• No results found

Comparison of smoke release rate from building products

N/A
N/A
Protected

Academic year: 2021

Share "Comparison of smoke release rate from building products"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

8811075

Birgit A - L Östman

Comparison of Smoke

Release Rate from

Building Products

Paper presented at the International

Conference 'Control the Heat - Reduce the

Hazard', London, October 24-25, 1988

Trätek

(2)

B i r g i t A-L. Ostman

COMPARISON OF SMOKE RELEASE RATE FROM BUILDING PRODUCTS

Paper presented a t t h e I n t e r n a t i o n a l Conference 'Control the Heat - Reduce the Hazard',

London, October 24-25, 1988 TräteknikCentrum, Rapport P 8811075 Nyckelord; building materials fire tests heat release smoke release Stockholm November 1988

(3)

C O N T E N T S Page Swedish summary A b s t r a c t 1 I n t r o d u c t i o n 1 Experimental 2 L i g h t systems f o r smoke 4 R e p e a t a b i l i t y A Smoke p r o d u c t i o n 5 Gas p r o d u c t i o n 7 R e l a t i o n t o f u l l - s c a l e f i r e s 8 Conclusions 9 Acknowledgement 9 References 9

(4)

SAMMANFATTNING - Swedish summary

Rökalstringen från 13 o l i k a byggnadsmaterial har bestämts i en småskalig metod, den s k k o n k a l o r i m e t e r n . Metoden är u r s p r u n g l i g e n u t v e c k l a d för a t t mäta f r i -given värmeeffekt v i d brand, men ger också möjlighet a t t mäta andra parametrar som t i d t i l l antändning, massfÖrlust, rök- och g a s u t v e c k l i n g s a m t i d i g t , v i l k e t framstår som a l l t m e r angeläget i det i n t e r n a t i o n e l l a s t a n d a r d i s e r i n g s a r b e t e t . Andra småskaliga metoder för rökmätning är i allmänhet baserade på s t a t i s k a mätningar av uppsamlad rök i en box. För jämförelse med bränder i f u l l skala och för användning av matematiska modeller behövs e m e l l e r t i d data från dynamis-ka flödesförhållanden, t ex från k o n k a l o r i m e t e r n .

Röken har mätts med två o l i k a o p t i s k a system, d e l s e t t med l a s e r l j u s som före-slås i k o n k a l o r i m e t e r n , d e l s e t t med v i t t l j u s och en d e t e k t o r som e f t e r l i k n a r det mänskliga ögat. En jämförelse ansågs angelägen eftersom den s l u t l i g a a v s i k -ten är a t t underlätta utrymning v i d brand. R e s u l t a t e n med de båda o p t i s k a systemen är, något oväntat, p r a k t i s k t t a g e t i d e n t i s k a .

Rökutvecklingen för de o l i k a m a t e r i a l e n v a r i e r a r ganska k r a f t i g t . Träbaserade, s y n t e t i s k a och mer "obrännbara" m a t e r i a l samt kombinationer ingår i s t u d i e n . Gasutvecklingen, huvudsakligen mätt som kolmonoxid, CO, v a r i e r a r också k r a f -t i g -t .

R e s u l t a t e n har på e t t preliminärt sätt jämförts med data från Statens prov-n i prov-n g s a prov-n s t a l t , där exakt samma m a t e r i a l p r o v a t s v i d rumsbraprov-nd i f u l l s k a l a , överensstämmelsen är förvånansvärt god, men sambanden måste studeras b e t y d l i g t mer.

Rapporten ger en översikt som p r e s e n t e r a t s v i d en i n t e r n a t i o n e l l konferens. Fullständiga r e s u l t a t redovisas separat.

(5)

FIRE. CONTROLTHE HEAT .... REDUCE THE HAZARD

COMPARISON OF SMOKE RELEASE RATE FROM BUILDING PRODUCTS B i r g i t A-L. Ostman*

A b s t r a c t

The smoke p r o d u c t i o n s r a t e s f o r 13 d i f f e r e n t surface l i n i n g m a t e r i a l s have been determined i n the cone c a l o r i m e t e r a t t h r e e i r r a d i a n c e l e v e l s : 25, 50 and

75 kW/m2. Two l i g h t systems have been used s i m u l t a n e o u s l y , a helium-neon l a s e r and a white l i g h t source, showing egual r e s u l t s . The smoke p o t e n t i a l s obtained i n the cone c a l o r i m e t e r have been compared w i t h smoke p o t e n t i a l s c a l c u l a t e d from f u l l s c a l e room f i r e t e s t s . There seems t o be a reasonable agreement which must be f u r t h e r s t u d i e d .

I n t r o d u c t i o n

Measurements o f smoke p r o d u c t i o n from d i f f e r e n t m a t e r i a l s has so f a r mainly been c a r r i e d o u t i n s t a t i c boxes, o f which t h e NBS Somke d e n s i t y chamber i s best known ( 2 ) . This t e s t has s e v e r a l disadvantages: t h e r a t e o f smoke produc-t i o n i s hard produc-t o f o l l o w a c c u r a produc-t e l y , produc-t h e v e r produc-t i c a l o r i e n produc-t a produc-t i o n o f produc-the specimen ex-cludes r e l e v a n t t e s t i n g o f t h e r m o p l a s t i c s , i t has no measurements o f mass l o s s and a l i m i t e d range o f i r r a d i a n c e l e v e l s . Some o f these disadvantages have been overcome i n l a t e r m o d i f i c a t i o n s , b u t t h e main problems w i t h a s t a t i c , accumula-t i v e accumula-t e s accumula-t meaccumula-thod s accumula-t i l l remain.

A dynamic, f l o w - t h r o u g h system has t h e r e f o r e been proposed ( 5 , 15) and expected t o have a b e t t e r p r e d i c t i v e c a p a c i t y f o r f u l l s c a l e and r e a l f i r e s . Such an i n -strument f o r s m a l l - s c a l e t e s t i n g i s now a v a i l a b l e i n t h e cone c a l o r i m e t e r ( 3 ) . I t was o r i g i n a l l y developed f o r r a t e o f heat release measurements b u t enables a l s o the d e t e r m i n a t i o n o f smoke r e l e a s e , time t o i g n i t i o n e t c . However, some researchers have p o i n t e d o u t t h e importance o f measuring matured o r aged smoke (15, 1 6 ) , which might not be the case i n a flow-through system. Only l i m i t e d comparisons between s t a t i c and dynamic c o n d i t i o n s have been c a r r i e d o u t i n s m a l l scale ( 9 ) showing l e s s smoke p r o d u c t i o n d u r i n g dynamic c o n d i t i o n s . The r e l a t i o n o f smoke p r o d u c t i o n i n small scale t o f u l l - s c a l e f i r e s i s o f main i n t e r e s t , even i f the progress so f a r i s l i m i t e d (15, 1 7 ) . The use o f a mass l o s s r e l a t e d smoke parameter as smoke p o t e n t i a l (16) or smoke e x t i n c t i o n area (4) has r e c e n t l y shown promising r e s u l t s ( 5 , 13) i n some cases b u t has so f a r been a p p l i e d t o o n l y a few s u r f a c e l i n i n g s ( 1 0 ) . The cone c a l o r i m e t e r f o r smoke measurements i n c l u d e s the d e t e r m i n a t i o n o f mass loss and makes such comparisons e a s i e r .

* Swedish I n s t i t u t e f o r Wood Technology Research Box 5609, 5-114 86 Stockholm, Sweden

(6)

FIRE. CONTROLTHE HEAT REDUCE THE HAZARD

Smoke measurements i n the cone c a l o r i m e t e r are performed by a l a s e r beam ( 3 ) i n c o n t r a s t t o most e a r l i e r measurements. The l a s e r has s e v e r a l advantages such as simple design, high l e v e l o f beam c o l l i m a t i o n and s i m p l i f i e d t h e o r e t i c a l r e l e -vance ( 5 , 1 2 ) . A l a s e r system may, however, c r e a t e some problems w i t h s i g n a l s t a b i l i t y and r e l a t i o n t o v i s i b i l i t y , which i s i m p o r t a n t f o r escape i n r e a l f i r e s i t u a t i o n . The s i g n a l s t a b i l i t y has been improved by a second c o n t r o l i n g photometer i n the cone c a l o r i m e t e r a p p l i c a t i o n . But the r e l a t i o n t o v i s i b i l i t y has not yet been proved. Only one d i r e c t comparison between a l a s e r beam and a w h i t e l i g h t source has been p u b l i s h e d and was performed under s t a t i c c o n d i t i o n s

( 8 ) .

This study compares d i r e c t l y the l a s e r w i t h a w h i t e l i g h t source i n t h e cone c a l o r i m e t e r under dynamic c o n d i t i o n s . I t a l s o presents smoke p r o d u c t i o n data and smoke p o t e n t i a l s f o r a s e t o f d i f f e r e n t s u r f a c e l i n i n g s and makes a f i r s t attempt t o r e l a t e them t o a f u l l - s c a l e room f i r e t e s t .

Experimental

The experiments have been performed i n a cone c a l o r i m e t e r . F i g u r e 1 , which i s i n accordance w i t h the standard v e r s i o n ( 3 ) . I t i s a f u r t h e r development of an e a r l i e r v e r s i o n (14) used t o t e s t the e f f e c t o f specimen s i z e . New main items are the cone h e a t e r , the spark i g n i t e r , the hood and the exhaust duct. I t i s a l s o equipped w i t h two l i g h t systems t o measure smoke p r o d u c t i o n .

The cone heater and the spark i g n i t e r w i t h motor has been d e l i v e r e d from the U n i v e r s i t y of Ghent, Belgium. A square hood and a c i r c u l a r exhaust duct w i t h 110 mm inner diameter i s connected t o the e a r l i e r constant volume r a d i a l f a n , which i s s i t u a t e d about 10 m away from t h e cone h e a t e r . This p o s i t i o n o f the fan i s a r e a l advantage which does n o t r e q u i r e a high-temperature f a n and w i l l not i n f l u e n c e the f l o w or gas measurements. The volume f l o w can be v a r i e d by d i f f e r e n t dampers. The o r i f i c e p l a t e i s placed about 650 mm from the curve o f the exhaust duct and the s t r a i g h t f r e e s e c t i o n a f t e r i t i s about 650 mm long.

e x h a u s t duct 110 mm i d J ttiermocouple J

f

o o

r \

smoke c = ^ t o f a n o r i f i c e p l a t e cone t i e a t e r (ZZl s p a r k 1 p l u g specimen t i o l d e r t h e r m a l s h i e l d ) b a l a n c e to gas a n a l y z e r s (02-C0,C02) m e a s u r e m e n t s f r o m above detector g p h o t o c e l l 1 l a s e r ^ l a m p F i g u r e 1. The cone c a l o r i m e t e r .

(7)

FIRE. CONTROLTHE HEAT .... REDUCE THE HAZARD

The oxygen c o n c e n t r a t i o n i s measured by a paramagnetic c e l l (H&B Magnos 4G) and the c o n c e n t r a t i o n s o f carbon monoxide and carbon d i o x i d e by IR (Siemens

Ultramat 22 P ) . The gas sample i s taken from a r i n g sampler placed about 650 mm a f t e r t h e o r i f i c e p l a t e . The gas sample passes a c o l d t r a p where moisture i s removed, then a f i l t e r o f l o o s e l y packed glass wool and a tube w i t h w a t e r - f r e e CaS04 f o r e x t r a d r y i n g . The gas then goes through a pump and f i n a l l y passes a 2.7 um glass f i b e r f i l t e r . I n order t o minimize the t r a n s i e n t t i m e , a major p a r t o f the f l o w i s wasted a f t e r the pump.

The smoke i s measured by two d i f f e r e n t l i g h t systems placed c l o s e t o g e t h e r a t about 50 mm d i s t a n c e and about 100 mm a f t e r the gas sampler. At f i r s t , there i s a helium-neon l a s e r w i t h s i l i c o n photodiodes as main beam and reference detec-t o r s ( 3 ) d e l i v e r e d from Ghendetec-t U n i v e r s i detec-t y . Then detec-t h e r e i s a whidetec-te l i g h detec-t source from a 10 W tungsten f i l a m e n t lamp f o r which the beam i s made p a r a l l e l by a lens system. The d e t e c t o r has a s p e c t r a l l y d i s t r i b u t e d respons t h a t d u p l i c a t e s the human eye ( U n i t e d Detector Techn. USA). I n both cases t h e smoke release i s expressed as smoke p r o d u c t i o n r a t e i n ob-m^/s and smoke p o t e n t i a l i n

ob*m^/g according t o Rasbach ( 1 6 ) . The l a t t e r parameter i s d i r e c t l y propor-t i o n a l propor-t o propor-the s p e c i f i c e x propor-t i n c propor-t i o n area i n m^/g ( 3 ) .

The basic parameter i s a q u a n t i t y c a l l e d obscure ( o b ) . One ob i s the smoke conc e n t r a t i o n g i v i n g a l i g h t a b s o r p t i o n o f 1 dB/m, whiconch i s e q u i v a l e n t t o a v i s i -b i l i t y of a-bout 10 m. O-bscure, D|_, i s d e f i n e d as: D|_ = ( 1 0 / L ) * l o g (Iq/I) where L i s path l e n g t h i n m, I Q l i g h t i n t e n s i t y i n absence o f smoke and I l i g h t i n t e n s i t y i n presence o f smoke.

The smgke p r o d u c t i o n r a t e , Dgp, i s d e f i n e d as: Dgp = DL • V j (ob • m^/s) where Vj i s the volume f l o w o f gases i n the exhaust duct a t t h e a c t u a l tempe-r a t u tempe-r e i n m-'/s.

The smoke p o t e n t i a l , DQ, i s d e f i n e d as: DQ = Dgp / m (ob • m^/g) where m i s the mass l o s s r a t e i n g/s.

The t e s t m a t e r i a l s used a r e l i s t e d i n Table 1 . A l l o f them o r i g i n a t e from t h e same l o t which was i n i t i a l l y s e l e c t e d and used f o r s e v e r a l s t u d i e s on r e a c t i o n to f i r e w i t h i n Scandinavian f i r e l a b o r a t o r i e s (e.g. 1 , 10, 1 1 , 14, 19, 2 1 , 2 2 ) . TABLE 1. Tested l i n i n g m a t e r i a l s . M a t e r i a l Thickness Density mm kg/m^ R i g i d polyurethane foam 30 32 T e x t i l e w a l l - c o v e r i n g on rock-wool 42 + 0.5 150 I n s u l a t i n g f i b e r board 13 250 Expanded p o l y s t y r e n e 49 18 Medium d e n s i t y f i b e r board 12 655

Wood panel (spruce) 11 450

Paper w a l l - c o v e r i n g on p a r t i c l e board 10 + 0.5 670

P a r t i c l e board 10 670

Melamine-faced p a r t i c l e board 13 870

P l a s t i c w a l l - c o v e r i n g on gypsum board 13 + 0.7 725

T e x t i l e w a l l - c o v e r i n g on gypsum board 13 + 0.5 725

Paper w a l l - c o v e r i n g on gypsum board 13 + 0.5 725

(8)

FIRE; CONTROLTHE HEAT .... REDUCE THE HAZARD L i g h t systems f o r smoke

A l l smoke measurements were made s i m u l t a n e o u s l y w i t h two l i g h t systems, a helium-neon l a s e r and a w h i t e l i g h t system. I n most cases they showed an ex-c e l l e n t agreement. I n o n l y some ex-cases very narrow peaks had somewhat d i f f e r e n t h e i g h t s . This can p r o b a b l y be overcome by a more f r e q u e n t data sampling (5 3 used h e r e ) . R e p r e s e n t a t i v e data are given i n F i g u r e 2.

0.2 0.1 h RSP (0D*in3/s) RSP (00*fn3/s) 75 kW/fir LASER LAMP INSULATING FIBER BOARD 0 100 200 300 400 500 600 TIME (s) 0.5 0.4 0.3 0.2 0.11-0 LASER LAMP 75 kV/rn^ MELAMINE-FACED PARTICLE BOARD 25 kW/m' 0 100 200 300 400 500 600 TIME (s) F i g u r e 2. Comparison o f a l a s e r and w h i t e l i g h t system f o r measuring r a t e o f smoke p r o d u c t i o n (RSP).

R e p e a t a b i l i t y

Most data presented here a r e from s i n g l e t e s t s . This may be j u s t i f i e d since t h e r e p e a t a b i l i t y seems t o be acceptable. Figure 3 g i v e s an example f o r a m a t e r i a l w i t h q u i t e low smoke p r o d u c t i o n . 0.2 h RSP (obKfn3/s) 0.1 PARTICLE BOARD LASER 50 kW/m' 100 200 300 400 TIME (s) 500 600 F i g u r e 3. R e p e a t a b i l i t y i n smoke measurements The f i g u r e shows l a s e r data f o r p a r t i c l e b o a r d at 50 kW/m2 as an example.

(9)

FIRE. CONTROLTHE HEAT. .. . REDUCE THE HAZARD Smoke p r o d u c t i o n

The smoke p r o d u c t i o n was measured a t t h r e e i r r a d i a n c e l e v e l s from the cone heater 25, 50 and 75 kW/m^ and w i t h two l i g h t systems. As t h e l i g h t systems give equal data, see a preceding s e c t i o n , j u s t t h e w h i t e l i g h t data a r e p r e -sented here.

F i g u r e 4 shows smoke p r o d u c t i o n r a t e i n r e l a t i o n t o r a t e o f heat r e l e a s e f o r some t y p i c a l m a t e r i a l s . The smoke may be r e l e a s e d somewhat e a r l i e r than t h e heat. The e a r l y smoke released before i g n i t i o n i s u s u a l l y w h i t e and d i f f e r e n t from the smoke a f t e r i g n i t i o n which i s more dark. I n some cases they appear as d i s t i n c t peaks.

Maximum p r o d u c t i o n r a t e s f o r a l l m a t e r i a l s t e s t e d a r e given a t 50 kW/m2 i n Table 2. Such peak data a r e l e s s accurate ( e s p e c i a l l y f o r m a t e r i a l s w i t h narrow peaks) but may s t i l l be o f i n t e r e s t f o r a g e n e r a l comparison.

0.2 0.16 0.12 0.08 0.04 0 h RSP (0D*m3/s] PAPER WALL-COVERING ON PARTICLE BOARD 75 kW/m-100 200 300 400 500 600 TIME (s) 0.5 0.4 0.3 0.2 h 0.1 0 h RSP (obi(m3/s) L I 75 kW/m^ 50 kW/m2 25 kW/m' TEXTILE WALL-COVERING ON GYPSUM BOARD 100 200 300 400 500 600 TIME (S) PAPER WALL-COVERING ON PARTICLE BOARD 400 h RHR (kW/m2) 300 200 100 0 . 0 100 200 300 400 500 600 TIME (s) 800 600 h [- RHR (kW/m2) 75 kW/m^ 200 H 25 kW/m . 50kW/m^ TEXTILE WALL-COVERING ON GYPSUM BOARD 25 kW/m^ 0 100 200 300 400 500 600 TIME (s)

F i g u r e 4. Rate o f smoke p r o d u c t i o n (RSP) and r a t e of heat r e l e a s e (RHR) f o r some l i n i n g m a t e r i a l s . (Note the d i f f e r e n t scales i n both cases.)

(10)

FIRE: CONTROLTHE HEAT . . . . REDUCE THE HAZARD

The smoke r e l e a s e may a l s o be given i n r e l a t i o n t o mass l o s s which i s expressed i n ob m^/g and c a l l e d smoke p o t e n t i a l a c c o r d i n g t o Rasbach ( 1 6 ) . A p r o p o r t i o n a l parameter i s smoke e x t i n c t i o n area expressed i n m^/g according t o ( 3 ) . The ge-n e r a l appearage-nce o f the smoke p o t e ge-n t i a l curves i s s i m i l a r t o those f o r smoke p r o d u c t i o n r a t e , s i n c e the mass l o s s r a t e i s c o n s t a n t d u r i n g major p a r t s o f t h e f i r e t e s t f o r many m a t e r i a l s . Data are g i v e n i n F i q u r e 5 and Table 2.

SP (oöKm3/g) 30 \- SP (oD»tm3/g) 50 kW/m' 20 • 10 oh 2 5 k W / m WOOD PANEL EXPANDED POLYSTYRENE 0-5 " 50 KW/m-25 k W / m ' 0 100 200 300 400 500 600 TIME (s) 0 100 200 300 400 500 TIME (s) 500

Figure 5. Smoke p o t e n t i a l s (SP) f o r some m a t e r i a l s . (Note the d i f f e r e n t s c a l e s . )

TABLE 2. Smoke and gas p r o d u c t i o n data a t 50 kW/m2. Peak values

M a t e r i a l Smoke Smoke po- CO

produc-R i g i d p o l y u r e t h a n e foam

T e x t i l e w a l l - c o v e r i n g on rock-wool I n s u l a t i n g f i b e r board

Expanded p o l y s t y r e n e

Medium d e n s i t y f i b e r board Wood panel (spruce)

Paper w a l l - c o v e r i n g on p a r t i c l e board P a r t i c l e board

Melamine-faced p a r t i c l e board

P l a s t i c w a l l - c o v e r i n g on gypsum board T e x t i l e w a l l - c o v e r i n g on gypsum board Paper w a l l - c o v e r i n g on gypsum board Gypsum board t i o n r a t e t e n t i a l t i o n r a t e ob*m-^/s ob'm^/g ml/s 0.86 ( 5 s ) * 12.6 14.7 ( 10 s ) * 0.40 ( 20 s) 3.4 3.8 ( 25 s) 0.10 ( 20 s) 1.37 0.6 ( 30 s) 0.97 ( 90 s) 22.2 7.5 ( 85 s) 0.13 (110 s) 1.21 0.8 ( 75 s) 0.07 ( 30 s) 0.92 0.6 ( 45 s) 0.05 ( 70 s) 0.47 0.6 ( 85 s) 0.09 ( 90 s) 0.78 0.6 (115 s) 0.34 ( 40 s) 4.05 3.7 ( 90 s) 0.70 ( 10 s) 7.8 2.2 ( 75 s) 0.19 ( 30 s) 1.83 2.7 ( 80 s) 0.11 ( 25 s) 1.55 2.5 ( 80 s) 0.03 ( 30 s) 0.60 3.4 ( 75 s)

(11)

FIRE. CONTROLTHE HEAT REDUCE THE HAZARD Gas p r o d u c t i o n

The p r o d u c t i o n o f carbon monoxide and carbon d i o x i d e has a l s o been d e t e c t e d . Some examples o f CO p r o d u c t i o n a r e given i n r e l a t i o n t o smoke p r o d u c t i o n i n F i g u r e 6. Peak values a t 50 kW/m2 a r e given i n Table 2. G e n e r a l l y , t h e peak i n CO p r o d u c t i o n seems t o appear l a t e r than t h e peak i n smoke p r o d u c t i o n .

CO (ml/s) 1.5h 0.75 MEDIUM DENSITY FIBER BOARD 75 k W / m 50 k W / m ' 0 100 200 300 400 TIME (s) 500 600 CO (ml/s) 15 h 10 50 k W / m ' 2 5 k W / m ^

RIGID POLYURETHANE FOAM

100 200 300 400 500 600 TIME (s) 0.2 I- RSP (00»m3/s) 0.1 MEDIUM DENSITY FIBER BOARD 75 kW/m^ 50 k W / m ' 0 100 200 300 400 TIME (S) 500 600 1 O.B 0.6 0.4 0.2 0 h RSP (obi(m3/s) 50 kW/m' 25

RIGID POLYURETHANE FOAM

100 200 300 400 TIME (s)

500 600

F i g u r e 6. P r o d u c t i o n r a t e o f carbon monoxide, CO, i n r e l a t i o n t o smoke p r o d u c t i o n r a t e f o r some ma-t e r i a l s . (Noma-te ma-the d i f f e r e n ma-t scales i n boma-th cases.)

(12)

FIRE. CONTROLTHE HEAT REDUCE THE HAZARD R e l a t i o n t o f u l l - s c a l e f i r e s

Smoke p o t e n t i a l o r t h e e q u i v a l e n t term smoke e x t i n c t i o n area i s probably the best parameter f o r comparing smoke p r o d u c t i o n i n small-scale and f u l l - s c a l e

f i r e t e s t s ( 5 ) . I n f u l l - s c a l e t e s t s , however, the mass l o s s r a t e i s u s u a l l y n o t determined, but by using t h e e f f e c t i v e heat release obtained i n small s c a l e , the f u l l - s c a l e smoke p r o d u c t i o n data may be converted t o smoke p o t e n t i a l ( 1 0 ) . F u l l - s c a l e room f i r e data are a v a i l a b l e f o r e x a c t l y the same l i n i n g m a t e r i a l s ( 1 9 ) . They i n c l u d e smoke p r o d u c t i o n per heat released (ob-m^/MJ), which has been converted t o smoke p o t e n t i a l by m u l t i p l y i n g w i t h the average e f f e c t i v e heat release (MO/g) obtained a t 50 kW/m^ i n the cone c a l o r i m e t e r . This e f f e c t i v e heat release i s constant d u r i n g major p a r t s o f the f i r e t e s t . The s m a l l -scale smoke p o t e n t i a l used a r e peak values a t 50 kW/m2. F i g u r e 7 shows a gene-r a l aggene-reement. Mean values i n small scale seemed t o g i v e l e s s aggene-reement. How-ever, more c a r e f u l and comprehensive s t u d i e s have t o be made t o f i n d t h e best c o r r e l a t i o n . More l i n i n g m a t e r i a l s have a l s o t o be i n c o r p o r a t e d . S t i l l , the rough r e s u l t s so f a r are promising.

full scale

smoke potential at floshover ob- m/^g small scale smoke potential peak at 50 kW/m^ ob • mVq 10 15 20 25 • P a r t i c l e board • I n s u l a t i n g f i b e r b o a r d n Medium d e n s i t y f i b e r b o a r d a Wood p a n e l ( s p r u c e ) A R i g i d p o l y u r e t h a n e foam • E x p a n d e d p o l y s t y r e n e o Gypsum board M e l a m i n e - f a c e d p a r t i c l e board Paper w a l l - c o v e r i n g on p a r t i c l e board Paper w a l l - c o v e r i n g on g . b . P l a s t i c w a l l - c o v e r i n g on g.b. T e x t i l e w a l l - c o v e r i n g on g.b. T e x t i l e w a l l - c o v e r i n g on rock-wool

Figure 7. R e l a t i o n between smoke p o t e n t i a l obtained i n the cone c a l o r i m e t e r a t 50 kW/m2 and c a l c u l a t e d from a room f i r e t e s t ( 1 9 ) .

(13)

FIRE: CONTROLTHE HEAT . . . . REDUCE THE HAZARD Conclusions

Smoke p r o d u c t i o n can be measured w i t h good accuracy i n t h e cone c a l o r i m e t e r a l s o f o r m a t e r i a l s w i t h low smoke r e l e a s e .

A helium-neon l a s e r and a w h i t e l i g h t system g i v e equal r e s u l t s .

There seems t o be a general good agreement between smoke p o t e n t i a l s obtained i n the cone c a l o r i m e t e r and c a l c u l a t e d from r o o m - f i r e t e s t s . This has t o be f u r t h e r s t u d i e d . More accurate means t o o b t a i n smoke p o t e n t i a l s from r o o m - f i r e t e s t s have t o be found.

Acknowledgement

The author i s very g r a t e f u l t o Mr L. T s a n t a r i d i s who has performed the e x p e r i -ments and the data r e d u c t i o n s and t o Mr R. Nussbaum f o r d i s c u s s i o n s . The finan-c i a l support from the Swedish Board f o r F i r e Researfinan-ch t o p a r t o f t h i s work i s a l s o k i n d l y acknowledged.

References

( 1 ) Andersson, B., Model s c a l e compartment f i r e t e s t s w i t h w a l l l i n i n g mate-r i a l s . Lund U n i v e mate-r s i t y , Sweden, Repomate-rt LUTVDG (TVBB-3041) (1988).

(2) ASTM E 662-83, Standard t e s t method f o r S p e c i f i c o p t i c a l d e n s i t y o f smoke generated by s o l i d m a t e r i a l s . Annual Book o f ASTM Standards V o l . 04.07 (1987).

(3) ASTM E-5 Proposal P 190: Proposed t e s t method f o r heat and v i s i b l e smoke release r a t e s f o r m a t e r i a l s and products using an oxygen consumption c a l o -r i m e t e -r . Annual Book o f ASTM Standa-rds Vol 04.07, pp. 1203-1219 (1987). ( 4 ) Babrauskas, V., A p p l i c a t i o n s o f p r e d i c t i v e smoke measurements. J . F i r e and

F l a m m a b i l i t y 12, 51-64 (1981).

( 5 ) Babrauskas, V. and M u l h o l l a n d , G., Smoke and soot data d e t e r m i n a t i o n s i n the cone c a l o r i m e t e r . Mathematical M o d e l l i n g o f F i r e s , ASTM STP 983, Am. Society f o r T e s t i n g M a t e r i a l s , p. 83-104 (1987).

(6) Bankstone, CP., Z i n n , B.T., Browner, R.F. and Powell, E.A., Aspects o f the mechanism o f smoke g e n e r a t i o n by b u i l d i n g m a t e r i a l s . Combustion and Flame 4 1 , 273-292 (1981).

( 7 ) Benjamin, I.A., The c h a l l e n g e o f smoke. F i r e S a f e t y 3. 7, 3-9 (1984). (8) Clark, F.R.S., Assessment o f smoke d e n s i t y w i t h a helium-neon l a s e r . F i r e

and M a t e r i a l s 9 ( 1 ) , 30-35 ( 1 9 8 5 ) .

(9) Drysdale, D.P. and Abdul-Rahim, A.F., Smoke p r o d u c t i o n i n f i r e s : Small-scale experiments. F i r e Safety Science and E n g i n e e r i n g . ASTM STP 882, 285-300 (1985).

(10) Holmstedt, G., A n a l y s i s o f f i r e gases and smoke ( i n Swedish) i n SP-Rapp 1984:22 (1984), Swedish N a t i o n a l T e s t i n g I n s t i t u t e .

(14)

F I R E . C O N T R O L T H E H E A T R E D U C E T H E H A Z A R D

(11) Magnusson, S.E. and Sundström, B., M o d e l l i n g o f Room F i r e Growth - Com-b u s t i Com-b l e l i n i n g m a t e r i a l s . ASTM/SFPE Symposium on A p p l i c a t i o n o f F i r e Science t o F i r e E n g i n e e r i n g , Colorado (1984).

(12) Mulholland, G.W., How w e l l are we measuring smoke? F i r e and M a t e r i a l s 6 ( 2 ) , 65-67 (1982).

(13) Mulholland, G.W., H e n z e l l , V. and Babrauskas, V., The e f f e c t o f scale on smoke emissions. N a t i o n a l Bureau o f Standards (1988?).

(14) Nussbaum, R.M. and östman, B.A-L., Larger specimens f o r d e t e r m i n i n g r a t e of heat release i n the cone c a l o r i m e t e r . F i r e and M a t e r i a l s 10, 151-160 (1986).

( 1 5 ) Q u i n t i e r e , J.G., Smoke measurements: An assessment o f c o r r e l a t i o n s between l a b o r a t o r y and f u l l - s c a l e experiments. F i r e and M a t e r i a l s 6^, 145-160

(1982).

(16) Rasbach, D.J. and P r a t t , B.T., E s t i m a t i o n o f t h e smoke produced i n f i r e s . F i r e Safety J. 2, 23-57 (1979/80).

(17) Rasbach, D.3. and Drysdale, D.D., Fundamentals of smoke p r o d u c t i o n . F i r e Safety J. 5, 77-86 (1982).

(18) Seader, J.D. and Ou, S.5., C o r r e l a t i o n o f the smoking tendency of mate-r i a l s . F i mate-r e Reseamate-rch 1, 3-9 (1977).

(19) Sundström, B., F u l l s c a l e f i r e t e s t i n g o f s u r f a c e m a t e r i a l s . SP-Rapport 1986:45, Swedish N a t i o n a l T e s t i n g I n s t i t u t e (1986).

(20) Tsuchiya, Y. and Sumi, K., Smoke-producing c h a r a c t e r i s t i c s o f m a t e r i a l s . J. F i r e and F l a m m a b i l i t y 5, 64-75 (1974).

(21) Wickström, U. and Göransson, U., A simple model f o r p r e d i c t i n g room f i r e growth based on cone c a l o r i m e t e r t e s t s . ASTM J. o f T e s t i n g and Evalua-t i o n . November (1987).

(22) östman, B.A-L. and Nussbaum, R.M., C o r r e l a t i o n between s m a l l - s c a l e r a t e o f heat release and f u l l - s c a l e room f l a s h o v e r f o r s u r f a c e l i n i n g s . Second Symp. I n t e r n a t . Ass. f o r F i r e Safety Science, Tokyo, June (1988).

(15)

Detta digitala dokument skapades med anslag från

Stiftelsen Nils och Dorthi

Troedssons forskningsfond

Trätekn i kCentru m

I N S I I I I 1 1 1 1 ( )R 1 K \ i l K \ I S K | ( ) R S k M \ ( .

Box 5609,114 86 STOCKHOLM

Besöksadress: Drottning Kristinas väg 67 Telefon: 08-14 53 00

Telex: 144 45 tratek s Telefax: 08-11 61 88 Huvudenhet med kansli

Asenvägen 9, 552 58 JÖNKÖPING Telefon: 036-12 60 41 Telefax: 036-16 87 98 ISSN 0283-4634 931 87 SKELLEFTEÅ Besöksadress: Bockholmsvägen 18 Telefon: 0910-652 00 Telex: 650 31 expolar s Telefax: 0910-652 65

References

Related documents

Utvecklingen för abborre och mört i Simpevarp och Kvädöfjärden sedan starten 1983 presenteras i figur 6.. Fångsterna minskade markant från föregående år i samtliga serier

In a situation where heat maps need to be interpolated on a more frequent basis, inverse distance weighting (IDW) with price as predictor would be preferred over thin plate spline

Through this master thesis a case study was performed, assessing in particular the heat recovery potential from untreated wastewater in the common sewer line

In general, to cover the heat demand, high temperature industrial heat pumps can be used as low temperature waste heat recovery from the blast furnace.. Sweet

Ease of development External DSLs developed using a library (such as Scala’s parser combinators) seem easier to develop than using a parser generator tool (such as ANTLR) due to

Higher solution heat treatment temperatures resulted in higher fractions of chromium nitrides, but an increased cooling rate has an even larger effect on the volume

In the case building the amount of energy saving per year with the grey-water heat recovery unit is about 23.16 MW, which is 15055 SEK of cost savings per year, against 7.045 MW

Figure 3 Total heat release rate histories for the sprinkler tests where ignition took place at the bottom, left hand side of the upholstered chair... close to the bottom ofthe