• No results found

Nuclear charge radii of Zn62-80 and their dependence on cross-shell proton excitations

N/A
N/A
Protected

Academic year: 2021

Share "Nuclear charge radii of Zn62-80 and their dependence on cross-shell proton excitations"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Nuclear

charge

radii

of

62

80

Zn

and

their

dependence

on

cross-shell

proton

excitations

L. Xie

a

,

X.F. Yang

b

,

c

,∗

,

C. Wraith

d

,

C. Babcock

d

,

J. Biero ´n

e

,

J. Billowes

a

,

M.L. Bissell

c

,

a

,

K. Blaum

f

,

B. Cheal

d

,

L. Filippin

h

,

K.T. Flanagan

a

,

i

,

R.F. Garcia Ruiz

c

,

a

,

W. Gins

c

,

G. Gaigalas

g

,

M. Godefroid

h

,

C. Gorges

k

,

l

,

L.K. Grob

j

,

k

,

H. Heylen

c

,

f

,

j

,

P. Jönsson

m

,

S. Kaufmann

k

,

M. Kowalska

j

,

J. Krämer

k

,

S. Malbrunot-Ettenauer

j

,

R. Neugart

f

,

l

,

G. Neyens

c

,

j

,

W. Nörtershäuser

k

,

T. Otsuka

n

,

o

,

c

,

p

,

J. Papuga

c

,

R. Sánchez

q

,

Y. Tsunoda

n

,

D.T. Yordanov

r

aSchoolofPhysicsandAstronomy,TheUniversityofManchester,ManchesterM139PL,UnitedKingdom

bSchoolofPhysicsandStateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing100871,China cKULeuven,InstituutvoorKern- enStralingsfysica,B-3001Leuven,Belgium

dOliverLodgeLaboratory,OxfordStreet,UniversityofLiverpool,Liverpool,L697ZE,UnitedKingdom

eInstytutFizykiimieniaMarianaSmoluchowskiego,UniwersytetJagiello´nski,ul.prof.StanisławaŁojasiewicza11,Kraków,Poland fMax-Planck-InstitutfürKernphysik,D-69117Heidelberg,Germany

gInstituteofTheoreticalPhysicsandAstronomy,VilniusUniversity,Sauletekioav.3,LT-10222Vilnius,Lithuania hChimiequantiqueetphotophysique,UniversitélibredeBruxelles,B1050Brussels,Belgium

iPhotonScienceInstituteAlanTuringBuilding,UniversityofManchester,ManchesterM139PY,UnitedKingdom jExperimentalPhysicsDepartment,CERN,CH-1211Geneva23,Switzerland

kInstitutfürKernphysik,TUDarmstadt,D-64289Darmstadt,Germany lInstitutfürKernchemie,UniversitätMainz,D-55128Mainz,Germany mSchoolofTechnology,MalmöUniversity,Sweden

nCenterforNuclearStudy,UniversityofTokyo,Hongo,Bunkyo-ku,Tokyo113-0033,Japan oDepartmentofPhysics,UniversityofTokyo,Hongo,Bunkyo-ku,Tokyo113-0033,Japan

pNationalSuperconductingCyclotronLaboratory,MichiganStateUniversity,EastLansing,MI 48824,USA qGSIHelmholtzzentrumfürSchwerionenforschung,D-64291Darmstadt,Germany

rInstitutedePhysiqueNucléaire,CNRS-IN2P3,UniversitéParis-Sud,UniversitéParis-Saclay,91406Orsay,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received10April2019

Receivedinrevisedform23July2019 Accepted23July2019

Availableonline25July2019 Editor:D.F.Geesaman

Keywords:

Zinc

Nuclearchargeradii Shellclosure Nucleardeformation Correlations

Nuclearchargeradiiof62−80Znhavebeendeterminedusingcollinearlaserspectroscopyofbunchedion beamsatCERN-ISOLDE.Thesubtlevariationsofobservedchargeradii,bothwithinoneisotopeandalong the full rangeofneutronnumbers,are foundto bewelldescribed intermsofthe protonexcitations across the Z=28 shellgap, as predicted bylarge-scale shell model calculations.It comprehensively explainsthechangesinisomer-to-groundstatemeansquarechargeradiiof69−79Zn,theinversionofthe

odd-evenstaggeringaroundN=40 andtheodd-evenstaggeringsystematicsoftheZnchargeradii.With twoprotonsabove Z=28,theobservedchargeradiioftheZnisotopicchainshowacumulativeeffect ofdifferentaspectsofnuclearstructureincludingsingleparticlestructure,shellclosure,correlationsand deformationsneartheproposeddoublymagicnuclei,68Niand78Ni.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The nuclear charge radius is one of the most fundamental

propertiesof the atomicnucleus, and thus an important

observ-*

Correspondingauthor.

E-mailaddress:xiaofei.yang@pku.edu.cn(X.F. Yang).

able forunderstanding variousaspects of nuclear structure:shell andsubshell effects [1],configuration mixing[2], correlations[3] as well as nuclear deformation and shape coexistence [4,5]. Al-thougheffortsaremadetosuccessfullydescribegeneraltrendsof chargeradii usingvariousnuclearmodels,anaccurate description ofchargeradiiandtheirlocalvariations,e.g.theodd-even stagger-ing (OES),alonga givenisotopicchainremains amajorchallenge

https://doi.org/10.1016/j.physletb.2019.134805

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

[6–8].Forexample,significanteffortshavebeenmadetoestablish a nucleartheory that accurately describes theparabolic shapeof thechargeradii andthepronouncedOESintheCaisotopicchain

from N

=

20 to N

=

28 [9] and more recently from N

=

16 to

N

=

32 [7,10,11].

TheOESeffectisubiquitousbutstill remainstobean intrigu-ing featureofnuclear charge radii,signalling a wealthofnuclear information.Ingeneral,theOESreferstothefactthatchargeradii ofmostodd-N isotopes are smallerthan the averageofadjacent even-N isotopes.Thishasbeenexplainedbythepairingeffect.The unpaired neutronin an odd-N isotopeblocks a certain orbitand thussuppressesthepairscattering[10,12,13],whichinturnleads toareduction inprotonpairscattering.The resultingdecreaseof occupationprobability oflessbound protonorbits givesrise toa smallerchargeradius.Therefore,theOESofchargeradiishouldbe sensitivetothesubtlevariationofprotonexcitationsdueto vary-ing neutron numbers, andthus reflect the effect of correlations. Substantial experimentalandtheoretical investigations havebeen applied recentlytounderstand theOESfeature ofnuclear charge radii, butmostly in specific regions where the OESeffect is un-usually large, such as for the light-mass 40−48Ca isotopes [10,9,

11],andmore recentlyforthe mostnotable example,known for many years,the neutron-deficient 177−185Hg isotopes [14].

How-ever,theseexceptionalcasesarenotrepresentativeforthegeneral caseofmuchsmallerOESinmostotherisotopicchainsacrossthe nuclearchart.

In themedium mass Ni region, the localfluctuation and OES of the nuclear charge radii are more typical, and thus suitable fora more fundamental understanding ofthe subtle correlations betweenminorchangesofchargeradii andprotoncross-shell ex-citations. With two protons outside of the Z

=

28 closed shell andneutronsbetweenclosedshellsof

N

=

28 and50,theZn iso-topesoccupy atransitional region betweensingle particle-likeNi isotopes anddeformed Ge isotopes. Therefore,they are expected to exhibit the combined effects of shell closures and deformed shapes, whichcanbe reflected inthevarious subtlevariationsof theirchargeradii.

Thisletterreportsonthemeasurementofnuclearmeansquare charge radii of 62−80Zn isotopes, and a successful interpretation

oftheirtrendandtheir OESintermsofprotonexcitationsacross the Z

=

28 shellgap.ThesehavebeencalculatedusingtheMonte CarloShellModel (MCSM)withthe A3DA-minteraction ina full proton-neutron p f g9/2d5/2 modelspace[15].Thisinteractionwas

usedbeforetosuccessfullyreproducethemagneticandquadrupole moments of theseZn isotopes and their long-lived isomers [16], illustrating that the model correctly reproduces the ground and isomericstatewavefunctions.

2. Experimentalmethod

The experiment was performed atthe COLLAPS setup [17] at

ISOLDE-CERN. The Zn isotopes were produced from a thick UCx

targetbombarded bya 1.4 GeV protonbeam.The Znisotopes re-leased fromthe target were selectively ionised by the resonance ionisation laser ion source RILIS [18]. Extracted Zn+ ions were acceleratedto 30 keVand mass separated. The ions were deliv-ered to the COLLAPS setup typically as 5 μs bunches after 200 ms accumulation time in the radio frequency quadrupole cooler and buncher ISCOOL [19,20]. The ions were neutralised by pas-sagethroughsodium vapourina chargeexchange cell(CEC).The 4s4p 3P2o metastable state ofZn I waspopulated inthe neutrali-sationprocess, fromwheretheatoms wereresonantly excited to the4s5s 3S1 state by alaserbeamfromafrequency-doubledcw

Ti:sapphirelaser.Thelaserwavelengthwaslockedat480.7254 nm tomatchtheDopplershiftedtransition. Fourphotomultipliers

in-stalled at the detection region were used to record the emitted fluorescencephotonsfromthelaser-excitedatomsasafunctionof atuningvoltageappliedtotheCEC.Moredetailsaboutthe exper-imentalset-upcanbefoundin[5,16].

3. Experimentalresults

The hyperfinespectra of the odd-mass 63−79Zn isotopes have

been reported in [16], while the zero nuclear spin of even Zn isotopes resultsinasingleresonancespectrum.The observed hy-perfine spectra were fitted using a

χ

2 minimisation procedure,

generatingthehyperfine-structure

A and B parameters

ofthe odd-massisotopes andisomers (asreportedin[16]),andthecentroid frequency

ν

ofall62−80Znisotopesandisomers.Theisotopeshifts (IS:

δ

ν

68,A

=

ν

A

ν

68)werecalculatedwithrespecttothecentroid

of68Zn(ν68),aspresentedinTable1.Asystematicuncertaintyon

thelaserfrequencyobservedbythemovingions,whichoriginates fromthevoltageuncertainty(about0.033%)onthestarting poten-tial(30kV)atISCOOL,hasbeenintroduced.

The changes in meansquare charge radii

δ



r2



were obtained fromtheISbasedontheequation[22,23]

δ

ν

68,A

=

K

MS

mA

m68

mAm68

+

F

δ



r2



68,A

.

(1)

Here KMS and F are the atomic mass-shift and field-shift

fac-tors, respectively, of the atomictransition used in this measure-ment. Since the mean square charge radii of five stable Zn iso-topesareknownexperimentallyfromacombinedanalysisof elec-tron scatteringandmuonic

x-ray

data[24],aKing-plotprocedure using these experimental

δ



r2



μe can be performed to evaluate

the atomic factors [24–26]. As these evaluations of F and KMS

factors have rather large error bars in the case of Zn [25,24], we take advantage of the recent progress in multi-configuration Dirac-Hartree-Fock(MCDHF)calculationsbasedonanab-initio ap-proach to better quantify the F -factor [27]. This methodhas in-deed proven to be very successfulin calculatingthe F -factor for a range ofelements [3,28–31]. Forthe caseofZn, Filippinetal., [32] have explored different electron correlations in a system-atic way, inorder to optimise their computational strategy. They providea final F -factor, F

= +

346

(

3

)

MHz/fm2,inwhichthe

un-certainty isestimated based onthe variation of the three differ-ent correlation models [32]. However, the calculated mass shift,

KMS

= +

14

(

7

)

GHz u,in commonwithother systems [3,29], has

a significant discrepancy with the value deduced from a

King-plot analysis, leading to charge radii which do not conform to regional systematics.Aswiththe caseofCu ( Z

=

29) [3] andGa ( Z

=

31)[29],wethereforeusethecalculatedvalue

F

= +

346

(

35

)

MHz/fm2 witha 10% uncertainty,andwe usethe Kingplotwith non-opticaldata

δ



r2



μeofstableisotopes[24] toextractthevalue

of KMS

= +

49

(

17

)

GHz u. In this analysis, the F -value from the

calculationwasusedasaconstraintbutallowedtovarywithinthe 10% uncertainty.Withtheseempiricalatomicfactors,thechanges in mean square charge radii

δ



r2



for 62−80Zn are extracted, as shown inTable1 andinFig. 1a.The systematicerrorquoted for

δ

r2



arisesmainlyfromtheuncertaintyintheatomicfactorsafter

removing the correlations between KMS and F during the

King-plot procedure [8]. The systematic error on the IS, due to the uncertainty of the beam energy,has no effect on the final

δ



r2



systematicerrorasthe atomicfactorsallow their influencetobe cancelled through the King-plot procedure. By comparison with the Cu andGa isotopicchains shown inFig. 1a,the Zn radii are consistent withthegeneral trendofcharge radii ofneighbouring isotopes,whileadeviationfromthetrendisobservedif

K

MSfrom

(3)

Table 1

Isotopeshiftsandchangesinmeansquarechargeradii of 62−80Zn δr268,A. Statistical errors are shown in

curved brackets. Systematic errors in square brackets ariseprimarilyfromthe uncertaintyonthe beam en-ergy(forisotopeshifts)andonatomicfactorsKMSand

F (forradii),respectively.

A δν68,A(MHz) δr268,A(fm2) 62 0+ −239.5(11)[99] −0.493(3)[52] 63 3/2− −191.2(32)[87] −0.389(9)[43] 64 0+ −141.2(12)[66] −0.279(4)[34] 65 5/2− −121.8(23)[51] −0.257(7)[25] 66 0+ −63.6(15)[38] −0.121(4)[16] 67 5/2− −41.4(21)[16] −0.089(6)[8] 68 0+ 0 0 69 1/2− 19.5(20)[15] 0.026(6)[9] 69m 9/2+ 35.7(11)[15] 0.073(3)[8] 70 0+ 69.5(9)[29] 0.142(3)[15] 71 1/2− 108.8(24)[44] 0.227(7)[23] 71m 9/2+ 96.3(11)[43] 0.191(3)[23] 72 0+ 140.6(10)[57] 0.292(3)[30] 73 1/2− 158.9(12)[71] 0.318(3)[37] 73m 5/2+ 160.4(19)[71] 0.322(6)[37] 74 0+ 187.9(13)[83] 0.375(4)[44] 75 7/2+ 187.7(10)[96] 0.349(3)[51] 75m 1/2195.8(21)[96] 0.373(6)[51] 76 0+ 221.3(14)[108] 0.421(4)[57] 77 7/2+ 236.0(16)[120] 0.440(5)[64] 77m 1/2241.2(38)[120] 0.455(11)[64] 78 0+ 255.7(11)[131] 0.474(3)[70] 79 9/2+ 259.3(10)[142] 0.461(3)[77] 79m 1/2+ 320.6(29)[142] 0.639(8)[75] 80 0+ 268.4(12)[161] 0.465(4)[84]

Fig. 1. (a)ChangesinmeansquarechargeradiifortheZnisotopescomparedwith neighbouring CuandGaisotopicchains,whichareverticallyoffsetby±0.6fm2for

clarity.TheblackdotspresenttheZnradiiextractedbyusingtheKMSfromMCDHF

calculations.(b)Experimentalr2forgroundstatesoftheCu,ZnandGaisotopes

withthesphericalvolumecontributionr2

0 from thedropletmodelsubtracted

[21].

4. Discussion

The(sub-) shell effect hasbeen muchinvestigated in this re-gion, as discussed for the Cu and Ga isotopes [3,29]. For this purpose, we plot the ‘residual’



r2



of Cu, Zn, Ga isotopes after subtractingthesphericalvolumecontribution



r2



0 ofthedroplet

model[21],asshowninFig.1b.Thegeneralparabolicshapeofthe

‘residual’chargeradii



r2



− 

r2



0 demonstratestheshelleffect

ex-pectednear N

=

28 andN

=

50,whilethe localminimumofthe



r2



− 

r2



0 around N

=

40,whichhas beenattributedtoaweak

subshell effectforCu [3],ismuchweaker for70Znthanfor69Cu.

The apparent ‘dip’ in theGaisotopic chain at N

=

40 isnot due tothe subshelleffect,butarisesfroman inversionofthe OES[3,

29,33] and onsetof deformationappearing above N

=

40, as ob-servedinthenuclearmoments[34].ThustheZnradiiconfirmthe consistentpictureofthe

N

=

40 subshelleffectwhichquickly

dis-appears when going away from Z

=

28, asdescribed by various

experimentalobservables:magneticandquadrupolemoments[16,

35–37],charge radii [3,29], nuclearmasses[38,39], E

(

2+

)

excita-tionenergies,and

B

(

E2

)

transitionrates[40–43].

In addition to the observed disappearing shell effect,nucleon correlations or deformation should contribute to the ‘residual’ charge radii. As an example, a different behaviour of OES below andabove

N

=

40 isobservedforthethreeisotopicchains(shaded regioninFig.1b).AninversionofthenormalOESaround N

=

40 isclearlyobservedforGaisotopesandhintedforZnisotopes,but notapparent intheCuisotopes.Theslightincreaseincollectivity above N

=

40,observedintheexperimentalquadrupolemoments of the odd Zn isotopes, and the B

(

E2

;

↑)

of even ones, is con-sidered asone possible explanation [16,44,45,43]. An increase in deformation was also observed inthe Gaisotopic chain [37] but notintheCuisotopicchain[46].

To assessthe contribution ofcorrelations tothe experimental chargeradii,onecanattempttodescribe

δ



r2



intermsofchanges

inproton orbitoccupationprobabilities resultingfromcross-shell excitations. This approach has been adopted recently to explain the pronounced OES in the charge radii of the Hg isotopes [14]. Anaiveshellmodelpicturewillpredictaconstantprotonnumber of 2above the Z

=

28 closed shellfor Zn.However, it is known thattheprotonsingle particlelevelsaremodified withincreasing neutronnumbers[47]. Thisgivesrise toprotonexcitationsacross the Z

=

28 shellgap,asdiscussedrecentlyfortheCuisotopes[35,

48].Suchexcitationscanbequantified fromtheshellmodelwith alarge modelspace.MCSMusingtheA3DA-minteraction[15] in a f pg9/2d5/2 modelspacehasbeenwidely usedinthe Niregion

[16,44,35] to describe nuclear moments.In orderto examine the sensitivityofchargeradiito protonexcitationsacross Z

=

28,the calculatedprotonoccupationsforthe1/2−andhigh-spinstatesof

69−79ZnarepresentedinFig.2b.Thetrendintheseproton

occupa-tionsiscomparedtothetrendintheexperimental

δ

r2



inFig.2a.

Forthe I

=

1

/

2+ isomericstate of79Zn,sincea largepartof the contributiontoitsconfigurationcomesfromtheneutronintruder

s1/2 orbitwhich is out of the model space (proton and neutron

in p f d5/2g9/2 shells) of the A3DA-m interaction [5,16], we have

usedanewlydeveloped

p f sdg-full

interaction[49] tocalculatethe protonoccupationnumber(seethebluediamondinFig.2b).This new interaction, with an extended model space in the full pro-tonandneutron

p f sdg shell,

predictsthenuclearmomentofthis 1/2+ state in 79Zn as

μ

pfsdg-full

= −

1

.

05

μ

N, in good agreement withtheexperimentalvalue

μ

exp

= −

1

.

018

(

1

)

μ

N [5].

Fig.2clearlyshowsaqualitativerelationshipbetweenthe

pro-ton occupation above Z

=

28 and the relative nuclear size of

groundandisomericstatesin69−77Zn.Thestatewithalarger

pro-tonoccupationcoincideswiththestateoflargersize.Inparticular, itsolvesapuzzlevisibleinFig.2a:thechargeradiiofthe

I

=

1

/

2− and

I

=

9

/

2+statesareintheoppositeorderfor69Znand71Zn

al-thoughtheysharesamespinsandsimilarmagneticmoments[16]. Furthermore, the sensitivity of local changes of charge radii to the protonoccupation can be explored qualitatively along the whole Zn isotopic chain.For thispurpose, theproton excitations across the Z

=

28 major shell closure for all 62−80Zn isotopes are converted into changes in the charge radii,

δ

r2



(4)

Fig. 2. (a)Experimentalδr2comparedwith(b)protonoccupationnumbersabove

Z=28 calculatedfromA3DA-minteractionforbothpositiveparitystatesand1/2− statesin69−79Zn.Notethattheprotonoccupationnumberforthe1/2+ isomerin

79Zniscalculatedwithanewinteractionp f sdg-full(seethebluediamondinb),

duetothemodelspacelimitofA3DA-minteraction.

Fig. 3. (a)Theδr2of62−80Zn(bluesquare)scaledfromtheexcitedprotonacross

Z=28 (seetextfordetails)comparedwiththe‘residual’chargeradiir2− r2 0

(redcircle)takenfromFig.1b.Theerrorbarsaresmallerthanthesymbols.(b)The odd-evenstaggering(OES)ofexperimentalchargeradii(redcircle)andthecharge radii(bluecircle)scaledfromtheprotonoccupations,asshownin(a),seetextfor details.

multiplying the proton excitations with a constant scaling fac-tor, f

=

0

.

172

(

7

)

, estimated from the ratio of the isomer shift (

δ

r2



g,m) andthe occupationdifferencesof groundandisomeric

states(

δ

pg,m)of69−77ZnfromFig.2.Notethat thevaluefor73Zn

is not taken into account for the determination of f , due to its largedeformation[44].Theresultsofthisprocedureareshownby the blue squares in Fig. 3a, compared with the ‘residual’ charge radii



r2



− 

r2



0 of62−80Zn(redcircle).Thisscalingismadeunder

theassumptionthatthedifferencesinradiibetweentheproton or-bits p f5/2g9/2d5/2 are negligiblecompared tothe difference with

the f7/2 orbitbelowthe Z

=

28 shellgap.

Althoughafullyquantitativeanalysisisimpossiblewithout de-tailedcalculationsoftheradiiofthespecificsingleparticleorbits, themagnitudeoftheodd-eveneffectinexperimentalchargeradii agreeswiththatfromprotonorbitoccupationprobabilities,ascan be seen in Fig. 3a. Subtle changes in proton occupations above

Z

=

28 havenoticeableeffectson meansquare chargeradii along the entire Zn isotopic chain. For instance, in the mid-shell be-tween

N

=

40 and

N

=

50,thereisareductionintheexperimental chargeradiusat

N

=

45 (blackarrowinFig.3a)comparedto adja-centisotopes,whichcanbeunderstoodfromthesuddendecrease inprotonexcitations.Approachingthe

N

=

50 neutronclosedshell, thecross-shellexcitationsaresuppressedasexpected(andas ob-servedalsofortheCuisotopes[35]),resultinginareductionofthe OES,asreflectedintheexperimentalchargeradii.AroundN

=

40, theaforementionedinversionoftheOESofradiiinFig.1b)isalso nicelydescribedbythechangesofprotonoccupation.Thereisonly one exception observed around N

=

33, where radii scaled from the protonoccupationexhibitsausual odd-eveneffectwhilethis is nearly invisible in the experimental charge radii. This is pos-sibly due to the fact that the 3/2− ground state in 63Zn has a rather mixed configuration from neutron f5/2 and p3/2, as

con-cluded fromits magneticmoment andlargequadrupole moment

[16].However,theA3DA-mcalculationfailedtoreproducethe ex-perimentalmagneticmoment of63Zn[16],

μ

exp

= −

0

.

282

(

1

)

μ

N and

μ

A3DA-m

= +

0

.

110

μ

N,which maybe the origin ofthe dis-crepancy.

Tobetter visualise theodd-eveneffectinthe charge radii,the experimental OESispresentedinFig.3bwithsolid circles,asthe difference



3

(



r2

,

N

)

betweentheradiusoftheisotopewith

neu-tron numberN and themeanvalue oftheradii ofits neighbours withneutronnumbersof

N

+

1,

N

1,asquantifiedwith[50,51]:



3

(



r2

,

N

)

= 

r2



N

1

2

(



r

2



N−1

+ 

r2



N+1

).

(2)

A value



3

(



r2

,

N

)

>

0 for an odd-N isotope represents an

inversion of the normal OES behaviour. The hinted inversion in the OES at N

=

41 is clearly visible in this representation. To understand its origin, we present in Fig. 3b also the calculated



3

(



r2

,

N

)

withopensquares,extractedfromthecalculatedradii

using the proton occupations above Z

=

28 (the blue squares in Fig. 3a). The OES from the calculated radii shows also an inver-sionintheOESatN

=

41.Asthesecalculatedradiiwereobtained fromscaling oftheprotonexcitation across Z

=

28 (Fig.2b),this suggeststhatindeedtheinvertedOESeffectisrelatedto changes intheprotonexcitationsacross Z

=

28.Notethatthe lowproton excitationsaround N

=

40 (bluesquare inFig.3a)ledtoawrong signof



3

(



r2

,

N

)

at N

=

40 (bluesquare inFig.3b).Due tothe parity change between two major shells at N

=

40, the neutron excitationsare suppressed,asrecentlydemonstrated theoretically forthe68Niand69Cu[52],whichinitsturnleadtoasuppression

ofthecorrelatedprotonexcitations. However,such effectis prob-ably overestimatedintheMCSM calculationfortheZnisotopeat

N

=

40.Nevertheless,theOESoftheexperimentalnuclearcharge radiiandscaledchargeradiishareasimilarrelativeamplitudeover thewholeZnisotopicchain,confirming thestrongconnection be-tween proton excitationsacross Z

=

28 and nuclear charge radii. Fig.3b alsoillustratesthat,aroundtheneutronmid-shell,theOES ofcharge radiicalculatedfromprotonoccupationsispronounced, e.g. around N

=

34 and N

=

45,themiddleshellofneutron f5/2

and g9/2 orbits,respectively.Thisphenomenonisalsohighlighted

in theOES ofexperimental charge radii. Incontrast,approaching the closed shell N

=

50, the OES is suppressed for both experi-mentalchargeradiiandscaledradiifromprotonoccupations.

5. Summaryandconclusion

In summary, the changes in mean square charge radii of

62−80Zn were extracted by laser spectroscopy. The variations in

(5)

excitations across the Z

=

28 shell gap. The proton excitation probabilitycomprehensivelyexplainsthelocalvariationsofcharge radii, such as the size change between the isomeric and ground statesin69−79Zn,theunusualinversionofthenormalOESaround

N

=

40,andtheOESofthechargeradiiof62−80Zn.This observa-tionprovidesstrongevidencethat thechargeradiusisasensitive reflectionofthecross-shellprotonexcitations(whicharestrongly correlatedto the neutron numbers), offeringa new approach for theinterpretationofnuclearchargeradii.

Acknowledgements

Weacknowledge the supportof the ISOLDEcollaboration and

technical teams. This work was supported by the National Key

R&D Program of China (Contract No. 2018YFA0404403), the Na-tional Natural Science Foundation of China (No.11875073), the UKScience andTechnology FacilitiesCouncil grantsST/L005670/1

and ST/L005794/1, the JSPS and FWO under the Japan-Belgium

Research Cooperative Program, the IAP-project P7/12, the FWO-Vlaanderen,GOAgrant15/010fromKULeuven,theBMBFContract No. 05P15RDCIA, theMax-Planck Society, the Helmholtz Interna-tionalCenter forFAIR (HIC for FAIR), the EU FP7 via ENSAR No.

262010, the HPCI Strategic Program (The origin of matter and

the universe) and “Priority Issue on post-K computer” (Elucida-tionoftheFundamentalLawsandEvolutionoftheUniverse)from

MEXTand JICFuS, and the FWO-FNRS Excellence of Science

Pro-gramme(Grant No.EOS-O022818F). TheMCSM calculationswere

performedontheKcomputeratRIKENAICS(hp150224,hp160211, hp170230).

References

[1]K.Kreim,etal.,Phys.Lett.B731(2014)97.

[2]H.DeWitte,etal.,Phys.Rev.Lett.98(2007)112502.

[3]M.L.Bissell,etal.,Phys.Rev.C93(2016)064318.

[4]B.Cheal,etal.,Phys.Lett.B645(2007)133.

[5]X.F.Yang,etal.,Phys.Rev.Lett.116(2016)182502.

[6]A.Ekström,etal.,Phys.Rev.C91(2015)051301.

[7]R.F.GarciaRuiz,etal.,Nat.Phys.12(2016)594.

[8]M.Hammen,etal.,Phys.Rev.Lett.121(2018)102501.

[9]E.Caurier,etal.,Phys.Lett.B522(2001)240.

[10]P.-G.Reinhard,W.Nazarewicz,Phys.Rev.C95(2017)064328.

[11]A.Miller,etal.,Nat.Phys.15(2019)432.

[12]D.Zawischa,Phys.Lett.B115(1985)309.

[13]M.L.Bissell,etal.,Phys.Rev.Lett.113(2014)052502.

[14]B.Marsh,etal.,Nat.Phys.14(2018)1163.

[15]Y.Tsunoda,etal.,Phys.Rev.C89(2014)031301.

[16]C.Wraith,etal.,Phys.Lett.B771(2017)385.

[17]R.Neugart,etal.,J.Phys.G,Nucl.Part.Phys.44(2017)064002.

[18]V.N.Fedosseev,etal.,Rev.Sci.Instrum.83(2012)02A903.

[19]E.Mané,etal.,Eur.Phys.J.A42 (3)(2009)503.

[20]H.Franberg,etal.,Nucl.Instrum.MethodsB266(2008)4502–4504.

[21]D.Berdichevsky,F.Tondeur,Z.Phys.A322(1985)141.

[22]B.Cheal,K.T.Flanagan,J.Phys.G,Nucl.Part.Phys.37(2010)113101.

[23]P.Campbell,etal.,Prog.Part.Nucl.Phys.86(2016)127.

[24]C.J.Foot,etal.,Proc.R.Soc.Lond.A384(1982)205.

[25]G. Fricke,K.Heilig, NuclearCharge Radii, 1stedition,Springer-Verlag Berlin Heidelberg,2004.

[26]P.Campbell,etal.,J.Phys.B,At.Mol.Opt.Phys.30(1997)2351.

[27]P.Jönsson,etal.,Comput.Phys.Commun.184(2013)2197–2203.

[28]K.Minamisono,etal.,Phys.Rev.Lett.117(2016)252501.

[29]T.J.Procter,etal.,Phys.Rev.C86(2012)034329.

[30]H.Heylen,etal.,Phys.Rev.C94(2016)054321.

[31]L.J.Vormawah,etal.,Phys.Rev.A97(2018)042504.

[32]L.Filippin,etal.,Phys.Rev.A96(2017)042502.

[33]G.J.Farooq-Smith,etal.,Phys.Rev.C96(2017)044324.

[34]B.Cheal,etal.,Phys.Rev.Lett.104(2010)252502.

[35]R.deGroote,etal.,Phys.Rev.C96(2017)041302(R).

[36]K.T.Flanagan,etal.,Phys.Rev.Lett.103(2009)142501.

[37]B.Cheal,etal.,Phys.Rev.Lett.104(2010)252502.

[38]C.Guénaut,etal.,Phys.Rev.C75(2007)044303.

[39]S.Rahaman,etal.,Eur.Phys.J.A34(2007)5.

[40]N.Aoi,etal.,Phys.Lett.B692(2010)302.

[41]C.J.Chiara,etal.,Phys.Rev.C84(2011)037304.

[42]O.Perru,etal.,Phys.Rev.Lett.96(2006)232501.

[43]C.Louchart,etal.,Phys.Rev.C87(2013)054302.

[44]X.F.Yang,etal.,Phys.Rev.C97(2018)044324.

[45]M.Niikura,etal.,Phys.Rev.C85(2012)054321.

[46]P.Vingerhoets,etal.,Phys.Rev.C82(2010)064311.

[47]T.Otsuka,etal.,Phys.Rev.Lett.95(2005)232502.

[48]T.Otsuka,etal.,Phys.Rev.Lett.104(2010)012501.

[49] Y.Tsunoda,T.Otsuka,privatecommunication. [50]K.Lynch,etal.,Phys.Rev.C97(2018)024309.

[51]P.Lievens,etal.,Europhys.Lett.33(1996)11.

Figure

Fig. 2. (a) Experimental δ r 2  compared with (b) proton occupation numbers above Z = 28 calculated from A3DA-m interaction for both positive parity states and 1/2 − states in 69 − 79 Zn

References

Related documents

A measurement of the reduced transition probability for the excitation of the ground state to the first 2 + state in 104 Sn has been performed using relativistic Coulomb excitation

Swedenergy would like to underline the need of technology neutral methods for calculating the amount of renewable energy used for cooling and district cooling and to achieve an

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar