• No results found

Detection of fires in the toilet compartment and driver sleeping compartment of buses and coaches : Installation considerations based on full scale tests

N/A
N/A
Protected

Academic year: 2021

Share "Detection of fires in the toilet compartment and driver sleeping compartment of buses and coaches : Installation considerations based on full scale tests"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Detection

of

fires

in

the

toilet

compartment

and

driver

sleeping

compartment

of

buses

and

coaches

—Installation

considerations

based

on

full

scale

tests

Ola

Willstrand

*

,

Jonas

Brandt,

Robert

Svensson

SPTechnicalResearchInstituteofSweden,FireResearch,Box857,SE-50115Borås,Sweden

ARTICLE INFO

Articlehistory: Received3August2015

Receivedinrevisedform13November2015 Accepted18November2015

Availableonline2December2015

Keywords: Firedetection Buses

Toiletcompartments Sleepingcompartments Fullscaletests

ABSTRACT

Effectivefiredetectionsystemsproperlyinstalledinbusandcoachtoiletcompartments and driver sleeping compartments may save human lives and property loss. Rapid detectionallowsforearlyevacuationandextinguishmentofasmallfire,whilelateorno detectionmayallowthefiretospread.Thepurposeoftheworkpresentedinthispaperisto providerecommendationsonhowtoinstallfiredetectionsystemsintoiletcompartments and driver sleeping compartments. The recommendations also cover what type of detectionsystemismostsuited.Asabasisfortherecommendations,fullscalefiretests wereperformedwithdifferentdetectionsystems.Thefiretestswereconductedinrealistic mockupsofatoiletcompartmentandasleepingcompartment.Differentheatandsmoke detection systems wereanalyzed atdifferent positions fordifferentfire scenarios to provideinformationonhowtobestinstalldetectionsystemsinthesecompartments.Five differentscenarioswererunandthemostinterestingfindingwasthattworealisticfire scenariosinthetoiletcompartmentdidnotactivatefiredetectorsintheceilingatrealistic airflowrates.Itisveryrarethatfiredetectorsareplacedanywhereelsethanontheceiling intoiletcompartmentsonbusesandthefirewouldthenbeverylargeupondetection.

ã2015TheAuthors.PublishedbyElsevierLtd. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1.Introduction

Firesinbusesandcoachesareverycommonandonaverageseveralbuses1worldwideareinvolvedinafireincidenteach

day.Forinstance,intheUSapproximately160busfireswerereportedeachyearbetween2004and2008[1].InAustralia thereareabout70busfiresperyearresultingininsuranceclaims[2]andinSweden,Norway,andFinlandaboutonepercent ofallbusesinservice,willsufferfromafireincidenteachyear[3,4].

Ifpassengershavereducedmobilitytheevacuationtimemaybeseverelyextended.Forinstance,20elderlypeoplediedin abusfireinHannover2008[5].Thefirewascausedbyashortcircuitinanelectricalcablenearthetoiletandspreadviathe toiletcompartmenttothepassengercompartment.Withaneffectivefiredetectionsystemthistragedymighthavebeen prevented.However,notallfireincidentsleadtofatalities,butthepropertylossandthecostduetorescueoperation,traffic jam,andcleanupcanbeextensive.Theenvironmentaleffectsofboththefireitselfandextinguishingagentsmayalsobe

*Correspondingauthor.Tel.:+46105165000,Direct:+46105165450;fax:+4633135502. E-mailaddress:ola.willstrand@sp.se(O.Willstrand).

1Inthispapertheterm“bus”referstobusesaswellascoaches. http://dx.doi.org/10.1016/j.csfs.2015.11.002

2214-398X/ã2015TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Case

Studies

in

Fire

Safety

(2)

severe[6].Alltheseeffectsmightbemitigatedwithaneffectivefiredetectionsystemthatenablesearlyevacuationand suppressionofthefire.

Basedonreportedfireincidentsinbusesandcoachesthefiresmostfrequentlyoriginateintheenginecompartmentorin thewheelwell[1,4].Severalstudiesoffireprotectionintheenginecompartmenthaverecentlybeenperformed[7–9],and ongoingfiredetectionprojectsforthesespacesarerunninge.g.,atSPTechnicalResearchInstituteofSweden.However,this paperfocusonfiredetectioninthetoiletcompartmentanddriversleepingcompartmentandnoextensivestudyonfire detectioninthesecompartmentshas,toourknowledge,beenreported.Inmedia,recentbusfireshavebeenreportedwhere thefirestartedinthetoiletcompartment[10,11]andinthecatastrophicbusfireinHannover2008thefirealsostartedinthe interiorofthebus[5].ThestudyreportedinthispaperwaspartlytriggeredbythenewUNECErequirement,regardingfire detectioninthetoiletcompartmentanddriversleepingcompartmentofbuses,thatcameintoeffectinJuly2014[12].The newrequirementstatesthatanexcesstemperatureorsmokeshallbedetectedinthesecompartments.

Reportedinthispaperisaninvestigationofwhattypesofdetectionsystemsaremostsuitableinthetoiletcompartment anddriversleepingcompartmentofbusesandhowtobestinstallthesystemsinthesetypesofcompartments.Themain questionsansweredbythispaperarehowdifferenttypesofdetectionsystemsplacedatdifferentpositionsrespondto differentfiresandhowtheventilationconditionsmayinfluencetheresponsetime.

2.Methoddescription

Firedetectorsystemsweretestedatdifferentpositionsinrealistictestmockupsofthetoiletcompartmentandthedriver sleepingcompartmentofbuses.Differentfiresourceswerepositionedatdifferentlocationsinsidethemockupsandtests wereperformedunderdifferentventilationconditions.

2.1.Mockups

Statisticsonheight,width,anddepthfortoiletcompartmentsanddriversleepingcompartmentswerecollectedfor 26differentbusesandmeanvalueswereusedforthedesignofthemockups[13].ThemockupsareshowninFigs.1and2. Thetoiletcompartmentsofbuseshaveingeneralquitesimilardimensionsandthelargestdifferenceswerefoundbetween toiletcompartmentspositionedintherearofthebusandtoiletcompartmentsindouble-deckerscomparedwithtoilet compartmentspositionedin thestaircase,which isthemostcommonlocation.The dimensionsofthedriversleeping compartmentswerefoundtovarymorethanfortoiletcompartments,butalsoforthesethemeanvaluesofthesurveywere used.Thedepthwasinmostcasesthewidthofthebus.Thesleepingcompartmentmockuphasdecreasedceilingheightin themiddlesectionwhichisduetothegangwayinthepassengercompartment.Thisdecreaseisnotexistentinallbusesand itcouldalsovaryinsize,butitwasincludedinthemockupbecauseitdelayssmokedistributionwhichseverelyaffects detectorsnotplacedinthedirectvicinityofthefire.

(3)

Theventilationconditionsintoiletcompartmentsandsleepingcompartmentswereexaminedbymeasurementsintwo differentbusesandbyobtaininginformationfromaWCsystemmanufacturer.Thebusmanufacturerswerenotableto provideinformationabouttheairflowthroughthetoiletcompartmentandsleepingcompartment,butonlytheairflow entering the passenger and driver compartment. There are differences between different buses, but there are also similarities.Intoiletcompartmentsairissuckedoutviaaseparatefanandexitsunderthebus,whichappliestoallbustoilet compartmentssincethisconfigurationpreventsodorsfromreachingotherareasofthebus.Theairentersviagapsaround thedoorinmosttoiletcompartments.However,somecompartments,especiallyreartoiletcompartments,dohaveafeed fromtheairconditioningsystem.Inthemockuptheairinletwaslocatedintheupperrightcornerofthetoiletcompartment door,similartosomebuseswhichhavealargergapatthedoorhinge.Theairoutletoccurredthroughthreedifferentholes leadingtoanenclosurecontainingthefan.Twooftheholeswereairvents(mostbuseshaveoneortwoofthese)andone holewastheopeningforthetrashcan.Notallbuseshavethisconfigurationofthetrashcan,theremightbeotherlocations andsometimesatoponthetrashcan,butthiswasthoughtasthemostinterestingcasesincefiresmokefromthetrashcan mightbepreventedbytheairflowfromreachingthetoiletcompartment,withimportantimplicationsfordetection.

In thedriver sleepingcompartment theventilationconditions differmore betweenbuses,but generallythere isa manually operated fan and some passive inlet/outletchannels. In the mockup a fan was placed in one end of the compartment suckingoutairand intheotherendthereweretwoairinlet vents.Thiswasthoughtastheworstcase conditionsincetheairflowmaydelaythesmokespreadtotheairinletsectionofthecompartment,increasingtheresponse timeofadetectorplacedinthatsection.Fanpositionsandairinlets/outletsaremarkedinFigs.1and2.

2.2.Testscenarios

DuringthetestsdifferentventilationconditionswereusedwithapproximateairflowsinaccordancewithTable1.Inthe toiletcompartmentthehighfanspeedconfigurationisthemostcommoncondition,buttheairflowdependsmuchonhow sealedthetoiletcompartmentissincethefannormallyhasafreeblowingcapacityof160–220m3/h.Foranuntighttoilet

compartmenttheairflowcouldthenbemuchhigher.Sometoiletcompartmentshavetwofanmodes,whenthetoilet compartmentisunoccupieditrunsatalowerspeedthanifthecompartmentisoccupied.Thelowfanspeedconfigurationin thetestsisprimarilyarealisticairflowforthesetoiletcompartments.

Forthedriversleepingcompartmentthetestswereperformedwithahighfanspeedmodeandwiththefanturnedoff.

Fig.2. Mockupofthedriversleepingcompartmentinbuses,seenfromtwooppositesides.

Table1

Differentfanconfigurationsusedinthetests.

Highfanspeed Lowfanspeed

Airflowthroughtoiletcompartment 60–90m3/h 20–30m3/h

(4)

ThetestsperformedarepresentedinTable2.Eachtestwasruntwicewithverysmalldifferencesindetectiontimesand firedevelopment.Temperatures,obscurationmeasurements,anddetectiontimespresentedareaverages.

InthecigarettetestastandardcigarettefromNIST(NationalInstituteofStandardsandTechnology)wassmokedand consumedinaboutoneminute.Inthepapertestsatrashcanfullofpaperhandtowelswasignitedbyahotwire.Thesizeof theheptanepoolwas1010cm2anditwaspositionedonthefloorinthelargetoiletcompartmentspace.Theheptanepool

isnotarealisticfiresourceinthetoiletcompartment,butwasusedbecauseofgoodrepeatabilitycomparedtotheotherfire sources.Theplasticsandrubberfiresourcewaspositionedunderthesink,intheconcealedspacewherethefanwaslocated, symbolizingapump,cables,andotherelectronicdevicescontainedhere.Itwasignitedbyahotwireasforthepapertests. Themattress,polyetherfoamwithcottoncover,inthesleepingcompartmentwasignitedbyahotwirethroughthecornerof themattress.Notestwasrunlongerthanfourminutesandinsomecasesonlyforabouttwominutes.Thefirespeakedor stabilizedinthistimeandthetestswerecancelledwhennomorefirealarmswouldhavechangedtheresultsorconclusions. Temperaturesandsmokeobscurationcurvesforallfirescanbefoundinthetestreport[13].

2.3.Detectors

ThedifferenttypesofdetectorsusedinthetestsareshowninTable3.Allsmokedetectorsarebasedonthephotoelectric principle.Thereasonwhynoionizationsmokedetectorsweretestedisduetothefactthatthephotoelectricdetectorsare morecommonamongthevehiclefirealarmandsuppressionsystemsuppliers.Onereasonforthatisincurredregulatory costformanufacturing,transport,anddisposalofionizationsmokedetectors[14].Inaddition,theaimofthetestingwasnot tocomparetheresponsetimeofdifferentphotoelectricorionizationsmokedetectors,butrathertocomparedifferent detectorplacementsand tocomparepointsmokedetectorstoaspiratingsystemsandheat detectors.Thesmoke/heat detectorshaveonesmokesensorandoneheatsensorthatactivatedseparatelyinthesetests.Alldetectorsarecommercial approveddetectorsanddifferencesinsensitivityreflectmarket.Theactivationlevelsoftheaspiratingsystemsarestatedfor themeasuringchamberandifthedetectorsamplesairfrommorethanoneplacethesmokewillbedilutedbeforeitreaches themeasuringchamber.Smokeobscurationmeasuredindecibelpermeter(dB/m)isthereductionoflightpassingthrough thesmoke.

Thetestedaspiratingsmoke/heatdetectorsusestandardpointsmoke/heatdetectorstogetherwithasamplingsystem, whichmakesitlessexpensivethantraditionalaspiratingsmokedetectorsystemsthataresensitiveenoughtousemany samplingholes.Inthetestseachofthistypeofdetectorsampledairfromoneposition,whereasthemoresensitiveaspirating smokedetectorsampledairfromtwopositions.Noteintheresultshownumberofsamplingholesandsensitivityaffectsthe detectiontimesofsmokedetectors.

Intheteststhedetectors,thermocouples(TC),andobscurationmetershaddifferentpositionsandthesepositionsare listedandexplainedinTables4and5andFig.3.EachnumberinTable5representsaseparatedetector,exceptforthe aspiratingsmokedetectorwhichusestwosamplingpointsindicatedbyaplussign.Theobscurationmeterinthetoilet compartmentceilingcoversbothposition1and2.

Table2 Testscenarios.

Test Firesource Fireposition Ventilationcondition

1 Cigarette Toiletcompartment,seatlevel Lowfanspeed

2 Paper Toiletcompartment,trashcan Lowfanspeed

3 Paper Toiletcompartment,trashcan Highfanspeed

4 Heptanepool Toiletcompartment,floorlevel Lowfanspeed

5 Heptanepool Toiletcompartment,floorlevel Highfanspeed

6 Plastics/rubber Toiletcompartment,abovefan Lowfanspeed

7 Plastics/rubber Toiletcompartment,abovefan Highfanspeed

8 Mattress Sleepingcompartment,fansection Highfanspeed

9 Mattress Sleepingcompartment,fansection Nofan

Table3

Thefourdifferentdetectorsusedinthetests.

Activation

Pointsmokedetector 0.5–1.0dB/m

Pointsmoke/heatdetector 0.1–0.15dB/m,54C Aspiratingsmoke/heatdetector 0.1–0.15dB/m,54C

(5)

3.Results

InTable6theresponsetimesofalldetectorsinthedifferenttestsaresummarizedwhilefurthercommentsconcerning

thetestsaregiveninthefollowingsections. 3.1.Cigarettetest

Theonlydetectorinitiatinganalarminthistestwastheaspiratingsmokedetector,whichalsoisexpectedtobethemost sensitiveoneaccordingtoTable3(eventhoughtwosamplingholeswereused).Theaspiratingsmoke/heatdetectors(pos. 2and4)gavepresmokealarms,whichmeansthatthesmokeobscurationalarmlevelwasreachedbutsincethesmoke concentrationthereafterdecreasednoconfirming firealarmswereinitiated.Accordingtothesmokedetectorsandthe obscurationmetersitwasapproximatelythesameamountofsmokeattheceilingasunderthesink,butahigherfanspeed wouldprobablyhavereducedthesmokeconcentrationintheceiling,sincethesmokewouldbedrawndirectlytowardsthe fan.Nocigarettetestwithhighfanspeedwasperformedhowever.Thatmostofthedetectorsdidnotgiveafirealarmon cigarettesmokeisatleastpartlyduetothefactthatthesedetectorsaredesignedtohaveahighresistancetofalsealarms.In thisscenariothatmeansthattheobscurationduetothecigarettesmokewastoolow.Asimplerdetectormaybemore sensitivetocigarettesmoke,butcouldalsobemorepronetofalsealarmsduetoe.g.,dust.

3.2.Papertests

Alldetectorsintheconcealedspaceunderthesinkwereactivatedinthepapertests,butnoneofthedetectorslocatedat theceilingactivated.Thesmokedetectorsactivatedalreadybeforetherewerevisibleflames.Themaindifferencebetween the low fan speed and thehigh fan speed test was that withthe low air flowsome smokeentered themain toilet compartmentspaceafterawhile,whichwasseenbytheobscurationmeterandthethermocouplesattheceiling,butforthe highairflownosmokeorheatenteredthemaintoiletcompartmentspace.Fig.4showshowtheflamesareheldbelowthe trashcanopeningbytheairflow.

3.3.Heptanepooltests

Intheheptanepool teststhedifferencebetweenthelowfanspeed andhighfan speedtestwasverysignificant.A comparisonofthetemperaturegraphsinFigs.5and6 showsthatthesequenceisalmostreversedsuchthatthepositionof highesttemperaturewithlowairflowalmostbecamethepositionoflowesttemperaturewithhighairflow.Thefirewas positionedontheairinletsideandwithlowairflowthetemperaturewashighestonthissideoftheceiling.Athighairflow mostofthesmokewassuckedoutviatheairventsandtrashcanholebeforereachingtheceilinginthetoiletcompartment. Thedetectorsattheceilingwereabout20sfasterthanthedetectorsunderthesinkwiththelowfanspeedconfiguration,but

Table4

Explanationofpositions.

Toiletcompartment

1 Ceilingleft(fan/trashcanside) 2 Ceilingright(airinlet) 3 Attheopeningofthetrashcan

4 Undersink(intheconcealedspacecontainingthefan)

Sleepingcompartment

5 Ceilingfansection

6 Ceilingmiddlesection 7 Ceilingairinletsection 8 Ceilingabovefireorigin

9 Wallabovefan(half-heighttotheceiling)

Table5

Positions of detectors, thermocouples and obscuration meters in the mockups.

Positions Pointsmokedetector 1,2,4,5,7,9 Pointsmoke/heatdetector 1,2,5,6,7,8 Aspiratingsmoke/heatdetector 2,4,6 Aspiratingsmokedetector 1+4,5+9 Thermocouples(TC) 1,2,3,4,5,6,7,8

(6)

withthehighairflowitwasaboutthesameresponsetimesforalldetectorsexceptthosepositionedontheairinletsideof theceilingwhichwerenowabout20sslowerinresponsetime.Notableisthatthehigherairflowdoesnotaffectthe aspiratingdetectorsasmuchasthepointsmokedetectors.Thereasonthatthethermocoupleunderthesinkstartedsome degreeshigherthantheotherswasthatthefiretestswererunwithshortintervalandsomeheatremainedintheceilingof thissmallconcealedspace.

3.4.Plastics/rubbertests

Theresultsoftheplastics/rubbertestsweresimilartotheresultsofthepapertestsinthetrashcan,whichmeansthat withhighairflownoheatorsmokeatallenteredthemaintoiletcompartmentspacewhilewithlowairflowthesmoke brokethroughtheair-barrier.Theonlydifferencewasthatthesmokeproductionwassomuchhigherthaninthepaperfire thatalsothedetectorsintheceilingwereactivatedquitefastinthelowfanspeedtest.

Fig.3. Drawingonpositions.Firepositionsaremarkedforpaper(trashcan)andplastic/rubberfireintheconcealedspace,heptanepoolfireonthefloorand cigarettethroughthewallinthetoiletcompartmentandthemattressfireinthesleepingcompartment.

(7)

3.5.Mattresstests

Inthemattressteststhefirewaspositionedinthefansectionofthesleepingcompartment,suchthatthesmokehadto moveagainsttheairflowtoreachtheairinletsection.Themaingoalofthistestwastoseethetimedifferencebetween detectioninthefansectionandintheairinletsectionwithandwithouttheimpactofafan.Contrarytoexpectations detectionintheairinletsectionwasfacilitatedbythefan,duetothefactthatthefancausedcirculationinsidethesleeping compartment.Thetimedifferencebetweendetectioninthefansectionandtheairinletsectionincreasedfromabout10sto about20swhenturningoffthefan.

Themattressfiresourcewasanalyzedfurtherregardingtoxicelementsinthefumes,seerightsideinFig.7.Themattress was ignitedunderthehoodoftheconecalorimeter[15](withtheconicalheaterremoved)andthetoxicfumeswere analyzedwithaFTIR-spectrometer(FourierTransformInfraredSpectroscopy).Highlevelsofcarbondioxide(CO2),carbon

monoxide (CO), hydrogen cyanide (HCN), and nitric oxide (NO) were detected from the mattress. As expected, the concentrationoftoxicelementsinthefumesfollowedthesmokeobscurationcurve,whichmeansthattheymayberelated totheobscurationmeasurementsinthesleepingcompartmentmockup.Theshort-termexposurelimitssetoutbythe occupationalhealthauthorityinSweden(“Arbetsmiljöverket”)[16],i.e.,acceptablelevelsfor15minexposure,werereached atabout0.5–3dB/msmokeobscurationforthemattressfiresource.Thisisthepointwheremostsmokedetectorsinitiatean alarm(includingentrydelayandprocessingtimeofthedetector).At10dB/msmokeobscuration,reachedinthetestsafter 1.5–2minfromtheignition,highlevelsoftoxicsubstancesweremeasured:about5%CO2,800ppmCO,70ppmHCN,and

250ppmNO.Thisisabout5–8timeshigherthantheshort-termexposurelimitsandaccordingtotheNationalInstitutefor Occupational Safety and Health(NIOSH) theselevels areimmediately dangeroustolife and health. TheirlistedIDLH (ImmediatelyDangeroustoLifeandHealth)valuesofthementionedsubstancesare4%ofCO2,1200ppmofCO,50ppmof

HCN,and100ppmofNO[17].Theresponsetimesofthedetectorsinthesetestswerearound60s,whichdonotgivemuch timeleftforevacuation.

Table6

(8)

4.Discussionandconclusions

AccordingtothenewUNECEReg.no.107requirementsmokeorheatdetectorsshallbeinstalledintoiletcompartments anddriversleepingcompartmentsofbuses.Theperformedtestshaveresultedinvaluableinformationofwhattoconsider wheninstallingthesedetectors.Smokedetectorsaregenerallymuchfasterthanheatdetectors,whichisalsoconfirmedin alltestsperformedinthisstudy.Intheteststhefireshavedevelopedquiterapidly,butforslowgrowingfiresthebenefitof smokedetectors compared to heat detectors willbe even greater. There are locations where heat detection maybe considered,e.g.,intheconcealedspaceunderthesinkintoiletcompartmentsorclosetothetrashcanwherethedetectoris expectedtobeintheimmediatevicinityofthefire.Inboththepapertestandtheplastic/rubbertestthetemperatureinthe concealedspaceunderthesinkwasover100Cafteroneminute.Inverynarrowspacesandinothercircumstanceswhenthe detectorisclosetothepotentialfiresourceheatdetectorswillalsoreactrelativelyquickly,althoughsmokedetectorswill mostoftenstillbefaster.Thebenefitsofusingheatdetectorsinthesespacesarethattheyareusuallycheaperandmore robust.Theymayalsorequirelessmaintenanceandinspectionsthansmokedetectorsthatmustbeinspectedregularlyto ensureproperfunctioning.However,heatdetectorsshouldonlybeusedasacomplementtosmokedetectors.

Intoiletcompartmentsitiscommontoinstallasmokedetectorintheceiling,butthetestsclearlyshowsthatwithan operatingfanitcouldbedifficulttodetectatrashcanfireorcablefiresolelywithadetectorintheceiling.However,thefan maybemalfunctioningresultinginthesmokebeingtransportedupwardsandnotintotheconcealedspace.Insuchcasea detectorintheconcealedspacewouldbeoflimitedusewhileadetectorintheceilingwouldbemoreeffective.Theremight alsobeotherfirescenariosthanthosetestedinthiswork.Thereforeadetectorintheceilingisusefulasapartofanintegral detectorsystem.Thisstudysuggestthatthedetectionsysteminbustoiletcompartmentsshouldconsistofatleastasmoke detectorintheceilingandheatorsmokedetectorintheconcealedspaceofthefan,especiallyifthisspacealsocontainsthe

Fig.4.Paperfireinthetrashcan,seenfrominsidethetoiletcompartment.

(9)

trashcan.Twodetectionpointslikethisisverycommonintoiletcompartmentsofairplanes[18].IntheHannoverbusfire with20casualties[5]thefirestartedinacablesomewherebeneaththetoiletandeventhoughafiredetector,regardlessof position,wouldhavebeenafirststepofimprovement,thepositioncouldhavebeencriticalforachievingenoughtimefor evacuation.

Ifsmokedetectorsareusedinmanyspacestheuseofaspiratingsystemscouldbeconsideredinsteadofpointsmoke detectors.Thebenefitofthisapproachisthatonlyonedetectorisneededandthesystemsamplesairfrome.g.,boththe ceilingandotherspacesinthetoiletcompartment.Moreadvancedaspiratingsystemscouldpotentiallyalsosampleairfrom differentlocationsaroundtheentirebus.Anaspiratingsmokedetectorinthetoiletcompartmentceilingalsohasagreat advantageinthatthedetectorishiddenandprotected.Accordingtothebusoperatorstheyhaveproblemswithpassengers pullingdownthedetectors.

Anotherimportantdesignconsiderationwheninstallingdetectorsinthetoiletcompartmentceilingistheneedtoavoid theairflowfromtheairinlet.Thetestshaveshownthatthedetectiontimemaybedelayedconsiderably,andthedelaytime maybeevenlargerforslowgrowingfires.Notableisthatthehigherairflowdoesnotaffecttheaspiratingdetectorsasmuch asthepointsmokedetectors.

Inthesleepingcompartmentteststheresponsetimedifferencebetweendifferentdetectorplacementswasrelatively small,whichindicatesthatonedetectormaybesatisfactory.However,forrapiddetectiontheuseoftwosmokedetectors shouldbeconsideredifthedecreasedceilingheightinthemiddlesectionisconsiderable.

Theconclusionsabovearebasedonthepresentedtests,whichincludeassumptionsanddesignparameterswithadegree ofuncertaintyandvariability.Eachfirescenariowasruntwiceandthetemperaturedeviationscouldforsomefirescenarios bemorethan50C,butforstablefiresastheheptanepoolfireitwasnotmorethan10C.However,inallteststhe

sequencesinwhichthedetectorsactivatedandifthedetectordidnotactivatedwerethesameforbothtestsanditisthis informationthatisusedfortheconclusions.Ifthedesignparametersarechangedtheresultcouldbedifferent,butthetests were performed such that the conclusions should be relevant for most toilet compartments. Regarding important parametersasairflowandlocationofairinletandoutletthetestsarefocusedonthemostinterestingconfigurationsofthose

Fig.6.Temperaturesofthermocouples(TC)inTest5:heptanepoolfire,highfanspeed.

(10)

thatarecommon.However,wheninstallingdetectorsincompartmentsverydifferentfromtheconfigurationsofthesetests, itisimportantthatthecompartmentisfurtheranalyzedwiththeconclusionsinthispaperinmind.

Acknowledgment

ThisworkwasfinancedbytheFFIprogramoftheSwedishGovernmentalAgencyforInnovationSystems,VINNOVA. References

[1]N.R.Meltzer,G.Ayres,M.Truong,Motorcoachfiresafetyanalysis:thecauses,frequency,andseverityofmotorcoachfiresintheUnitedStates,Firesin Vehicles—FIVE2012,Chicago,USA,2012.

[2]TheOfficeofTransportSafetyInvestigations(OTSI),BusSafetyInvestigationReport—AnInvestigationintoBusFiresinNSW2005–2012,2013. [3]R.Hammarström,J.Axelsson,M.Försth,P.Johansson,B.Sundström,BusFireSafety,SPTechnicalResearchInstituteofSweden,SPReport2008,41,

2008.

[4]E.Kokki,Busfiresin2010–2011inFinland,FiresinVehicles—FIVE2012,Chicago,USA,2012.

[5]R.Damm,TheHannoverbusfireandactivitiesonimprovingfiresafetyinbuses,FiresinVehicles—FIVE2010,Gothenburg,Sweden,2010. [6]P.Blomqvist,Emissionsfromfires—consequencesforhumansafetyandtheenvironment,DoctoralThesis,LundUniversity,Lund,2005. [7]J.Brandt,M.Försth,Testingactivefireprotectionsystemsforenginecompartmentsinbusesandcoaches—apilotstudy,SPTechnincalResearch

InstituteofSweden,SPReport2011,22,2011.

[8]P.Smith,A.Chattaway,J.Peoples,Acomparisonofvariousfiredetectionmethodologiesintransitvehicleenginecompartmentfireprotectionsystems, SAEInt.J.Commer.Veh.5(1)(2012)343–353,doi:http://dx.doi.org/10.4271/2012-01-0983.

[9]R.Ochoterena,M.Hjohlman,M.Försth,DetectionofFiresintheEngineCompartmentofHeavyDutyVehicles,ATheoreticalStudy,SAETechnicalPaper 2014-01-0423,doi:10.4271/2014-01-0423,2014.

[10]Busfireduetotoiletruling,[Online].Available:<http://www.dailyexpress.com.my/news.cfm?NewsID=88185/>(accessed17.04.14).

[11]R.Seales,Miracleescapefordozensofschoolchildrenastheyfleeblazingbusaftertoiletcaughtfire,[Online].Available:<http://www.dailymail.co.uk/ news/article-2107120/Miracle-escape-dozens-school-children-flee-blazing-bus-toilet-caught-fire.html/>(accessed17.04.14).

[12]UNECERegulationNo.107—Rev.3—Amend.4,Generalconstructionofbusesandcoaches,[Online].Available:<http://www.unece.org/fileadmin/ DAM/trans/main/wp29/wp29regs/R107r3am4e.pdf/>2012.

[13]O.Willstrand,J.Brandt,R.Svensson,Firedetection&firealarmsystemsinheavydutyvehicles,WP5–Firedetectioninbusandcoachtoilet compartmentsanddriversleepingcompartments,SPReport2014,28,2014.

[14]FireIndustryAssociation(FIA),IonistationChamberSmokeDetectors(ICSD):Applicableregulationsformanufacturing,transportanddisposal,FIA FactFileNo.0017,2005.

[15]TheInternationalOrganizationforStandardization(ISO),ISO5660-1,Reaction-to-firetests—Heatrelease,smokeproductionandmasslossrate—Part 1:Heatreleaserate(conecalorimetermethod),2002.

[16]Arbetsmiljöverket,Kemiskaarbetsmiljörisker,AFS2011:19,ISBN978-91-7930-560-4,ISSN1650-3163,2011.

[17]NationalInstituteforOccupationalSafetyandHealth(NIOSH),DocumentationforImmediatelyDangerousToLifeorHealthConcentrations(IDLHs), 1994.[Online].Available:<http://www.cdc.gov/niosh/idlh/intridl4html/>(accessed2.04.14).

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Both Brazil and Sweden have made bilateral cooperation in areas of technology and innovation a top priority. It has been formalized in a series of agreements and made explicit

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

The differences of Study II in speed level during the 30- km/h speed limit (i.e. the speed limit during school hours) could be attributed to other differences between the roads

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating