• No results found

Operator training simulation for integrating cultivation and homogenisation in protein production

N/A
N/A
Protected

Academic year: 2021

Share "Operator training simulation for integrating cultivation and homogenisation in protein production"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Operator training simulation for integrating

cultivation and homogenisation in protein

production

Inga Gerlach, Carl-Fredrik Mandenius and Volker C. Hass

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Inga Gerlach, Carl-Fredrik Mandenius and Volker C. Hass, Operator training simulation for

integrating cultivation and homogenisation in protein production, 2015, Biotechnology

Reports, (6), 91-99.

http://dx.doi.org/10.1016/j.btre.2015.03.002

Copyright: Elsevier

http://www.elsevier.com/

Postprint available at: Linköping University Electronic Press

(2)

Operator

training

simulation

for

integrating

cultivation

and

homogenisation

in

protein

production

Inga

Gerlach

a,b

,

Carl-Fredrik

Mandenius

b,

*

,

Volker

C.

Hass

c

a

DepartmentofEnvironmental-andBio-Technology,HochschuleBremenUniversityofAppliedSciencesBremen,Neustadtswall30,28199Bremen,Germany

b

DivisionofBiotechnology/IFM,LinköpingUniversity,58183Linköping,Sweden

c

FacultyofMedicalandLifeSciences,HochschuleFurtwangenUniversityofAppliedSciencesFurtwangen,Jakob-Kienzle-Straße17,78054 Villingen-Schwenningen,Germany

ARTICLE INFO Articlehistory:

Received16January2015

Receivedinrevisedform2March2015 Accepted4March2015

Availableonline6March2015 Keywords:

Trainingsimulator

Recombinantproteinproduction Cultivation

Homogenisation Integratedprocess

ABSTRACT

Operatingtrainingsimulators(OTS)arevirtualsimulationtoolsusedfortrainingofprocessoperatorsin industryinperformingproceduresandrunningprocesses.Basedonstructuredmathematicalmodelsof theunitoperationsofabioprocessanOTScantrainaprocessoperatorbyvisualisingchangingconditions duringtheprocess,allowtestingoperatoractions,testingcontrollersettings,experienceunexpected technicalproblemsandgettingpracticeinusingprescribedstandardproceduresforaplant.

ThisworkshowsthedesignofanOTSwheretwosequentialstepsofarecombinantproteinproduction process, a fed-batch cultivationand ahigh-pressurehomogenisation, areintegrated. TheOTS was evaluatedonausertestgroupandshowedthattheOTSpromotedanddevelopedtheirunderstandingof the process,their capabilitytoidentify parametersinfluencingprocessefficiencyand theskills of operatingit.

ã2015TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Operatingtrainingsimulators(OTS)arevirtualsimulatorsfor

training of operators in industry or other human activities in

performingproceduresandrunningprocesses[22,17,5,2,18].

Well-knownexamples are OTS for runningprocess units,navigating

airplanes and ships, performing medical surgery and training

militarypersonnelinusingweaponsincombat[3,16,7,15,21].The OTSsimulatetheproceduresofthetechnicalsystemtobetrained onbasedonestablishedmathematicalmodels.ThetypicalOTShas aninterfacethat visualizesthetechnicalsystemand allowsthe traineetointeractwiththevirtualsystemthroughemulatedtools andgearssuchaspumps,valvesandcontrollers.Bythat,theOTS

provides a number of opportunities for training operators by

visualisingdifferentprocessconditions,tryingalternativeoperator actions,solvingtechnicalproblems,changingcontrollersettings andfollowprescribedstandardproceduresforaplant.

InparticularforbioprocessestheOTShavegreatpotentialby

visualizing critical and complex operating procedures in the

bioprocess.Sofar,feweffortsaremadetouseOTSinindustrial

trainingoreducation.Previousstudiesbyushaveshownhowthe OTScanefficientlybeappliedtobiogasdigesters[4],bioethanol fermentation [9], and distillation [13] as well as recombinant proteinproductioninbioreactors[10].

ThesepreviouseffortsinOTSdevelopmenthavebeenmainly

focusedonsingleunitoperationofthebioprocesses(anethanol fermentor,a distillationtower,anaerobicrecombinantbacterial cultivation).However,goodperformanceofbioprocessoperators inindustryrequiresthatsequentialprocessunitscanbeoperated

efficiently and simultaneously. What happens in the first unit

operation of a process sequence affects the subsequent unit

operationsinwaysthatrequireverygoodunderstandingofthe

process bytheoperatorsand skillsin runningitefficientlyand withoutfaults.

Inthisstudyweshowhowthetwosequentialunitoperationsin

a bioprocess for production of a recombinant protein are

integrated in an OTS. The intracellular recombinant protein is

producedinafed-batchbioreactorfromwhichitssuspensionof

protein-containing cell is transferred to a subsequent

high-pressure homogeniser. The OTS with the two coupled process

unitsallowedtrainingofprocessoperatorsinhowtorunthe high-pressurehomogeniserinrelationtokeyconditionsandparameters

suchaspressure,flowrateand numberofpasses.TheOTSwas

testedonausergroupforevaluatingtheirabilitytocomprehend

* Correspondingauthor.Tel.:+4613281000. E-mailaddress:cfm@ifm.liu.se(C.-F.Mandenius).

http://dx.doi.org/10.1016/j.btre.2015.03.002

2215-017X/ã2015TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Biotechnology

Reports

(3)

thedynamicsoftheprocessandtotakeappropriateactionsduring operation.

2.Materialsandmethods

2.1.Microorganism

Escherichia coli strainHMS174(DE3) (Novagen,Madison,WI,

USA)transformedwithplasmidpET30a(Novagen)expressingthe

greenfluorescentprotein(GFP)mutant3.1(GFP-mut-3.1,Clontech, US),undercontroloftheT7/lacpromoteranda25bplacoperator

sequencewasusedforGFPproduction.

2.2.Cultivation

Cellswerecultivatedina10Linsitusterilizedbioreactor(Model

LMS 2002,Belach Bioteknik AB,Solna, Sweden)equipped with

standardinstrumentation.Theprocedure,analyticalmethodsand mediacompositionaredescribedin[12]and[9].

2.3.Celldisruption

HarvestedsuspensionoftwocompletedE.colicultivationswere mixed(10L)and storedat4C untiltheusein homogenisation

experiments.The cell suspensions were subsequently

homoge-nised using a Gaulin-Homogeniser APV LAB 40 (SPX Flow

TechnologyRosistaGmbH)withahorizontalthree-pistonpump.

The AVPhomogeniser had a maximum capacity of 45L/h at a

maximumpressureof1000bar.Theexperimentalset-upincluded

atankthatwasconnectedtothehomogeniserandaglassflaskfor collectingthehomogenate.Aftereachpassthetankwasrefilled

withthe homogenate and samples were taken for subsequent

analysis.Cellsuspensionsof5Lvolumeswerehomogenisedat300 and600bar.Thecellsuspensionwascooledto5–10Cbetweenthe

homogenisationpasses.

2.4.Fluorescencespectrophotometricanalysis

Two-millilitresamplesfromhomogenizationwerecentrifuged

at10,000gfor10minat4C.Foranalysingtheproteinrelease

the supernatant was collected and measuredin a fluorescence

spectrophotometer(FluostarGalaxy,BMGLabtechnologiesGmbH,

Offenburg,Germany).Twohundredmicroliters of1:100diluted

(PBS buffer) supernatant were measured in well-plates at an

excitation/emission of485/520nm.Also, uncentrifugedsamples

fromthetwocultivationswereanalysedascontrols. 2.5.Modelformulation

ApreviouslydevelopedmodelforproteinexpressioninE.coli

[10]was modifiedinorder tosimplifyitsstructure,toimprove simulationofproteinexpressionandtofacilitateitsconnectionto amodelforhigh-pressurehomogenisation(seeSection3).Both

modelswereformulatedintheprogramminglanguageC++and

numericallysolvedusinga4thorderRunge–Kuttaalgorithmfor

dynamicsystems.Modelparameterweretakenfromliteratureor

adjustedbycomparingsimulationresultswithexperimentaldata. 2.6.Operatortrainingsimulator

The development of the OTS was carried out by using the

commercial software WinErs (Ingenieurbüro Schoop GmbH,

Hamburg, Germany; www.schoop.de/en/software/winers).

WinErs is a convenient software for development of process

control and automation and includes features for visualisation, datamonitoring, controlandsimulation ofindustrial processes.

TheWinErssoftwarewashereusedfordesigning thegraphical

userinterfaces(GUI),andcontrolschemesand functionsofthe

OTS.WinErswasalsousedforimplementationoftheC++models

asdynamic-linklibraries(DLL).Thein-andoutputsofthemodels whereconnectedtotheGUIstovisualizetheactualstatevariables indatatablesorhistorydiagrams.Bythat,theOTSreplacedthereal

bioreactor and homogenizer with models that mimic their

behaviourinthevirtualenvironmentoftheOTS.WiththeWinErs

M

PIC TIC QIC TIC

2

T

1

T

VIC TIC bioreactor

Fig.1.IntegratedprocessplantincludingabioreactorwithaproducttankandaHPHsystemconnectedtotwoholdingtanks(T1andT2)andaproducttank. 92 I.Gerlachetal./BiotechnologyReports6(2015)91–99

(4)

softwarethesimulationsintheOTScouldberuninreal-timeas wellasinacceleratedtime(1-,5-,10-or15-times).

2.7.VirtualOTStrainingandevaluation

ApplicabilityandfeasibilityoftheOTSwereevaluatedwitha

usertest groupwithbackgroundin bioengineering and similar

biosciences.Thetraineestookpartinaone-dayhands-ontraining

withtheOTSwheretheacceleratedmodeoftheOTSwasusedto

reduce the training time. Detailed written instructions were

available for the trainees beforehand. These instructions were

comparablewithastandardoperationprocedurefortheintegrated processandincludedthetypicalmanualactionsbyoperatorsand

the scheduling of the process sequence. The training was

subsequently assessed from questionnaires and tasks (see

Supplementarydata,3.)aswellaswithindividualinterviews. TheOTStrainingstartedwithvirtualfed-batchcultivationsfor

protein expression and separate homogenisation experiments

usingthevirtualhomogeniserandwascontinuedwithtrainingthe

integrated process with the cultivation and homogenisation

proceduresincludingvaryinginductionandfeedingtimesaswell

as comparing single-pass or continuous homogenisation at

differentpressures.

3.Homogenisermodeldevelopment

Thehomogenisermodelusedinthisstudyisbasedonamodel developedbyHetheringtonet al.[14]fortherelease ofsoluble

protein in a Manton–Gaulin homogeniser. Hetherington et al.

adaptedtheproteinreleasetoSaccharomycescerevisiaeasfunction oftheoperatingpressure(P)andthenumberofpassesthroughthe

homogenizer(N)as:

log Rmax

RmaxR

 

¼KNPa (1)

whereRmaxisthemaximumamountofsolubleproteinthatcanbe

released,Rthefractionofdisruptedcells,Ktherateconstantanda

a pressure exponent. The exponent a is specific for a certain

microorganismanddependsonthemicroorganism’srobustnessto disruption.Itisrelatedtothecellwallstructurebutmightalsobe influencedbygrowthconditions,growthrate,cellconcentration

and the temperature of the suspension as suggested in other

reports[11,8,19].Subsequentdevelopmentofthismodelhasbeen donebyAugensteinetal.;Saueretal.;Spidenetal.[1,24,19],and Chooniaetal.[6].

ForintegratingtheHPHwiththeprecedingcultivationstepwe modifiedEq.(1) todescribetherelease ofrecombinantprotein (cRPn)afterhomogenisation: cRPn¼cRPn;int 1:010:0KP a ð Þ   (2) wherenreferstotank1(T1)ortank2(T2)oftheHPHsystem,cRPn

isthereleasedproteinconcentration(comparabletoR(Eq.(1))) and cRPn,int the intracellular recombinant proteinconcentration

(comparabletoRmax)(Supplementarydata,Eqs.S1:3andS1:4).

Table1

UserneedstobemetinthedevelopmentoftheintegratedOTS. Needs Description (1)Efficientvirtualbioprocesstraininginrecombinant

proteinproduction

Proceduresofhowtocarryoutarecombinantproteincultivationincludingfermentationtechniquesand inductionaswellasasubsequentorcontinuoushomogenisation(downstream)shouldbetrainedwith highfidelityandwithinshortertimebyusingtheOTS.

(2)Efficienttransferoffundamentalknowledgeabout high-pressurehomogenisation(HPH)

ThetransferoffundamentalknowledgeaboutHPHsuchaschangingpressureandtemperatureofthecell suspensionshouldbefacilitatedbyusingtheOTS.

(3)Efficientvirtualtrainingincelldisruptionpropertiesof differentmicroorganismsduringHPH

Theanalysisofdisruptionpropertiesofdifferentmicroorganismsduringhomogenisationshouldbe accomplishedeasierandwithinshortertimebyusingtheOTS.

(4)Efficienttransferofunderstandingofprotein denaturationeffectsduringHPH

Theunderstandingofproteinstabilityduringhomogenisationshouldtobereachedwithinshortertimeby usingtheOTS.

(5)Efficienttransferofunderstandingforapplyingdifferent passstrategiesforHPH

Proceduresofhowtorunsingle-passandcontinuoushomogenisationstrategiesshouldbecomprehended easierandwithinshortertimebyusingtheOTS.

Fig.2.Comparisonbetweenexperimentaldatafromhigh-pressurehomogenisationruns(dots)andsimulation(sim.)withthehomogenisermodel(lines)showingthe releasedproteinconcentrationafterhomogenisationat:()300bar(30MPa)and(4)600bar(60MPa).Simulationresultsshowthereleasedproteinconcentrationintank1 (T1)andtank2(T2)foreachpassbytransferringthesuspensionfromT1throughthehomogenisertoT2andviceversa.Thetotalrecombinantproteinconcentrationfroma puresampleofthemixedculturesusedinthehomogenisationexperimentswasaround1.7g/L(&)(otherparametersaregiveninTable2).

(5)

The number of passes of the cell suspension through the homogeniser(NinEq.(1))wasincludedasshowninFig.1.

Thetotalreleaseofrecombinantproteinfromthehomogeniser iscalculatedfrominitiallyreleasedproteinintankT1orT2(cRPn,rel,

Supplementarydata,Eqs.S1:5andS1:6),releasedproteindueto homogenisation(cRPn,Eq. (2))diminishedbyproteindenatured

duringhomogenisation(cRPn,deg,Eq.(5)):

cRPHn;rel¼cRPn;relþcRPncRPHn;deg (3)

Theintracellularproteinconcentrationleftafterhomogenisationis calculatedfrominitialintracellularproteinintankT1orT2(cRPn,int,

Supplementarydata,Eqs.S1:3andS1:4)diminishedbyreleased proteinduetohomogenisation(cRPn,Eq.(2)):

cRPHn;int¼cRPn;intcRPn (4)

Thechangeofproteinconcentrationduetodenaturationduring

homogenisationisdescribedas:

cRPHn;deg¼ctn;relkd (5)

wherectn,relisgivenby:

ctn;rel¼cRPn;relþcRPn (6)

andkdisadenaturationfactordependingonthepressure:

kd¼1:010:0KdP b

ð Þ (7)

whereKdisthedenaturationconstantandbapressureexponent.

Augenstein et al. [1] assumed that protein denaturation

increases withpressure. Using Eq. (2) for deriving the release rateandEq.(7)forthespecificdenaturationratetheypredictedthe totalproteinyield.Moreover,Chooniaetal.[6]addedobservations ofdecreaseofproteinconcentrationathigherpressureandEngler andCampell[8]didobservationsondisruptionstresseffects.

Basedonthesefindings,wedefinedtheparametersK,Kd,anda

inEqs.(2)and (7)andasafunctionofsuspensiontemperature

during homogenisation. For clarification these parameters are

writtenasK0,Kd0anda0(Supplementarydata,TableS1.2).Adouble

sigmoidalfunctionasdescribedbyGerlachetal.[10]isappliedin

which the suspension temperature is the argument x of the

function(Supplementarydata,Eq.S1:22).

Thehomogenisationtemperatureofthesuspensionisdefined

as TH1 and TH2. TH1 and TH2 are modeled according to the

assumptionthatthetemperatureofthesuspensionincreasesby

2.5Cper10.0MPaofoperatingpressure[20]:

THn¼0:25 K

MPaPþTTn (8)

whereTTndefinesthetemperatureofthesuspensionsfromtank1

ortank2.

Furthermore, we observed decreased flow rates at higher

pressureasalsonotedbyChooniaetal.[6].Thus,alinearequation is used todescribethe changeof theflow rate(F) at different pressure(P):

F¼0:25Pþ45:0hL (9)

Applied model parameters are defined from own data where

45.0L/h is the maximum flow rate without homogenisation

pressure.

Thedescribedkineticexpressionswereintegratedindynamic

massbalancesthatcanbefoundintheSupplementarydata.

4.Resultsanddiscussion

Inordertodeveloptheintegrated “Bioreactor-High-pressure-homogeniserOTSfivecriticalneedsweresetupasgoalsforthe design (Table 1).The needs cover thecapability of the OTS to accomplish (1) efficient virtual interactionwith a recombinant proteinproductionprocess,(2)efficienttransferoffundamental knowledgeaboutHPHincludinginfluenceofpressuregradientand temperatureofthecellsuspension,(3)efficientvirtualtrainingin celldisruptionpropertiesofdifferentmicroorganismsduringHPH, (4) efficient transfer of understanding of protein denaturation

Table2

Parametersappliedinsimulations.

Fig.2 K a Kd b cRP0,int(g/L) cRP0,rel(g/L)

(a) 0.009 1.2 0.1E-05 0.0 1.65(30MPa) 1.4(60MPa)

0.34 (b) 0.01 1.0 0.2E-04 1.5 1.65 0.34

Fig.3.Simplifiedmodelschemeoftheproteinexpressionmodelshowingfluxesofsubstratetodifferentmetabolicpathways(anabolicandenergypathway),in-and reactivationprocessesofactive/inactivebiomass(qXiX,qXXi),themaintenancemetabolismthatisrelatedtothereactivationprocess,thedegradationofrecombinantprotein

andinactivebiomassandthemortalityrateaswellasthecompartmentstructureoftotalviablebiomass(Xt),deadbiomass(Xd)andreleasedbiomass(Xrel).qG–glucose

uptakerate;qSN–nitrogenuptakerate;qHAc–acetateuptakerate;qIPTG–IPTGuptakerate;Xact–activebiomass;XAA–aminoacidbiomass;RP–recombinantproteininXt;RPd–

recombinantproteininXd;RPrel–releasedrecombinantprotein;Xpl–plasmidbiomass;XS–structuralbiomass;Xi–inactivebiomass;II–intracellularIPTG.Themodelling

principleisshowne.g.,withqGtheglucosefluxwithinthecelltowardsanabolicpathway(YXP)andenergy(ATP)producingpathway(1-YXP).Thetypesofarrowillustratethe

respectivereaction(legend).

(6)

effectsduringHPHand(5)efficienttransferofunderstandingfor applyingdifferentpassstrategiesatHPH.Theseneedsguidedthe designoftheintegratedOTSintoafunctionalsupport.

4.1.Virtualhomogeniserdesign

The layout of the graphical user interface of the OTS was

designedclosetothepipingandinstrumentationdiagram(P&ID) oftheunitsoftheintegratedprocess.AsshowninFig.1,thecell suspensioncomingfromtheproteinharvesttankofthebioreactor ispumpedintoholdingtankT1oftheHPH.ThelayoutoftheHPH includestwostoragetanks,bythatallowingtheuseofdifferent passstrategiesthroughthehomogenizer,forexamplebytransfer ofthecellsuspensionfromholdingtankT1toT2orviceversa,orfor

continuoushomogenisation,byusingadditionalpumps.Sampling

portsallowcollectionofoff-linedatafrombothtanks.Theoff-line dataarepresentedtogetherwithon-linesignalsinseparate

sub-interface diagrams. Furthermore, cooling jackets control the

temperatureofbothholdingtanksandsensorsmonitor

tempera-ture(TIC), operating pressure(PIC)and tank volumes(VIC)for controllingtheprocess.TheseOTSfeaturesrelatetoNeed1aswell asNeed5inTable1.

Furthermore, by using the HPH-part of the OTS separately

(withoutconnectiontothebioreactor)theinitialconcentrationsof

intracellular and released recombinant protein into the cell

suspensionweredefinedbythetrainees. DifferentHPH

experi-mentswerecarriedoutbychangingtheoperatingpressurethat

affectstheflowratecapacity(cf.Eq.(9)),therebyaddressingNeed 2.

Fig. 2 shows the simulation results for release of green

fluorescentprotein(GFP) afterhomogenisationwithfivepasses

in comparison to data from experimental HPH runs. The

concentrationof GFPin thepuresample isaround1.7g/L.Two

differentsetsoftemperature-independentparameters(K,a,Kd,b)

areusedforadjustingthemodel(Table2).ThereleaseofGFPat 60MPaintheexperimentalrunisnotsignificantlyhigherthanthe release at 30MPa afterthe firstpass. Additionalpasses release

slightly more GFPat 30MPa whileat 60MPa theGFP is either

constantorshowatendencytodecrease.

Thelowerconcentrationobtainedat60MPamightbearesultof

the homogeneity of the culture in the experiments. Since the

concentration at 60MPa might be higher, a lower initial

intracellularrecombinantproteinconcentration(cRPO,int)wasused

(Fig.2a andTable2).Comparedtopreviousresultsfromothers

Fig.4.ComparisonbetweenexperimentaldatafromtwoE.colilaboratoryfed-batchcultivationsproducingrecombinantGFP(dots)andsimulationwiththeprotein expressionmodel(lines)showingrelevantbiologicaleffects.TheseeffectscanbespecificallytrainedwithintheOTS.Glucose(Glc,^),biomass(X,&),acetate(HAc,),GFP (4)concentrations,thevolume( )andtheappliedfeedrateprofiles( )areshown.(a)Cultivationprocessincludingbatchandfed-batchphasewithinductionat7h. (b)Cultivationprocessincludingbatchandfed-batchphasewithinductionat6.5h.

(7)

(e.g.,Refs.[14,23,6])wherethereleaseofproteinincreaseswith pressure,oursecondsimulationat30MPashowslessreleasethan thedatafromtheexperimentalrun(Fig.2b).TheresultsinFig.2

showtheflexibilityofthemodel.BytuningtheconstantKandthe exponentathereleaseofrecombinantproteincanbeadaptedto

the applied HPH system or microorganism. Furthermore, the

denaturation constant Kd and the pressure exponent b can

compensatefordenaturationeffectsof therecombinantprotein

ifit is instable at thepressures and temperatures used in the homogeniser.

TotrainNeed3,fourmicroorganismsofdifferentsensitivityto celldisruptionwereincludedinthesimulations.Theconstraints

usedin thesesimulations werebasedonstudies showinghow

protein release and cell disruption depend on temperature,

pressureandnumberofpassesinthehomogeniser[23,19,6].In

particular the dependence of the type of microorganism and

suspensiontemperaturewas appliedwheretheparameterK,Kd

andaweredescribedasfunctionofsuspensiontemperatureusing asigmoidalfunction(Supplementarydata,Eqs.S1:22andS1:23, TableS1.2), yieldingK0,Kd0 and a0.Inaddition,when disrupting

proteincontainingmicroorganisms ofdifferentstability Need4 couldalsobeincludedintheOTS.

4.2.Integrationofhomogenisermodelwithamodifiedprotein expressionmodel

Thetwoprocessingstepswereconnectedbyusingtheoutputof theproteinexpressionmodelasinputforthehomogenisermodel (Fig.1).Intracellularrecombinantproteinwastakenasthesumof recombinantproteinintotalviablebiomass(Xt)anddeadbiomass

(Xd)whilereleasedrecombinantproteinwaspartofthereleased

biomass (Xrel). Both were used as inputs as initial protein

concentrationvalues(cRPO,int,cRPO,rel;Supplementarydata,Eqs.S

1:3and S 1:5) inthe HPHsystemwhen a certain volumewas

transferredintotank1(T1).

Theintegratedprocesswassimulatedinacceleratedtimemode allowingafastertrainingandtimefortestingseveralprocessing strategieswithinalimitedtime.ThisinparticularisrelatedtoNeed 1describedabove.

In this study a previous developed structured model for

recombinantproteinexpression[10]wasmodifiedforfacilitating itsintegrationwiththeHPH.Themodificationwasnecessaryto improvetheaccuracyofthesimulationandtosimplifyparameter adjustment,inparticularformodelingofsubstrateconsumption,

energy pathwayflux,recombinantproteinexpressionyieldand

effectsonexpressionduetostressresponse.Theschemeofthe proteinexpressionmodel isshown in Fig.3. Themodifications includedthemodellingof(1)substrateuptake,(2)compartmental

structure, (3) recombinant protein expression,(4) maintenance

metabolismand(5)diauxicgrowthonacetate.Aswepreviously

describedthesubstratefluxwassplitintoseparatepathwaysfor anabolism(Yxp)andenergymetabolism(1Yxp)[10].Also,theuse

of a double sigmoidal function to describe a shift between

pathways,inhibitionofgrowthandoverflowmetabolismwasused formetabolicchangesintheOTS.Bythat,themodifiedmodeluses separateglucose(qG),acetate(qHAc)andnitrogen(qSN)uptakerates

that are split intoone anabolic and one energy pathway. This

simplifiestheparameterisationofthemodel.

Inthemodelthecompartmentsofthecell'sstructuralbiomass (XS),activeandinactivebiomass(Xact,Xi),plasmids (Xpl),amino

acidpool(XAA)andrecombinantprotein(RP)areportionsofthe

totalviable biomass (Xt).The aminoacidcompartment (XAA)is

included for describing stress response during recombinant

proteinexpression.Therecombinant proteincompartment (RP)

uses available amino acids when the cultureis induced,while

expressionrateandtherateforformationofXactarelimitedbythe

Fig.5. GraphicaluserinterfacesdesignedfortheintegratedOTS.Leftside:GraphicaluserinterfaceforvirtualrecombinantproteinproductionwithE.coliinabioreactor. Rightside:Graphicaluserinterfaceforvirtualhomogenisationusingasmall-scalehomogeniser.Smallersub-windowsshowingthedifferentconfigurationsettingsforthe homogenizer(leftside)andthepumpstationwheredifferentpumpscanbecontrolledmanually(rightside).

(8)

amino acid level in the total viable cells (XAA/Xt) (Fig. 3;

Supplementarydata, Eqs.S2:5 and S2:6). The rate of protein

expressionis related both tothe plasmidcopy number,

repre-sentedbyXpl,andtotheactivebiomass,Xact,afterinductionbyin

intracellularIPTG(Ii).Thedegradationofinactivebiomass(Xi)and

RP into XAA (e.g., degradation of misfolded and recombinant

protein) is described by a separate rate. The maintenance

metabolismisconnectedtothereactivationofinactivebiomass (Xi)toactivebiomass(Xact).Forinstance,whenglucoseisavailable

thereactivationrateishighandmoreactivebiomassisformedin thecell.Thus,theactivityofthecelldependsontheratioofactive biomasstothetotalviablebiomass(Xact/Xt).Whenthereactivation

rate(qXiX)islowerthantheinactivationrate(qXXi)Xactdecreases

whileXiincreases.Thereactivationrateaffectstheglucoseuptake

ratebecauseitisconnectedtotheenergymetabolismofthecell.

For example,activebiomasscomponents,suchas enzymesand

RNA, are required for performing metabolic reactions and the

activationofbiomassrequiresenergy.Whentheenergysourceis

depletedthesebiomasscomponentsbecomeinactivewhile still

beingpartoftheobservedbiomassinthemodel.

SubstrateuptakeratesdependontheRPlevelinthecells(RP/ Xt).Inordertoimprovethesimulationofstressresponseeffects

alsothereactivationratedependson(RP/Xt)(Supplementarydata,

Eq.S2:7).Accordingtothetransformationofglucosetobiomass

thetransformationofacetatetobiomasswasimprovedwithout

forming lactate and formate. Furthermore, the maintenance

metabolism was expanded for the growth on acetate (diauxic

growth).

Alsothecompartmentofdeadbiomass(Xd)wasspecifiedinto

native protein (Xact, Xi, XAA), structural biomass XS, plasmid

Fig.6. Graphicaluserinterfacesandsub-windowsdesignedfortheintegratedOTS.Viathegraphicaluserinterfaces(Fig.5)differentsub-windowscanbeopenedtocheck off-linedatafromthesamplestakensuchasbiomassandrecombinantproteinconcentrationandobserveon-linesignalssuchasdissolvedoxygentension(DO),temperatures andvolumesfrombothprocessunits.History1:on-linesignals(DO,stirrerspeed,gassingrateandfeedrate)fromthevirtualbioreactor;History2:on-linesignals(operating pressure,volumeoftank1(T1)andtank2(T2))fromthevirtualhomogeniser.

(9)

biomassXplandrecombinantproteinRPdtomodelthereleased

biomasscompartment(Xrel).ThisfacilitatesintegrationoftheHPH

assuming the whole cell suspension (including viable/dead

biomass,intra/extracellularrecombinantprotein)isprocessed.

Fig.4showssimulationswiththemodelincomparisontodata fromtwocultivationexperiments.Itshowstheconcentrationsof glucose,biomass,acetateandGFP.Inbothsimulationsthesame modelparameterswereappliedwhileonlytheinitialactiveand inactivebiomasscompositionwaschangedaswellasthefeedrate

andinductiontimeswereadjustedtotheexperiments.Whenall

initialglucosewasconsumedthefeedingwasstartedtocontinue growth.InductionwithIPTGwasdoneat6.5h(Fig.4a)and7h (Fig.4b).Inthesecondexperiment(4b)samplesweretakenuntil 8hcultivationtimewhilethesimulationisshownuntil14h.Both experimentshadafinalGFPconcentration(26h)ofapproximately 2.0g/Lthatcorrespondtotheconcentrationmeasuredforthepure

sample for homogenization experiments (Fig. 2). The model

manages to simulate all on-line and off-line data from the

experimentalrunwithhighprecision.

4.3.Visualisationofthehomogeniseroperationanditsintegration withthebioreactorintheOTS

ThemodelsfortheintegratedHPHsystemwereimplementedon

theOTSplatformandtwouserinterfaceswithsub-windowswere

designedandlinked(Fig.5).Throughadditionalsub-windows off-linedatasuchasbiomassandproteinconcentrationaswellas on-linesignalssuchasdissolvedoxygentension,feedrate,stirrerspeed, operatingpressureandtemperaturesfromthevirtualprocesswere visible(Fig.6,History1and2).Theinterfacesvisualisedanimated pumpsandpipelinesofthehomogenisationunit(e.g.,single-pass fromtank1(T1)totank2(T2)wherepipelinesbecomegreenifthe useractivatesthevirtualhomogeniser).

4.4.Applicability

TheapplicabilityoftheintegratedOTSwasevaluatedintraining

with an inexperienced test group versus the needs defined in

Table1.Afterthetrainingthetraineesansweredasetofquestions andsolvedtasksthatwererelatedtotheseneeds(see Supplemen-tarydata,3.).Theevaluationilluminatedtheefficiencyandtransfer ofunderstandingandskillsinthetraining(Table3).

QuestionsandtasksrelatedtoNeed1whichwerebasedon

on-line signals shown in graphs were solved satisfactory by the

majority of the trainees. Tasks related to Need 2 were solved

successfullybythemajority.ThetasksrelatedtoNeed3,where fourmicroorganismsofvaryingrobustnesstodisruptionwereto becombinedwithgraphsfromrunswithdifferentsettings,were lesssatisfactorilysolved.Fromobservationsandinterviewswith thetraineesitbecameclearthattheyunderstooddifferencesin disruptionpropertiesbutcouldnotapplythisonamicroorganism level.Thatprobablyindicatesthatrunningasimulationwithout

sufficient pre-knowledge about cell physiology and structure

severelyhinderstransferofskills.TasksrelatedtoNeed4and5 werealsosolvedsatisfactorily.

Moreover, two critical prerequisites were necessary to pay

attentionto:

The requirement of having a correct pre-understanding of

engineering terminology and its precise definition through

properprofessionallanguagecommand

Not to underestimate the understanding of molecular and

physiologicalpropertiesofbiologicalsystems.

ApreviousevaluationbyusontheuseofthesametypeofOTS toolshashighlightedthetransfereffectconcerningactionrelated skills,e.g.,adjustmentofdissolvedoxygentensionand improve-mentofheat transferusing thestirrer[9].Inanotherstudywe

assessed psychological effects during OTS training such as

confusedness and abilityto recollectspecificevents afterwards

[10].Withtheobservationsfromthesepreviousstudiestogether withthisstudywithitsfocusonunderstandingand

conceptual-isation of the more demandingand advanced operator taskof

integratingtwoentirely differentunit operations,thebenefitof

using OTS for training and transferring operator skills is

unambiguous. The OTS could be demonstrated in a one-day

simulationtraining.AllneedsdefinedfortheOTS(Table1)were fulfilledbasedonthesoftwaredevelopment.

5.Concludingremarks

AnintegratedOTSwasdevelopedfortrainingoftheoperators’ skillsofrunningabioprocessconsistingofarecombinantprotein cultivationfollowedbyahigh-pressurehomogenisationstep.Two establishedmodelswereusedintheOTS:(1)astructuredmodel forproteinexpressionextendedwithaccumulationofthetarget proteinandacetateoverflow,and(2)amodelforcelldisruptionin ahigh-pressurehomogeniserextendedwithproteindenaturation. Bothmodelscouldeasilybeembeddedinashellstructureofan

OTSpreviouslydevelopedbyus.

TheOTSfortheintegratedprocesspresentedherewasableto

fulfill critical training needs when evaluated with untrained

volunteers.Bythat,itwasconvincinglyshownthatthedesignof theOTSallowedtransferoffundamentalunderstandingandskills

for operation of the integrated bioprocess sequence. Future

developmentoftheOTScouldincludeinfluenceofcell concentra-tionandspecificgrowthrateontheefficiencyofdisruptioninthe

homogenizer. Also, the integration of subsequent down-stream

steps,suchas centrifugation and chromatography,would beof

value.Finally,adaptiontootherbioprocesseswouldexpandthe utilityofOTSinthebiotechnologicalindustry.

Acknowledgements

TheauthorswouldliketothankJohanNorénandAndresVeide

at the Royal Institute of Technology, Stockholm, Sweden, for

valuableadvice onhomogenisationtechnique andfor accessto

theirpilotfacilityforHPH.WewouldalsoliketothankDr.Florian KuhnenattheHochschuleBremen,UniversityofAppliedSciences forthekindsupportinusingtheC++simulationsoftwarepackage.

Table3

EvaluationoftheOTSvs.userneeds.

Needs Evaluationa

(1)Efficientvirtualbioprocesstraininginrecombinantproteinproduction ++ (2)EfficienttransferoffundamentalknowledgeaboutHPH +++ (3)EfficientvirtualtrainingincelldisruptionpropertiesofdifferentmicroorganismsduringHPH + (4)EfficienttransferofunderstandingproteindenaturationeffectsduringHPH +++ (5)EfficienttransferofunderstandingforapplyingdifferentpassstrategiesforHPH +++

a

Successfully/agreeable+++;satisfactory++;lesssatisfactory+.

(10)

Furthermore, we thank Linköping University and Hochschule Bremen,UniversityofAppliedSciencesforfinancialsupport.

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.btre.2015.03.002.

References

[1]D.C.Augenstein,et al.,Optimization inrecoveryof a labileintracellular enzyme,Biotechnol.Bioeng.16(1974)1433–1447.

[2]M.G.Balaton,L.Nagy,F.Szeifert,Operatortrainingsimulatorprocessmodel implementationofabatchprocessingunitinapackagedsimulationsoftware, Comput.Chem.Eng.48(2013)335–344.

[3]H.H.Bell,W.L.Waag,Evaluatingtheeffectivenessofflightsimulatorsfor trainingcombatskills:areview,Int.J.AviationPsychol.8(1998)223–242. [4]A.Blesgen,V.C.Hass,Efficientbiogasproductionthroughprocesssimulation,

EnergyFuels24(2010)4721–4727.

[5]S.Brambilla,D. Manca,Recommended featuresof anindustrial accident simulatorfortrainingofoperators,J.LossPrev.ProcessInd.24(2011)344–355. [6]H.S.Choonia,S.D.Saptarshi,S.S.Lele,Releaseofintracellularb-galactosidase from Lactobacillus acidophilus and L-asparaginase from Pectobacterium carotovorumbyhigh-pressurehomogenization,Chem.Eng.Commun. 200 (2013)1415–1424.

[7]M.Díaz,D.Garrido,S.Romero,B.Rubio,E.Soler,J.M.Troya,Experienceswith component-oriented technologies in nuclear power plant simulators, SoftwarePract.Exper.36(2006)1489–1512.

[8]C.R.Engler,W.R.Campbell,DisruptionofCandidautiliscellsinhighpressure flowdevices,Biotechnol.Bioeng.23(1981)765–780.

[9]I.Gerlach,V.C.Hass,S.Brüning,C.F.Mandenius,Virtualbioreactorcultivation foroperator trainingand simulation:application toethanol andprotein production,J.Chem.Technol.Biotechnol.88(2013)2159–2168.

[10]I.Gerlach,S.Brüning,R. Gustavsson,C.F.Mandenius,V.C. Hass,Operator trainingin recombinantproteinproductionusing astructuredsimulator model,J.Biotechnol.177(2014)53–59.

[11]P.P.Gray,P.Dunnill,M.D.Lilly,Thecontinuous-flowisolationofenzymes,in:G. Terui (Ed.), Fermentation Technology Today, Society for Fermentation Technology,Japan,1972,pp.347–351.

[12]R.Gustavsson,C.F.Mandenius,SoftsensorcontrolofarecombinantEscherichia colifed-batchcultureproducinggreenfluorescentprotein,BioprocessBiosyst. Eng.36(2013)1375–1384.

[13]V.C.Hass,S.Kuntzsch,I. Gerlach,K.Kühn,M.Winterhalter, Towardsthe developmentofatrainingsimulatorforbiorefineries,Chem.Eng.Trans.29 (2012)247–252.

[14]P.J.Hetherington,M.Follows,P.Dunnill,M.D.Lilly,Releaseofproteinfrom baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogeniser,Trans.Inst.Chem.Eng.79(1971)142–148.

[15]J.-S.Ki,Interactivetrainingsimulatorforaerialworkingplatforminavirtual environment,Comput.Appl.Eng.Educ.19(2009)733–738.

[16]R.Kneebone,Simulationinsurgicaltraining:educationalissuesandpractical implications,Med.Educ.37(2003)267–277.

[17]A.T. Lee, Flight Simulation–Virtual Environment in Aviation, Ashgate PublishingLtd.,London,UK,2005.

[18]D. Manca,S.Brambilla,S.Colombo, Bridgingbetweenvirtualrealityand accidentsimulation for trainingof process-industry operators,Adv.Eng. Software55(2013)1–9.

[19]A.P.J. Middelberg, B.K. O’Neill, I.D.L. Bogle, A novel technique for the measurementofdisruptioninhigh-pressurehomogenization:studiesonE. colicontainingrecombinantinclusionbodies,Biotechnol.Bioeng.38(1991) 363–370.

[20]A.P.J.Middelberg,Microbialcelldisruptionbyhigh-pressurehomogenization, in:A.MohamedDesai(Ed.),DownstreamProcessingofProteins,Humana Press,Totowa,NJ,U.S.A,2000,pp.11–21.

[21]K.Murai,T.Okazaki,Y.Hayashi,Afewcommentsinvisualsystemsofaship handlingsimulatorforseapilottraining:trainingforenteringaport,Electron. Commun.Jpn.94(2011)10–17.

[22]G.Reinig,P.Winter,V.Linge,K.Nägler,Trainingsimulators:engineeringand use,Chem.Eng.Technol.21(1998)711–716.

[23]L.V.Saboya,etal.,EfficientmechanicaldisruptionofLactobacillushelveticus, LactococcuslactisandPropionibacteriumfreudenreichiibyanewhigh-pressure homogenizerandrecoveryofintracellularaminotransferaseactivity,J.Ind. Microbiol.Biotechnol.30(2003)1–5.

[24]T.Sauer, C.W.Robinson,B.R.Glick,Disruptionofnativeandrecombinant Escherichiacoliinhigh-pressurehomogenizer,Biotechnol.Bioeng.33(1989) 1330–1342.

References

Related documents

Linköping studies in science and technology Licentiate

The authors interpret that because local network in host countries helps the individuals to utilize the knowledge received in the different ways according to different country

My work on these incredible animals led to the discovery that coelenterazine (Figure 3.8), the cause of the light in the luminous jellyfish Aequorea and Obelia, is the most

The fraction of interacting pairs involved in the same biological process is highly significant in all datasets (Supporting Information), but it is higher in the Gavin dataset

The presence of polypeptide synthesis and assembly factors from Elonga- tion Factor G1 to the chaperonins GroL, DnaK2 and DnaK3 (Table 1) suggests that the puncta could have a

Keywords: AIDA-autotransporter, Escherichia coli, fed-batch, glucose uptake rate, integral membrane proteins, outer membrane proteins, periplasmic retention, phosphotransferase

This mechanism is chosen since it creates face-to-face interaction and communication between employees in different subsidiaries (Harzing & Noorderhaven 2009). Among other

Many of the researchers focused on the process of knowledge transfer which is from the Multinational corporations (MNCs) directly to the local firms or from the