• No results found

Irrigation based leachate treatment

N/A
N/A
Protected

Academic year: 2021

Share "Irrigation based leachate treatment"

Copied!
4
0
0

Loading.... (view fulltext now)

Full text

(1)

4

KALMAR ECO-TECH'0I

Leachate and Wastewater Treatment with High-Tech and Natural systems KALMAR, SWEDEN, November 26-28, 2001

IRRIGATION BASED LEACHATE

TREAT-MENT

Dahn Rosenqvist

Rosenqvist Mekaniska Verkstad AB

Gringelstadsviigen 118, 291 97 Giirds Kopinge, Sweden

ABSTRACT

In southern Sweden, several irrigation based on site treatment has been established the last years. Briefly they consist of a pound to storing leachate water with pre-treatment and a system what irrigate vegetation. It could be areas of willow plantations designated for en­ ergy purposes or grass or as in same cases spontaneous vegetation.

The use of willow have been studied since 1992. These tests have clearly shown that recy­ cling of municipal wastewater in Salix plantations, can replace a large part of the conven­ tional wastewater treatment, due to natural purification processes in the soil/plant system. During the last few years, several full-scale treatment plants based on the soil/plant system have been set up to treat leachate water from municipal solid waste (MSW) landfills. One other way to reduce leachate water is to use transpiration. On dry days leachate is pumping and irrigated ideal on top of landfills inside the leachate collection system. Rosenqvist Mek.Verkstad has developed the irrigation system "RWIS" for distribution of waste and leachate water into the plantation. The irrigation system has to be able to with­ stand trying conditions, without major maintenance in between harvests.

INTRODUCTION

Special conditions apply to irrigation design for this waters. This requires a system that satisfies the following conditions:

• Potential aerosol leakage must be eliminated.

• Harvesters must be able to move freely, without the system being dismantled (option) • Low running costs

• Low maintenance costs

• Can be integrated with other water/sewerage systems

Dahn Rosenqvist, Sweden

55

(2)

-_-_-_-_-�_-_

fr--==----Dam

.e-

�•-·s:

=========t=========

!---­

----

1

ru---:••�

KALMAR ECO-TECH'0I

Leachate and Wastewater Treaonent with High-Tech and Natural systems KALMAR, SWEDEN, November 26-28, 200 I

RWIS is a concept based on root zone watering. The technology is a type of controlled flooding, combined with broad irrigation.

On Site Treatment

-�

·---

(MWTP)

""""""

Out/low ___.. :Rec�ng V = Cheekpoirt -@·"""

Roducllon of heavy - Reduction of organic Rududlon ol nutrients

rurients. organic substances subslancn

....

·-

...,

Flhlon...,,

...

w.ldrwnr.lds

�Dltl'I�

Figure 1. Show where irrigation comes in on a landfill

RWIS

From pre-treatment the water pwnped through an underground duct to the willow field. The duct, which can supply one or more fields with water at the same time, is connected to a trunk pipe under the Salix field. Electrically operated valves, one for each module, are mounted on the trunk pipe. The module comprises a trunk pipe (underground) with, on

-Pump

",

LJ

,--fT

---r---.

_

...

_____

��������������I�������������;

---t---·

Figure 2. Principe schema R WIS

either side, 12 supply pipes with drilled holes (an arrangement similar to the veins in a

Dahn Rosenqvist, Sweden

(3)

57

KALMAR ECO-TECH

·

o

I

Leachate and Wastewater Treatment with High-Tech and Natural systems

KALMAR, SWEDEN, Novembcr26-28, 2001

leaf). The supply pipes lie on the soil surface. Allowing the water to flow out at ground

level, minimises odour and sanitary problems, and avoids the formation of aerosol. By util­

ising the horizontal transport of water by the soil and by flooding to exploit undulations of

the terrain, the distances between the supply pipes can be made relatively large. Salix have

long roots (10 metres or more) and will seek out water and nutrients. Experiments in

KAgerod and Bromolla show that the effect on the groundwater is minimal.

Recycling Irrigation

This system is very much like the R WIS system but in­

stead of hols there are sprinkler. Normally used sprinkler

is a plastic rotators. This sprinkler have the right combi­

nation of radius, uniformity and diffused stream. Depend­

ing on climate 20-50% of rainfall is possibly to transpira­

tion. That is recommended to locate the system on the

landfill. As the system is very easy to move also tempo­

rary arias on the landfill could bee used and also get a

possible effect on the landfillgas production.

Figure 3 : Rotator R2000

Irrigation amounts

The KAgerod experiments indicate that an appropriate water irrigation rate is about

6 mm/day, which gives the heights biomass production. Rates up to 12 mm/day have been

tested. The reduction of total N was 82-93%, 90-97 % of total P and 74-82% of BOD. The

irrigation should follow the vegetative period of the Salix. Normally, the vegetative period

begins in May and ends in September-October, depending on the location . Especially to­

wards the end of the period, the nitrogen content should be reduced to avoid frost damage.

When designing a RWIS, you must consider what is add with the sewage and removed

with in the harvest, to maintain the balance of nutritional requirement.

During the non-vegetative period, the water is held in ponds or treated in a conventional

treatment plant. Calculations show that, even with the costs of holding ponds, the plant

based sewage treatment method can compete with conventional treatment technology.

Control system

The combination of simple equipment and advanced computer-controlled irrigation gives:

• Optimal growth with maximum nutrient absorption

• Minimal running costs

• Minimal maintenance costs

• Documentation and follow-up

When distributing sewage, it is essential to know where the water goes! This makes de­

mands on the irrigation technology. Using a control system, which takes into account,

(4)

KALMAR ECO-TECH'0l

Leachate and Wastewater Treatment with High-Tech and Natural systems KALMAR, SWEDEN, November 26-28, 2001

pography, soil type, sewage quality and external precipitation solves the problem. Informa­ tion for reporting to authorities is saved and compiled in the system.

There is also an advanced function monitoring system, which minimises the need for main­ tenance. The control system can be a self-contained unit, or be integrated with the central water/sewage control system.

REFERENCES

l. Aronsson, P. & Perttu, K (Eds.). 1994. Willow vegetation filters for municipal wastewaters and sludges - A biological purification system. Proceedings of a study tour , conference and workshop in Sweden, 5-10 June 1994. Swed. Univ. Agric. Sci., Dept. Short Rotation Forestry, Uppsala. Rep. 50,230 pp.

2. Aronsson, P. & Perttu, K. 1994. A complete system for wastewater treatment us­ ing vegetation filters. In: Aronsson, P. & Perttu, K (Eds.). Willow vegetation fil­ ters for municipal wastewaters and sludges - A biological purification system. Proceedings of a study tour , conference and workshop in Sweden, 5-10 June 1994, pp. 211-213.

3. Bergkvist P. &, Slam i energiskog (Sludge in energy forest), Agricultural Univer­ sity of Sweden, Fakta-Mark/vl!xt, no. 5, 1995

4. Perttu, K. & Koppel, A. (Eds.). 1996. Short rotation willow coppice for renewable energy and improved environment. Proceedings of a joint Swedish-Estonian seminar on on Energy forestry and vegetation filters held in Tartu 24-26 Septem­ ber 1995. Swed. Univ. Agric. Sci., Dept. Short Rotation Forestry; Uppsala. Rep. 57, 172 pp.

5. Perttu K.L., 1994, Vegetationsfilter av salix renar vatten and mark (Salix vegeta­ tion filters clean up water and soil). Agricultural University of Sweden, Skogs­ fakta no. 9, 1994.

6. Hasselgren K., 1999, Bevattning av energiskog med forbehandlat avloppsvatten.

Rapport V A-Forsk I 999-5

7. Hasselgren K., 1998, Bevattning av energiskog med biologiskt behandlat av­ loppsvatten. Slutrapport till stiftelsen Lantbruksforskning, Projekt 957837

8. Hasselgren K., 1994, Kommunalt avloppsvatten - en resurs i energiskogsodling (Public sewage - a resource in energy forest cultivation). Cirkulation 3(5): 6-8 Svalov

9. Rosenqvist D., 1998 , RWIS Rosenqvist Wastewater Irrigation System. Folder, Rosenqvist Mekaniska Verkstad AB

10. Rosenqvist, H., Aronsson, P., Hasselgren, K. & Perttu, K. 1997. Economics of us­ ing municipal wastewater irrigation of willow coppice crops. Biomass and Bio­ energy, Vol. 12,No. 1:1-8.

11. Stenstrom, T A. 1996. Sjukdomsframkallande mikroorganismer i avloppssystem. Riskvlirdering av traditionella och altemativa avloppslosningar. SNV Rapport 4683.

Dahn Rosenqvist, Sweden

Figure

Figure 1.  Show where irriga t ion comes in on a landfill
Figure 3 : Rotator R2000  Irrigation amounts

References

Related documents

I förslaget anges att av de 85% av regionalfondsprogrammet som avsätts till det första och andra politiska målet, dvs ”Ett smartare Europa genom innovativ eko- nomisk

En tydlig och fungerande samordning och samverkan mellan fonderna är en central aspekt som är gynnsam för såväl effektivitet som måluppfyllelse för programmen.. Utkastet

Dess betydelse för rikets och länets utveckling, samt länsstyrelsens uppdrag kring detta, ser vi därför fram emot att få ta del av längre fram, men har inga övriga synpunkter

Projekt inom ramen för EU:s fonder menar vi ska bidra till genomförandet av dessa regionala strategier, som bland annat handlar om miljö, klimat, jämställdhet.. Avsaknad

Enligt förordningen om gemensamma bestämmelser ska PÖ beskriva komplementaritet och synergier mellan fonderna som omfattas av PÖ och övriga fonder (artikel 8 b iii).. I

Region Kalmar län framhåller vikten av att se satsningen som möjliggörs inom FRO som en nationell angelägenhet viktig för att uppnå EU:s och Sveriges mål kring hållbarhet

Den föreliggande promemorian med förslag till lagändringar som en följd av genomförandet av Europaparlamentets och rådets direktiv (EU) 2019/789 av den 17 april 2019 om