as  it   provides  another  experience.  

 

   

Figure  9.  “Tangible  Bits”  explores  the  relation  between  Tangible  and  Graphical  elements  from  a  user-­‐ interface  and  how  these  two  domains  are  linked.  The  project  proposes  three  prototypes:  metaDESK,   transBOARD  and  the  ambiantROOM.  (Dourish,  2001)  

 

From  a  game  design  perspective,  the  idea  to  combine  digital  and  tangible  elements  is   an  emerging  concept  supported  by  the  development  of  mobile  devices.  Indeed,  these   technologies,  combined  with  our  surrounding  objects,  offer  a  new  panel  of  

interactions  for  games.  The  Volumique  Editions  explore  this  potential  through  a  large   panel  of  projects  combining  tablets,  smartphones,  books  and  board  games  (see  Figure   10).  

(21)

 

   

Figure  10.  “Les  éditions  Volumiques”  is  a  group  exploring  the  potential  of  combining  books  and  tangible   objects  with  mobile  devices.  Their  aim  is  to  give  a  second  life  to  non-­‐digital  objects  such  as  books  that   still  provide  interesting  interaction  potentials.  

 

One  of  the  interesting  points  to  deal  with  in  relation  to  a  tangible  object  is  its  impact   on  the  learning  process.  Studies  show  that  incorporating  a  tangible  object  in  teaching   material  for  children  could  help  them  to  learn  15%  more  efficiently  (Fumard,  2014).   However  according  to  Paul  Marshal  (2007),  tangible  interfaces  in  the  learning  process   does  not  seem  that  efficient,  as  the  possibilities  of  learning  enhancement  are  different   from  one  project  to  another.  As  such,  a  tangible  object  should  be  carefully  designed  to   fit  in  with  the  learning  goals  (Marshal,  2007).  

 

As  this  study’s  game  will  involve  learning  and  recognizing  smells,  the  interaction  within   the  game  could  improve  the  learning  process  of  the  player,  thanks  to  concrete  objects.    

3.5  Smell  in  game  design  

   

In  this  section,  we  will  define  an  understanding  of  games  that  involve  smell  and  

(22)

 

The  use  of  smells  in  board  games  aims  mostly  at  children,  with  the  purpose  of  allowing   them  to  discover  and  explore  the  scents.  For  adults  the  same  purpose  exists,  but  it   presents  another  facet  as  it  contributes  refining  the  player’s  smell  acuity.  Such  games   involve,  for  example,  identifying  the  components  of  a  wine  (see  Figure  11).  In  these   cases,  the  player’s  main  goal  is  to  guess  one  or  several  scents  from  the  game  materials   and  create  a  “personal  library”  of  scents  from  exploratory  learning.  

 

   

Figure  11.  “Le  nez  du  vin”  is  a  board  game  aiming  for  a  discovery  of  wine  compounds  and  the   development  of  smell  acuity  for  identifying  them.  (Editions  Jean  Lenoir)  

 

The  designer  Max  Vandewiele  goes  further  in  the  guessing  process.  His  “Smell  factory”  

game  project  involves  the  players  ‘scent  hunting,’  where  identification  is  the  key  for   succeeding  (see  Figure  12).  Indeed,  in  this  game  the  player  has  to  identify  specific   smells  from  mixtures.  By  such,  the  game  explores  the  associative  and  dissociative   process  highlighted  by  Andrew  Livermore  and  David  G.Laing  G.Laing  (1998).  

(23)

   

Figure  12.  “Smell  factory”  by  Max  Vandewiele    

The  “Spice  chess”  of  Takako  Saito  explores  sensory  interaction  with  the  chess  pieces   (see  Figure  13).  In  this  version  of  chess,  the  pieces  do  not  have  a  shape  and  the  player   can  only  recognize  each  piece’s  role  (queen,  rook,  pawn,  etcetera)  by  smelling  the   boxes.  Here,  Takako  Saito  triggers  an  identification  process  by  using  smells.  The   players  can  only  rely  on  their  sense  of  smell  while  playing  and  have  to  smell  the  box  to   have  an  understanding  of  the  game  state  for  developing  their  strategies.  From  this   perspective,  “Spice  chess”  deals  with  memorization  because  of  the  cognitive  process   involved  (e.g.  players  know  that  piece  X  is  the  pawn  because  it  smells  like  ginger).  With   deeper  analysis,  this  game  could  contribute  interesting  knowledge  to  the  

understanding  memorization  triggered  by  smells.    

(24)

   

Figure  13.  “Spice  chess”  by  Takako  Saito  (1964-­‐65)    

The  development  of  technologies  such  as  Oculus  Rift  and  the  rise  of  video  games   introduced  the  sense  of  smell  into  games  in  order  to  improve  their  immersive  

potential.  Different  plug-­‐in  technologies  have  appeared  recently  which  trigger  scents   according  to  the  game  content  displayed  on  the  screen  (see  Figure  14).  This  is  a  hot   topic  as  different  companies  intend  to  propose  their  own  scent  diffuser  technology.   However,  their  efficiency  and  immersive  potential  have  not  been  clearly  proved  so  far.  

 

   

Figure  14.  On  the  left,  GameSkunk  developed  by  Sensory  acumen  (2011),  on  the  right,  ScentScape   developed  by  Scent  Science  (2011).  Both  are  technologies  which  plug  into  a  computer  or  console  and  

spray  scents  specific  to  the  game  or  video  being  played.  

 

From  this  brief  analysis  of  smell  involved  in  games,  we  can  see  that  memorization   appears  mostly  in  exploratory  games  like  “Le  Nez  du  vin”  in  which  the  player  learns  the   wine  compound  and  Takako  Saito’s  “Spice  chess”.  As  such,  the  gaming  arena  is  still   holds  much  to  explore  where  scent  and  memory  processes  are  involved.    

(25)

4.  Methodology  

4.1  Research  through  design  

 

As  this  study  involves  designing  a  game,  which  explores  specific  domains,  the  project’s   methodology  will  be  based  on  a  combination  of  research  and  design.    

 

Recently,   HCI   (Human-­‐Computer   Interaction)   researchers   studied   the   potential   of   using   design   in   the   research   area   by   formulating   research   through   design   (RtD)   (Zimmerman  et  al.,  2007).  In  the  case  of  Interaction  design,  Zimmerman  et  al.  (2007)   identified   three   main   values   (or   aims)   that   the   discipline   brings   to   the   research   process.  The  first  deals  with  reducing  constraints  in  the  research  process,  meaning  that   design  does  not  take  account  of  boundaries  that  the  context  of  research  in  HCI  has  set   (economic  or  technological  constraints,  for  example).  The  second  point  refers  to  the   potential  of  design  to  bring  ideas  from  art  and  design  in  order  to  produce  functional   and  aesthetical  products.  Finally,  design  uses  empathy  to  shape  its  research  outcomes,   or  thinking  about  how  to  design  efficiently  for  specific  users.  For  Jonas  Löwgren  (2013),  

the   essence   of   design   in   research   is   to   create   artifacts.  An   artifact,   from   an   RtD  

perspective,  is  a  concretely  designed  outcome  of  the  research  process  that  provides   specific  knowledge  from  the  topic  studied  (Gaver,  2012).  

 

During  this  research,  RtD  will  be  treated  as  a  strict  methodology  that  would  involve   creating  artifact  such  as  storyboards,  sketches  and  games  prototypes  each  times  that   there  is  a  specific  question,  topic,  idea  to  explore.  Each  one  will  be  carefully  described   with  annotated  portfolios:  sharing  my  design  aims  and  contributing  to  a  specific   knowledge  of  my  research  (Löwgren,  2013).  

 

4.2  A  Game  design  approach  

 

For  Tracey  Fullerton  (2004),  game  design  methodology  involves  an  iterative  process   divided  into  specific  phases:  generating  ideas,  formalizing  ideas,  testing  ideas  and   evaluating  the  results.  If  there  is  a  problem  with  the  design,  the  idea  makes  another   loop  in  this  iterative  process  (see  Figure  15).  

(26)

   

Figure  15.  Iterative  process  applicable  for  game  design  perspectives  (Fullerton,  2008)    

My  methodology  is  inspired  by  this  process  as  I  will  generate  ideas  through  

storyboards,  formalize  my  ideas  with  the  materials  needed  (crafting,  coding)  and  test   the  game  through  playtesting.  However,  the  reiteration  will  not  be  triggered  by  design   problems  alone,  but  rather  if  a  question  or  an  interesting  potential  dealing  with  

memory  and  smell  highlighted  through  the  play  testing  would  need  more  exploration.      

My  role  as  a  designer  will  be  to  design  a  game  artifact  for  specific  players.  The  MDA   approach  explains  that  this  design  process  involves  three  layers:  Methods  (setting  the   game  rules),  Dynamism  (creating  the  game  system)  and  Aesthetics  (designing  what  

makes  a  game  “fun”  or  describes  the  emotional  response  of  the  player)  (Kim,  2015).  

The  process  suggests  that  I  will  create  the  game  artifact  by  consideration  of  the   methodology,  whereas  the  player  will  experience  the  game  primarily  through  the   game  artifact  aesthetics  (see  Figure  16).  

 

   

Figure  16.  the  MDA  approach  (Robin  Hunicke,)    

However,  as  I  need  to  understand  the  pIayer’s  experience  while  playing  the  game   artifact,    in  order  to  improve  the  game  I  will  have  an  empathic  approach  that  will   involve  designing  the  game  from  the  perspective  of  both  the  designer  and  the  player   (see  Figure  17).  

Figure

Figure	
  2.	
  Representation	
  of	
  the	
  human	
  olfactory	
  system,	
  University	
  of	
  Delaware.	
  
Figure	
  3.	
  The	
  Fragrance	
  wheel	
  developed	
  by	
  Michael	
  Edwards	
  in	
  1983.	
  This	
  representation	
  is	
  a	
  modern	
   one	
  as	
  the	
  schema	
  comes	
  from	
  “Fragrances	
  of	
  the	
  world”	
  published	
  in	
  201
Figure	
  4.	
  Two	
  dimensional	
  sensory	
  map	
  of	
  odors	
  descriptors	
  by	
  Zarzo	
  and	
  Stanson.	
  
Figure	
  5.	
  Schema	
  of	
  the	
  different	
  types	
  or	
  forms	
  of	
  memory	
  and	
  the	
  respective	
  brain	
  structure	
  involved	
   (Memory:	
  The	
  key	
  of	
  Consciousness,	
  2005)	
  
+7

References

Related documents

Langfield‐Smith (1997) viewed Management Control as the process by which the  company’s  leaders  control  the  internal  resources.  The  aim  of  this 

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Inom ramen för uppdraget att utforma ett utvärderingsupplägg har Tillväxtanalys också gett HUI Research i uppdrag att genomföra en kartläggning av vilka

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Syftet eller förväntan med denna rapport är inte heller att kunna ”mäta” effekter kvantita- tivt, utan att med huvudsakligt fokus på output och resultat i eller från

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating