• No results found

Establishment of analytical methods to assess endocrine disrupting compounds in a swedish wastewater treatment plant

N/A
N/A
Protected

Academic year: 2021

Share "Establishment of analytical methods to assess endocrine disrupting compounds in a swedish wastewater treatment plant"

Copied!
110
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)
(3)
(4)
(5)
(6)

II

List of figures

(7)
(8)
(9)

V

List of figures

... 18

... 19

... 20

... 26

... 30

... 32

... 33

... 35

.

... 36

... 39

... 50

... 53

(10)

VI

... 56

... 56

... 57

... 76

... 76

... 77

(11)

VII

List of tables

... 8

... 16

.... 21

... 23

... 28

... 29

... 37

... 38

... 40

... 41

... 43

... 44

... 45

... 48

(12)

VIII

... 49

... 52

... 54

... 55

... 58

... 59

... 63

... 65

... 66

.. 67

... 68

... 69

... 70

... 71

... 72

... 73

(13)

IX

... 74

... 75

(14)
(15)

XI

(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)

24

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 [%] = (

𝑃𝑟𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑃𝑜𝑠𝑡𝑠𝑝𝑖𝑘𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

) ∙ 100

𝑀𝑎𝑡𝑟𝑖𝑥 𝐸𝑓𝑓𝑒𝑐𝑡 [%] = ((

𝑃𝑜𝑠𝑡𝑠𝑝𝑖𝑘𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑀𝑎𝑡𝑟𝑖𝑥 𝐵𝑙𝑎𝑛𝑘

(40)

25

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) = (

𝑃𝑟𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 [

𝑛𝑔

𝐿 ] − 𝑀𝑎𝑡𝑟𝑖𝑥 𝐵 [

𝑛𝑔

𝐿 ]

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

) ∙ 100

(41)

26

.

(42)
(43)
(44)

29

P G R -C 1 3 NOR -C 1 3 EE2 -C 1 3 E2 -C 1 3 C a rb o n L a b el ed H o rm o n es TTR An d ro g en s P G R NGT NOR G ES DIE ETO Pro g es tin s EE2 E3 E2 E1 Est ro g en s C o m p o u n d 6 .0 3 5 .3 2 5 .9 3.75 5.48 3.06 5.65 5.32 6.35 4.75 5.73 325. 3.75 5.4 5.26 R et en tio n Ti me ( mi n ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 R T W in d o w (mi n ) + + - - + + + + + + + - - - - P o la rit y 3 1 8 .2 5 3 0 1 .2 2 9 5 2 9 0 .2 2 8 9 3 1 5 .2 5 3 1 3 .2 2 9 9 .2 3 1 1 3 1 2 .2 3 2 5 2 9 5 2 8 7 .2 2 7 1 .1 2 2 6 9 P re cu rs o r (m/ z) 1 0 0 .1 1 1 1 0 9 .0 4 1 4 5 .0 4 1 4 6 .0 5 4 9 7 .0 4 9 7 .0 4 1 5 9 .0 4 1 0 9 .0 4 1 0 9 .0 4 1 3 5 .0 4 1 4 7 .1 1 1 1 4 5 .0 4 1 4 3 .0 4 1 4 5 .0 4 1 4 3 .0 4 P ro d u ct ( m/ z) 2 2 .3 4 2 6 .6 9 3 6 .0 4 55 22 .3 4 2 2 .0 8 2 5 .8 3 2 6 .2 3 2 5 .4 2 2 9 .2 1 79 40 .9 4 5 1 .5 6 4 0 .2 9 5 4 .7 C o lli si o n En er g y ( V ) 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 5 .1 0 7 24 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 5 .1 0 7 2 4 .0 9 1 2 4 .0 9 1 M in D w el l Ti me ( ms) 8 2 .4 8 6 .6 1 1 2 7 .8 9 1 7 6 .3 4 4 5 .0 8 47 56 .2 4 9 .5 3 4 8 .2 9 6 3 .3 7 4 9 .2 8 8 1 .1 7 8 6 .1 1 8 3 .1 5 7 8 .9 4 R F Le n s ( V )

(45)
(46)
(47)

32

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% SW EWIW SW EWIW SW EWIW SW EWIW SW EWIW SW EWIW SW EWIW SW EWIW SW EWIW SW EWIW E1 E2 EE2 E3 DIE E T O GE S NO R P GR T T R 4 mL 2 mL

(48)

33

-250 -200 -150 -100 -50 0 50 100 150 200 M a tri x Eff e c t [% ] Hormones ACN MeOH 0 50 100 150 200 250 300 Ab s o lu te Rec o v e ry [% ] Hormones ACN MeOH

(A)

(B)

ND ND

(49)
(50)

35

.

0 50 100 150 200 250

E1 E2 E3 EE2 ETO DIE GES NGT NOR PGR TTR

A b s o lut e R e v o c e ry [ % ] Hormones SW EW IW ND

(51)

36

-120 -100 -80 -60 -40 -20 0 20 40 60 80

E1 E2 E3 EE2 ETO DIE GES NGT NOR PGR TTR

M a tri x Eff e c t [% ] SW EW IW

.

ND ND

(52)
(53)
(54)

39

(a)

(b)

(c)

(d)

0 2 4 6 8 10 12

E1 E2 E3 EE2 ETO DIE NOR PGR TTR

Con c e n tra ti o n [n g /L ] 0 2 4 6 8 10 12

E1 E2 E3 EE2 ETO DIE NOR PGR TTR

Con c e n tra ti o n [n g /L ] 0 2 4 6 8 10 12 14 16 18

E1 E2 E3 EE2 ETO DIE NOR PGR TTR

Con c e n tra ti o n [n g /L ]

(a)

(b)

(c)

(d)

(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

50

0 20 40 60 80 100 120 140 160 W e e k 1 W e e k 2 W e e k 3 C o n c e n tr a tion [ n g /L ] ETO PGR DIE E2 E1 0 20 40 60 80 100 120 W e e k 1 W e e k 2 W e e k 3 C o n c e n tr a tion [ n g /L ] TTR

(A)

(B)

(66)

51

(67)
(68)

53

0 2 4 6 8 10 12 W e e k 1 W e e k 2 W e e k 3 C o n c e n tr a tion [ n g /L ] PGR E3 E2 E1

(69)
(70)
(71)

56

0 10 20 30 40 50 60 70 80 90 100

E1 E2 E3 EE2 ETO DIE NOR PGR TTR

Con c e n tra ti o n [n g /L ] TIMFIE Composite Samples

0

10

20

30

40

50

60

70

80

90

100

E1 E2 E3 EE2 ETO DIE NOR PGR TTR

Conc

en

tr

ati

on

[ng

/L]

TIMFIE Composite Samples ND ND ND ND

(72)

57

0 1 2 3 4 5 6 7 8 9 10

E1 E2 E3 EE2 ETO DIE NOR PGR TTR

Con c e n tra ti o n [n g /L ] TIMFIE Composite Samples ND ND ND ND

(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)

65

P G R -C 1 3 NOR -C 1 3 EE2 -C 1 3 E2 -C 1 3 C a rb o n L a b el ed H o rm o n es TTR An d ro g en s P G R NGT NOR G ES DIE ETO Pro g es tin s EE2 E3 E2 E1 Est ro g en s C o m p o u n d 6 .0 3 5 .3 2 5 .9 .753 5.48 36.0 5.65 5.32 6.35 4.75 5.73 2.35 3.75 5.4 5.26 R et en tio n Ti me ( mi n ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 R T W in d o w (mi n ) + + - - + + + + + + + - - - - P o la rit y 3 1 8 .2 5 3 0 1 .2 2 9 5 2 9 0 .2 2 8 9 3 1 5 .2 5 3 1 3 .2 2 9 9 .2 3 1 1 3 1 2 .2 3 2 5 2 9 5 2 8 7 .2 2 7 1 .1 2 2 6 9 P re cu rs o r (m/ z) 1 0 0 .1 1 1 1 0 9 .0 4 1 4 5 .0 4 1 4 6 .0 5 4 9 7 .0 4 9 7 .0 4 1 5 9 .0 4 1 0 9 .0 4 1 0 9 .0 4 1 3 5 .0 4 1 4 7 .1 1 1 1 4 5 .0 4 1 4 3 .0 4 1 4 5 .0 4 1 4 3 .0 4 P ro d u ct ( m/ z) 2 2 .3 4 2 6 .6 9 3 6 .0 4 55 22 .3 4 2 2 .0 8 2 5 .8 3 2 6 .2 3 2 5 .4 2 2 9 .2 1 79 40 .9 4 5 1 .5 6 4 0 .2 9 5 4 .7 C o lli si o n En er g y ( V ) 2 4 .0 9 1 2 4 .091 2 4 .0 9 1 2 5 .1 0 7 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 4 .0 9 1 2 5 .1 0 7 2 4 .0 9 1 2 4 .0 9 1 M in D w el l Ti me ( ms) 8 2 .4 8 6 .6 1 1 2 7 .8 9 1 7 6 .3 4 4 5 .0 8 47 56 .2 4 9 .5 3 4 8 .2 9 6 3 .3 7 4 9 .2 8 8 1 .1 7 8 6 .1 1 8 3 .1 5 7 8 .9 4 R F Le n s ( V )

(81)

66

TTR P

G

R

NOR NGT G

ES DIE ETO EE2 E3 E2 E1

M at rix S tu d y S p ik in g Le v el 1 1 2 ± 3 107 ± 11 110 ± 4 – 101 ± 5 107 ± 5 – 114 ± 2 9 6 ± 7 1 1 3 ± 3 106 ± 5 M ill iQ Zh an g 2 0 1 7 N .S . 0 4 5 ± 4 2 3 ± 4 2 3 ± 5 4 5 ± 5 0 2 6 ± 17 50 ± 5 2 6 0 ± 60 75 ± 5 0 This S tu d y 1 n g /L 8 4 ± 8 7 2 ± 8 6 0 ± 11 53 ± 23 84 ± 4 0 6 5 ± 23 93 ± 2 9 6 ± 14 73 ± 9 7 2 ± 11 5 ng /L 1 1 6 ± 5 105 ± 5 114 ± 4 – 111 ± 5 101 ± 5 – 112 ± 9 82 ± 11 119 ± 6 9 4 ± 6 SW Zh an g 2 0 1 7 N .S . – 101 ±   11 88 ±  9 87  ±  1 3 90 ±  1 6 – 82 ±  1 3 – – – – 201 Shen 8 1 0 n g /L 1 1 0 1 1 0 1 1 0 1 1 0 2 1 0 0 1 1 0 1 2 0 1 1 0 1 1 0 1 1 0 1 2 0 Th is S tu d y 1 0 n g /L – – – – – – – 83 ± 5 8 6 ± 6 8 8 ± 4 8 8 ± 3 EW K o h 2 0 0 7 1 5 n g /L 1 1 8 ± 7 108 ± 6 110 ± 7 – 97 ± 16 124 ± 7 – 9 6 ± 8 9 6 ± 5 9 9 ± 9 9 0 ± 7 Zh an g 2 0 1 7 N .S . – 102 ±   12 10 0 ±   12 91 ±  1 5 96 ±  1 4 – 94 ±  1 7 – – – – Sh en 2 0 1 8 1 0 n g /L 9 5 .4 ± 1 .6 7 4 .2 ± 4 .8 1 2 1 ± 10 101 ± 4 .6 – – – 1 4 2 ± 0 .1 – 1 0 6 ± 1 .5 1 1 1 ± 3 .8 Liu 2 0 1 1 a 20 n g / L 1 1 0 ± 4 110 ± 2 100 ± 1 0 710 ± 47 140 ± 13 150 ± 9 36 ± 0 .2 1 1 0 ± 0 .9 1 1 0 ± 1 120 ± 3 Th is S tu d y 3 0 n g /L 98 ± 1 1 0 4 ± 1 94 ± 6 1 1 1 ± 5 – – – 89 ± 7 – 1 2 3 ± 14 123 ± 15 IW Li u 2 0 1 1 a 50 n g / L 1 2 0 ± 3 108 ± 8 114 ± 9 – 103 ± 12 114 ± 5 – 119 ± 6 126 ± 9 106 ± 4 102 ± 8 Zh an g 2 0 1 7 N .S . 5 9 ± 8 5 4 ± 3 8 9 ± 2 0 6 5 0 ± 64 100 ± 5 68 ± 17 72 ± 14 120 ± 3 5 6 ± 5 6 7 ± 7 Th is st u d y 3 0 n g /L

(82)

67

UPLC-MS/MS GC-MS/MS S/N LOQ [ng/L] IDL [ng/L] IQL on Column [pg] S/N IDL [ng/L] LOQ [ng/L] IQL on Column [pg] E1 6.3 1.6 0.48 2.4 3.3 4.6 15 9.1 E2 4.3 2.3 0.7 3.5 3.5 0.43 1.4 0.85 E3 13 0.8 0.24 1.2 3 10 33 20 EE2 3 3.3 1 5 4.5 3.3 11 6.7 ETO 9.1 1.1 0.33 1.6 ND ND ND ND DIE 7.3 1.4 0.41 2.1 ND ND ND ND GES 11 0.91 0.27 1.4 ND ND ND ND NGT 8 1.3 0.38 1.9 ND ND ND ND NOR 35 0.28 0.085 0.43 ND ND ND ND PGR 40 0.25 0.075 0.38 ND ND ND ND TTR 85 0.12 0.035 0.18 89 25 2.8 50

(83)

68

Area Recovery [%] Mean SD cv [%] Matrix Effect [%] Prespike Prespike Postspike 1 2

E1 85000 96000 98000 89 98 93 6.7 7.2 -55 E2 20000 22000 24000 90 92 91 1.2 1.3 -65 E3 230000 230000 250000 99 92 96 4.8 5 -44 EE2 280000 310000 140000 89 220 160 96 61 -190 ETO 47000 45000 32000 100 140 120 26 21 -100 DIE 88000 97000 84000 90 120 100 19 18 -95 GES 6200000 5900000 7500000 110 79 92 19 20 160 NGT 0 0 0 0 0 0 0 0 0 NOR 42000 47000 53000 89 90 89 0.44 0.49 -95 PGR 38000 44000 66000 85 67 76 13 17 -99 TTR 170000 150000 320000 110 48 79 44 56 -90

(84)

69

TTR P GR NOR GE S ETO DI E E3 EE2 E2 E1 350000 73000 190000 65 * 10 5 36000 200000 380000 33000 14000 82000 Inf luen t 4 mL 8100 5800 0 11* 10 5 3800 3800 13000 0 4600 4000 4100 2 mL 430000 65000 150000 72 * 10 5 44000 150000 330000 24000 16000 92000 4 mL 7000 4800 19000 12* 10 5 3500 4700 160000 4900 4800 4300 2 mL 390000 69000 170000 68* 10 5 40000 170000 360000 28000 15000 87000 Av. 4 mL 7600 5300 9600 12* 10 5 3700 4200 150000 4800 4400 4200 Av. 2 mL 56000 5400 28000 490000 5500 33000 36000 6500 1000 7300 Inf luen t S T DV 14 7. 8 16 7.2 14 19 10 23 6.9 8.3 CV

(85)

70

TTR P GR NOR GE S ETO DI E E3 EE2 E2 E1 900000 590000 380000 210000 100000 370000 14000 12000 24000 64000 S ur fa ce W ater 4 mL 3500 9200 2600 14000 2000 3100 8900 1100 1800 1800 2 mL 900000 940000 360000 15 * 10 6 370000 520000 47000 39000 67000 190000 E ff luent 4 mL 7800 11000 3500 3* 10 6 8100 5200 22000 8400 4100 3000 2 mL 870000 980000 360000 14 * 10 6 350000 610000 49000 39000 66000 180000 4 mL 7400 11000 0 26* 10 5 8000 4200 19000 6500 4200 3200 2 mL 890000 960000 360000 15* 10 6 360000 560000 48000 39000 67000 190000 Av. 4 mL 7600 11000 1800 28* 10 5 8100 4700 20000 7400 4200 3100 Av. 2 mL 26000 30000 810 980000 18000 61000 1700 260 750 6000 S T DV 3 3. 1 0.22 6.7 4.9 11 3.5 0.66 1.1 3.2 CV

(86)

71

In flu en t Blan k Da y 1 In flu en t Blan k Da y 2 In flu en t sp ik ed 1 n g /L In flu en t S p ik ed 5 n g /L In flu en t S p ik ed 5 n g /L Da y 2 57 48 55 55 32 61 53 57 73 44 64 38 22 22 E1 21 16 34 28 41 36 35 36 45 35 42 48 27 37 E2 > 100 >100 >100 >100 >100 >100 >100 100> >100 >100 >100 >100 >100 >100 E3 9. 7 7.7 16 16 23 15 17 20 13 6.8 4.3 6.6 5.9 6 EE2 29 27 15 12 27 61 36 23 67 48 60 22 13 19 ETO < 0. 37 < 0. 21 < 0. 52 < 0. 55 < 0. 41 2.9 2.6 3.7 11 46. 7.7 8.4 3.9 4.9 DI E > 100 >100 >100 >100 >100 >100 100> >100 >100 >100 >100 >100 >100 > 1 0 0 GE S < 8. 6 < 4. 9 < 12 <13 <9. 5 < 12 <9. 6 < 12 >100 >100 >100 >100 >100 >100 NGT < 2. 2 < 1. 2 13 18 39 24 16 18 16 26 23 15 19 18 NOR 51 33 14 15 33 19 14 17 22 14 16 23 13 17 PGR 24 18 4. 2 4.7 10 12 9.1 11 26 18 24 5 3.1 4.1 TTR

(87)

72

Ef flu en t B la n k Ef flu en t B la n k D ay 2 Ef flu en t S p ik ed 1 n g /L Ef flu en t S p ik ed 5 n g /L Ef flu en t S p ik ed 5 n g /L d ay 2 1 .4 0.88 0.76 3.5 3.6 .64 9.8 10 11 7.5 6.7 9.3 E1 2 .9 1.9 1.8 2.4 3 3.1 .28 9.7 10 8.6 6.3 9.3 E2 3 .5 1.4 1.8 2.7 3.9 7.3 9.9 9.4 10 8.3 6 8.2 E3 < 2 .9 < 2 .3 < 2 .1 < 2 .1 <2 3.5 6 5.2 9.5 6.8 3.5 5 EE2 37 28 25 25 20 33 17 17 17 12 10 12 ETO < 0 .1 3 < 0 .1 2 < 0 .1 2 1 .2 1.2 1.5 4 4.7 5.4 4.9 3.4 5.2 DIE > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 > 1 0 0 G ES < 3 .1 < 2 .7 < 2 .7 < 3 .5 <3 < 4 .4 < 3 .8 < 3 .8 < 4 .1 < 4 .2 < 3 .1 < 3 .3 NGT < 0 .7 9 < 0 .7 < 0 .6 9 < 0 .8 8 < 0 .7 7 < 1 .1 6.5 4 3 6.5 3.5 3.1 NOR < 0 .2 7 < 0 .2 3 < 0 .2 3 2 .2 1.9 2.5 7.6 8.3 .68 7.9 5.7 8.9 PGR < 0 .2 3 < 0 .2 0 .8 9 1 .1 1 1.5 6.4 6.1 3.6 5.2 7.2 4.4 TTR

(88)

73

S u rf ac e W at er B la n k S u rf ac e W at er B la n k D ay 2 S u rf ac e W at er sp ik ed w ith 1 n g /L S u rf ac e W at er sp ik ed w ith 5 n g /L S u rf ac e W at er sp ik ed w ith 5 n g /L D ay 2 < 0 .4 6 < 0 .4 4 < 0 .4 8 0 .8 2 0 .8 4 1 .5 1.7 2.6 10 9.8 11 9.2 10 10 E1 2 .7 2.7 3.4 2.1 2 1.4 1.9 1.4 9.7 10 11 9.7 10 7.9 E2 < 1 .1 <1 < 1 .1 < 0 .6 3 < 0 .8 8 < 0 .7 5 < 0 .7 7 < 0 .9 8 8 .3 8 9 7 8.1 7.5 E3 <3 <2 .9 < 3 .2 < 1 .8 < 2 .5 < 2 .1 < 2 .1 < 2 .7 10 7.5 7.9 7.8 9.6 10 EE2 < 0 .9 4 < 0 .9 2 < 0 .9 9 < 0 .5 5 < 0 .7 8 < 0 .6 6 < 0 .6 7 < 0 .8 6 4 2 .9 4.5 3.7 3.7 4.1 ETO < 0 .0 8 2 < 0 .0 7 2 < 0 .0 7 7 < 0 .0 5 4 < 0 .0 7 7 0 .4 8 0 .4 8 0 .7 4 4 .8 5.3 5.8 5 5 5 DIE 46 42 37 27 30 26 25 22 5 .1 2.4 2 3.7 6.3 4.3 GES < 1 .9 < 1 .7 < 1 .8 < 1 .3 < 1 .8 < 1 .2 < 1 .3 < 2 .3 <2 < 2 .3 < 2 .4 <2 <2 < 2 .1 NGT < 0 .4 9 < 0 .4 3 < 0 .4 5 < 0 .3 2 < 0 .4 5 < 0 .2 9 < 0 .3 3 < 0 .5 8 6 .3 7.3 7.5 4.2 4.6 6.9 NOR < 0 .1 6 0 .3 0.28 < 0 .1 1 < 0 .1 5 1 .5 1.4 1.6 7.2 7.8 7.8 7 7.7 7.5 PG R < 0 .1 4 < 0 .1 3 < 0 .1 3 < 0 .0 9 3 < 0 .1 3 0 .6 8 0 .5 8 0 .6 6 4 .3 7.5 7.5 4.5 4.7 5.6 TTR

(89)

74

M il li Q Blan k Mi lli Q S p ik ed with 1 n g /L M il liQ S p ik ed with 5 n g /L < 0 .3 6 < 0 .3 6 < 0 .4 1.1 0 .8 9 1 9 .4 9.1 9.6 E1 4 .7 1.7 2.3 0.87 0 .8 6 1 .2 8.5 9.4 10 E2 < 0 .8 4 < 0 .8 4 < 0 .9 4 1 .4 1.6 1.6 6.7 6.9 8.5 E3 2 .3 2.3< <2.6 <1.8 .8<1 2 6.5 6.4 10 EE2 < 0 .7 4 9 .7 9.7 1.2 1.8 1.4 5.8 6.5 6.2 ETO < 0 .0 8 5 < 0 .0 8 5 < 0 .0 7 2 0 .9 1 0 .9 9 0 .7 8 8 .3 7.9 8.8 DIE < 0 .4 7 < 0 .4 7 < 0 .4 0 .3 7 0 .5 8 0 .4 2 5 .1 3 7.6 GES <2 <2 <1 .7 < 1 .3 < 1 .2 <1 7.8 8.4 9.1 NGT < 0 .5 < 0 .5 < 0 .4 3 0 .3 5 0 .5 1 0 .4 7 7 .4 5.8 5 NOR < 0 .1 7 < 0 .1 7 < 0 .1 4 1 .1 1.2 1 6.1 7.7 7.6 PGR < 0 .1 5 < 0 .1 5 < 0 .1 3 0 .9 5 0 .9 0.8 8.2 7.4 6.5 TTR

(90)

75

Eluted with 4 mL ACN

Absolute Recovery [%]

Eluted with 6 mL ACN

Absolute Recovery [%]

SW

EW

IW

SW

EW

IW

E1

129

118

77

129

118

77

E2

120

112

79

120

112

79

E3

71

118

172

71

118

172

EE2

122

119

163

122

119

163

ETO

111

124

96

111

124

96

DIE

101

111

140

101

111

140

GES

118

107

113

118

107

113

NGT

105

0

0

105

0

0

NOR

110

85

130

110

85

130

PGR

104

92

69

104

92

69

TTR

113

92

83

113

92

83

.

Sample A

Recovery [%]

Sample B

Recovery [%]

Mean

Recovery [%]

Standard

Deviation

CV

[%]

Matrix

Effect [%]

E1

89

98

93

6.7

7.2

-55

E2

90

92

91

1.2

1.3

-65

E3

99

92

96

4.8

5.0

-44

EE2

89

225

157

96

61

-194

ETO

104

141

123

26

21

-100

DIE

90

116

103

19

18

-95

GES

105

79

92

19

20

161

NGT

0

0

0

0

0

0

NOR

89

90

89

0.44

0.49

-95

PGR

85

67

76

13

17

-99

TTR

110

48

79

44

56

-90

(91)
(92)
(93)
(94)

79

(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)

References

Related documents

While the interviews indicated that all factors identified in the literature are of great importance for analysing the external environment, the factors are put in

The purpose of packaging is to create more value for sponsors (Catherwood and Van Kirk, 1992) and therefore, make it easier for event organizations to attract sponsors (Alaja,

Considering that these methods are focused on sustainable supplier selection process including logistics service suppliers, the first part of the literature review consists

The different signaling of 10Base-T, 100Base-TX, and 1000Base-T standards, the variables affecting the signal such as the electrical characteristics of the interface

With proper waste management the organic waste could be used as feedstock in biogas plants, which would recycle the energy, reduce foul odors from laying around waste, produce

The Type II chromites contain both carbon and manganese in both the interior of the chromites and in the iron oxides at the margins and/or fractures of the

Here, high concentrations of reindeer have caused a vegetation transition to a graminoid-dominated state, accompanied by increased nutrient availability and soil

To conclude, absorptive capacity of the focal unit has positive impact on organizational learning in the context of repatriation, although orientation towards learning and