• No results found

Type-1 and Type-2 effective Takagi-Sugeno fuzzy models for decentralized control of multi-input-multi-output processes

N/A
N/A
Protected

Academic year: 2021

Share "Type-1 and Type-2 effective Takagi-Sugeno fuzzy models for decentralized control of multi-input-multi-output processes"

Copied!
19
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal

of

Process

Control

jo u rn al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / j p r o c o n t

Type-1

and

Type-2

effective

Takagi-Sugeno

fuzzy

models

for

decentralized

control

of

multi-input-multi-output

processes

Qian-Fang

Liao

a

,

Da

Sun

b

,

Wen-Jian

Cai

a,∗

,

Shao-Yuan

Li

c

,

You-Yi

Wang

a aSchoolofElectricalandElectronicEngineering,NanyangTechnologicalUniversity,639798,Singapore

bDepartmentofBiomedicalEngineering,NationalUniversityofSingapore,118633,Singapore cDepartmentofAutomation,ShanghaiJiaoTongUniversity,Shanghai,200240,PRChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5November2015

Receivedinrevisedform13January2017 Accepted16January2017

Availableonline16February2017 Keywords:

Interactions Looppairing

EffectiveTakagi-Sugeno(T-S)fuzzymodel Type-2fuzzysystem

Decentralizedcontrol

a

b

s

t

r

a

c

t

Effectivemodelisanoveltoolfordecentralizedcontrollerdesigntohandletheinterconnected inter-actionsin amulti-input-multi-output (MIMO)process. In this paper, Type-1 and Type-2effective Takagi-Sugenofuzzymodels(ETSM)areinvestigated.Bymeansofthelooppairingcriterion,simple cal-culationsaregiventobuildType-1/Type-2ETSMswhichareusedtodescribeagroupofnon-interacting equivalentsingle-input-single-output(SISO)systemstorepresentanMIMOprocess,consequentlythe decentralizedcontrollerdesigncanbeconvertedtomultipleindependentsingle-loopcontrollerdesigns, andenjoythewell-developedlinearcontrolalgorithms.Themaincontributionsofthispaperare:i) ComparedtotheexistingT-Sfuzzymodelbaseddecentralizedcontrolmethodsusingextratermsto characterizeinteractions,ETSMisasimplefeasiblealternative;ii)Comparedtotheexistingeffective modelmethodsusinglineartransferfunctions,ETSMcanbecarriedoutwithoutrequiringexact mathe-maticalprocessfunctions,andlaysabasistodeveloprobustcontrollerssincefuzzysystemispowerfulto handleuncertainties;iii)Type-1andType-2ETSMsarepresentedunderaunifiedframeworktoprovide objectivecomparisons.AnonlinearMIMOprocessisusedtodemonstratetheETSMs’superiorityover theeffectivetransferfunction(ETF)counterpartsaswellastheevidentadvantageofType-2ETSMsin termsofrobustness.Amulti-evaporatorrefrigerationsystemisemployedtovalidatethepracticability oftheproposedmethods.

©2017ElsevierLtd.Allrightsreserved.

1. Introduction

Intheareaofmulti-input-multi-output(MIMO)processcontrol,theTakagi-Sugeno(T-S)fuzzymodelbaseddecentralizedcontrolisan attractivetopicbecauseofitsoutstandingmeritsincluding:i).itiseasytodesignandtunebecauseitusesthesimplestcontrolstructure whereeachmanipulatedvariable(processinput)isdeterminedbyonlyonecontrolledvariable(processoutput);ii)noexactmathematical processfunctionsarerequiredsincefuzzymodelscanbebuilttoahighdegreeofaccuracyfromdatasamplesandexpertexperience[1,2]; iii)itisrobusttodisturbancesincefuzzysystemexcelsinhandlinguncertainties[1–3];iv)linearcontrolalgorithmscanbeappliedto designcontrollersforanonlinearprocessviaparalleldistributedcompensation[4]sincetheT-Sfuzzymodeliscomposedofagroup oflinearlocalmodels[3,4].Anumberofacademicresultsconcerningthistopichavebeenproposed.Suchasthenetworkedandrobust decentralizedcontrolforlarge-scaleandinterconnectedMIMOprocessesin[5–8].Themaindifficultyfordecentralizedcontrolistodeal withtheinteractionsamongthepairedinput-outputcontrol-loopsduetoitslimitedcontrolstructureflexibility.IntheexistingT-Sfuzzy modelbasedmethods,generally,foracertaincontrolpair,extratermsareaddedtoitsindividualopen-loopmodeltocharacterizethe interactingeffectsfromotherloops.Asimpleexampleisgivenasfollows:

Rule l:IF uj is Cl THEN yi=alij·uj+



n k=1,k/=jk(uk), l=1,···,M (1) ∗ Correspondingauthor.

E-mailaddress:ewjcai@ntu.edu.sg(W.-J.Cai). http://dx.doi.org/10.1016/j.jprocont.2017.01.004 0959-1524/©2017ElsevierLtd.Allrightsreserved.

(2)

whereMisthenumberoffuzzyrules;yiistheithoutputandujisthejthinput(i,j=1,...,n),andyi−ujisoneofthecontrolpairsofan

n×nprocess;Clisafuzzyset;y

i=alij·ujisthelthlocalmodeloftheT-Sfuzzymodelfortheindividualopen-loopyi−ujandalij isthe

coefficient;k(uk)isanextratermstandingfortheinteractionscausedbyuk,and



n

k=1,k/=jk(uk)isthesumofextratermstodescribe

thetotalinteractingeffects.Eachlocalcontrollerofadecentralizedcontrolsystemisdevisedbasedonthemodelofacontrolpairbearing extratermsasshowninEq.(1)tocopewithinteractions.However,severalproblemsmayarise:

• Foralarge-scaleprocess,alargenumberofextratermsneedtobeidentified,whichwoulddrasticallyincreasethecostinprocess modeling;

• Foracomplexprocess,theinteractionsmaynotbedirectlymeasuredorevaluated,whichwouldformobstaclestoderivingtheextra terms;

• Foranonlinearprocess,differentworkingconditionsmayrequiredifferentcontrolpairconfigurationsandresultinchangedcoupling effects,whichwouldleadtochallengesinfindingsuitableextratermstodescribethevaryinginteractions;

• ThelocalmodelsofaT-Sfuzzymodelmaynotbelinearafteraddingtheextraterms,whichwouldincreasethecomplexityforcontroller design.

Giventheaboveproblems,amorepracticalmethodtoexpresstheinteractionsisrequired.Oneinterestingmannerdevelopedrecently istocreatetheeffectivemodels.Foreachcontrolpair,aneffectivemodelcanbebuiltbyrevisingthecoefficientsofitsindividualopen-loop modeltoreflecttheinteractingeffects.UsingtheexampleinEq.(1),asimpleeffectiveT-Sfuzzymodel(ETSM)canbeexpressedas:

Rule l:IF uj is Cl

THEN yi= ˆalij·uj, l=1,···,M

(2)

where ˆal

ijistherevisedcoefficient.ComparedtoEq.(1),ETSMinEq.(2)usesadifferentmannertoexpressinteractionsthatcansolvethe

aforementionedproblemscausedbyusingextraterms,andgreatlysimplifydecentralizedcontrollerdesignbecause:i)theETSMmethod isusingagroupofnon-interactingsingle-inputsingle-output(SISO)systemstorepresentanMIMOprocesssuchthatthedecentralized controllerdesigncanbedecomposedintomultipleindependentsingle-loopcontrollerdesigns;ii)theETSMretainsthelinearityineach ofitslocalmodelswhichprovidesaplatformtoapplythematurelinearmethodstoregulateanonlinearprocess.Howtorevisethe coefficientstoachieveanETSMthatcancorrectlyreflecttheinteractingeffectsisakeyproblemtosolve.Currentlyseveralmethodstaking advantageoflooppairingcriteriatoconstructeffectivemodelsareavailable.Alooppairingcriterionisusedtopairinputsandoutputs todetermineaproperdecentralizedcontrolstructurewithminimumcouplingeffectsamongthepairedcontrol-loops,anditprovides quantifiedinterconnectedinteractionstocalculatetherevisedcoefficientsineffectivemodels.In[9],anapproachwaspresentedtoderive effectivetransferfunctions(ETF)todescribeagroupofequivalentopen-loopprocessesfordecentralizedcontrolintermsofdynamic relativegainarray(RGA)[10–13]basedcriterion,and[14]proposedamodelreductiontechniquetosimplifytheeffectiveopen-loop transferfunctionof[9].In[15],themethodtobuildETFsusingeffectiverelativegainarray[16]basedcriterionwasintroduced.In[17], analgorithmtomodifythecoefficientsforETFconstructionaccordingtorelativenormalizedgainarray(RNGA)[18]basedcriterionwas developed.Thesimulationsorexperimentsin[9,14,17,18]demonstratedthebetterperformancesofETFbasedcontrolmethodswhen comparedtoseveralotherpopularcontroltuningapproaches.Amongthese,RNGAbasedeffectivemodelhasprominentadvantages thatitprovidesacomprehensivedescriptionofdynamicinteractions,andworkswithsatisfactoryperformancesforbothlowandhigh dimensionalprocessesandwithoutrequiringthespecificsofcontrollers,andisabletoprovideauniqueresultwithlesscomputational complexity[17,18].WeinvestigatedRNGAbasedETSMfordecentralizedcontrolinaconferencearticle[19],whichis,tothebestofauthor’s knowledge,thefirstworkintheareaoflooppairingcriterionbasedeffectivefuzzymodel.ComparedtotheexistingETFmethods,ETSMis analternativetoprocesscontrollerdesignwhereexactmathematicalfunctionsareunavailable.Moreover,itlaysabasistodeveloprobust controllersincefuzzysystemisstrongincompensatingforuncertainties.

TheETSMstudiedin[19]isbasedontraditional(Type-1)fuzzymodelswherethefuzzymembershipsarecrispnumbers.Whenlarge uncertaintiesappear,thecrispfuzzymembershipsmaystruggletodescribetheconditions.Inthiscase,Type-2fuzzymodel[20–22]with thefuzzymembershipsthatarethemselvesfuzzycanbeapplied.InaType-2fuzzyset,thefuzzymembershipofanelementincludes primaryandsecondarygradesthatcanbeconsideredasaType-1fuzzyset.AsshowninFig.1,Part(a)isageneralType-2fuzzysetwhere thesecondarygradesrangefrom0to1.Whenallsecondarygradesareeither0or1thatthefuzzymembershipforanelementisan interval,itbecomesanintervalType-2fuzzysetasshowninPart(b)whichismorewidelyusedbecauseofitsmanageablecalculations

[23].TheincreasedfuzzinessendowsaType-2fuzzysetadditionaldesigndegreesoffreedomthatmakeitpossibletodirectlydescribe theuncertainties[20–23].[24]gaveanintroductionofType-2T-Sfuzzymodels,andseveralresults[25–27]provedthatType-2T-Sfuzzy modeloutperformsitsType-1counterpartintermsofaccuracyandrobustnessinprocessmodelingandcontrol.

ThispaperinvestigatesbothType-1andType-2ETSMfordecentralizedcontrol.Firstly,theidentificationofType-1andType-2T-S fuzzymodelsforanMIMOprocessbasedondatasamplesisgiven.Afterwards,bymeansofRNGAbasedcriterion,theinput-outputpairing configurationisdeterminedandsimplecalculationsareintroducedtoconstructType-1andType-2ETSMs.AnumericalnonlinearMIMO processisusedtodemonstratethesuperioritiesofETSMsovertheirETFcounterparts,aswellastheevidentadvantageofType-2ETSMs withrespecttorobustness.Anexperimentalrefrigerationsystemisusedtovalidatethepracticabilityoftheproposedmethodsandcompare Type-1andType-2ETSMsinarealapplication.Themaincontributionsofthisworkare:

i) ComparedtotheexistingT-Sfuzzymodelbaseddecentralizedcontrolmethodsusingextratermstocharacterizeinteractions,ETSM methodexpressestheinteractingeffectsthroughrevisingthecoefficientsoftheoriginalT-Sfuzzymodel,whichisasimplefeasible alternative;

ii)ComparedtotheexistingETFmethods,ETSMdoesnotrequireaccuratemathematicalprocessfunctions,andlaysabasistodevelop robustcontrollerssincefuzzysystemisapowerfultooltohandleuncertainties;

(3)

Fig1. (a)GeneralType-2fuzzyset,secondarygradesarein[0,1](b)IntervalType-2fuzzyset,secondarygradesare0or1.

iii)Type-2ETSMisproposedtoenrichtheETSMstudyandoffersanimprovementintermsofrobustness.Also,Type-1andType-2ETSM arepresentedunderaunifiedframeworktoallowobjectivecomparisons.

2. T-SfuzzymodelingforanMIMOprocess

Throughoutthispaper,itisassumedthattheMIMOprocessesconsideredareopen-loopstable,nonsingularatthesteady-state con-ditions,andsquareindimension(equalnumberofinputsandoutputs).ThefollowingT-Sfuzzymodelmatrixcanbeusedtodescribean MIMOprocesswithnoutputs(yi,i=1,...,n)andninputs(uj,j=1,...,n)[19,28]:

FTS=



fTS,ij



n×n=

fTS,11 fTS,12 ··· fTS,1n fTS,21 fTS,22 ··· fTS,2n . . . ... . .. ... fTS,n1 fTS,n2 ··· fTS,nn

(3)

wherefTS,ijistheindividualopen-loopT-Sfuzzymodelforyi−uj,whichisalwaysidentifiablethroughproperexcitations[29].WhenfTS,ij

isaType-1fuzzymodel,itsfuzzyrulescanbeexpressedas: Rule l: IF xij(k) is Cijl

THEN yl

i(k)=alij,0·uj(k−ij)+alij,1·uj(k−ij−1)+···+alij,p·uj(k−ij−p)

+bl

ij,1·yi(k−1)+···+b

l

ij,q·yi(k−q)

(4)

wherel=1, ...,Mij,Mij is thenumberof fuzzyrules infTS,ij.xij(k)∈Rn isa vectorconsisting ofpastinputs andoutputs as: xij(k)=

[ uj(k−ij) ··· uj(k−ij−p) yi(k−1) ··· yi(k−q) ] T

,pandqareintegers,ij=ij/T ,ij denotesthetimedelayinyi−uj,andT

isthesamplinginterval;yl

i(k)istheoutputoflthfuzzyrule;a l

ij,r(r=0,1,...,p)andb

l

ij,s(s=1,...,q)arethecoefficients.TheoutputoffTS,ijis

aweightedsumoflocaloutputs:

yi(k)=

Mij

l=1

l

ij(xij(k))yli(k) (5)

lij(xij(k)) denotesthefuzzymembershipfunctionofxij(k)inthelthfuzzysetCijl.Astheweights,theysatisfy0≤lij(xij(k))≤1and



Mij

l=1lij(xij(k))=1.

WhenfTS,ijisanintervalType-2T-Sfuzzymodel,itsfuzzyrulescanbeexpressedas:

Rule l: IF xij(k) is C˜ijl THEN ˜yl i(k)= ˜a l ij,0·uj(k−ij)+ ˜a l ij,1·uj(k−ij−1)+···+ ˜a l ij,p·uj(k−ij−p) + ˜bl ij,1·yi(k−1)+···+ ˜blij,q·yi(k−q) (6)

l=1, ...,Mij,where ˜Cijl is an interval Type-2 fuzzy set.The fuzzy membershipof xij(k) in ˜Cijl is an interval denoted as ˜lij(xij(k))=

(4)

arealsointervalsas ˜al

ij,r=[ a

l

ij,lb,r, a

l

ij,rb,r](r=0,1,...,p)and ˜blij,s=[ b

l

ij,lb,s, b

l

ij,rb,s](s=1,...,q),and theoutputof lthfuzzyruleis

˜yl

i(k)=[ y

l

i,lb(k), yi,rbl (k) ]thatcanbeobtainedby[24]:

yl i,lb(k)=a l ij,lb,0·uj(k−ij)+···+a l ij,lb,p·uj(k−ij−p)+b l ij,lb,1·yi(k−1)+···+b l ij,lb,q·yi(k−q)

yli,rb(k)=alij,rb,0·uj(k−ij)+···+alij,rb,p·uj(k−ij−p)+blij,rb,1·yi(k−1)+···+blij,rb,q·yi(k−q)

(7)

BasedonMijfuzzyrules,atype-reducedset[24],denotedby ˜yi(k)canbederived:

˜yi(k)=[ yi,lb(k), yi,rb(k) ] (8)

whereyi,lb(k)andyi,rb(k)canbecalculatedbyKarnik-Mendelmethod[24].However,Karnik-Mendelmethodrequiresiterativecalculations

thatmaybetimeconsuming.Inthispaper,thefollowingcalculations[25,27]isselectedforsimplification:

yi,lb(k)=



Mij l=1lij,lb(xij(k))·yli,lb(k)/



Mij l=1lij,lb(xij(k)) yi,rb(k)=



Mij l=1lij,rb(xij(k))·yi,rbl (k)/



Mij l=1lij,rb(xij(k)) (9)

NotethatinanType-2fuzzyset,



Mij

l=1lij,lb(xij(k))and



Mij

l=1lij,rb(xij(k))maynotbeequalto1.Thecrispoutputcanbeobtainedby

defuzzifying ˜yi(k)as[25,27]:

yi(k)=

yi,lb(k)+yi,rb(k)

2 (10)

BothType-1andType-2T-Sfuzzymodelcanbeconstructedbasedontheinput-outputdatasamplesthatarebrieflyintroducedas follows[25]:

i)Foraninput-outputchannelyi−uj,collectNijdatasamplesaszij(k)=[xij(k)T yi(k) ] T

,k=1,...,Nij.Determinethenumberoffuzzy

rulesMij,whichimpliesMijfuzzysets/clusterswillbeusedtocharacterizethedata.

ii)UseGustafson-Kesselclusteringalgorithm[30]tolocateMijfuzzyclustercenterszlc,ij=[ (xlc,ij) T yl c,i] T (l=1,....Mij),wherexlc,ij= [ ulc,jij ylc,i 1 ylc,i2 ] T

isthelthcenterofinputvectors.Denotethedistancebetweenzij(k)andzlc,ijasDlij(zij(k))=(zij(k)−zlc,ij) T

·Aij·

(zij(k)−zlc,ij)(l=1,...Mij),whereAijisthenorm-inducingmatrixcalculatedbasedondatasamples.Dlij(zij(k))’s(l=1,...Mij)determinethe

Type-1fuzzymembershipsforzij(k)as:

lij(zij(k))=

0, if any Dr ij(zij(k))=0, r=1,···Mij, r /=l 1 Mij

r=1 Dl ij(zij(k)) Dr ij(zij(k)) , if Dr ij(zij(k)) /=0, r=1,···Mij 1, if Dl ij(zij(k))=0 (11)

iii)AssigneachdatumtotheclusterwhereithasthelargestType-1fuzzymembershiptodividethedataintoMijgroups.Foreach

group,utilizeleastsquaremethodtoidentifythecoefficientsal

ij,r(r=0,1,...,p)andb

l

ij,s(s=1,...,q)foritsassociatedType-1fuzzyrule.

iv)Ineachgroup,evaluateavariantrangeforfuzzymembership,lij>0,toachieveanintervalType-2fuzzymembership˜lij(zij(k))=

[ lij,lb(zij(k)), lij,rb(zij(k)) ]foreachdatumzij(k)basedonitsType-1fuzzymembershipas:

l ij,lb(zij(k))=max



0, l ij(zij(k))−lij



l ij,rb(zij(k))=min



l ij(zij(k))+lij, 1



(12)

v)Ineachgroup,evaluateavariantrangeforoutput,yi>0,suchthattwodata,denotedaszij,lb(k)andzij,rb(k),canbederivedfrom

eachdatumzij(k)as

zij,lb(k)=[xij(k)T yi(k)−yi] T =[xij(k)T yi,lb(k) ] T zij,rb(k)=[xij(k)T yi(k)+yi] T =[xij(k)T yi,rb(k) ] T (13)

UseleastsquaremethodtoidentifythecoefficientsoftwolinearpolynomialsasinEq.(7)basedonzij,lb(k)andzij,rb(k)respectivelytohave

theleftandrightboundsof ˜al

ij,r(r=0,1,...,p)and ˜b l

ij,s(s=1,...,q),foritsassociatedType-2fuzzyrule.

Whengivenanewinputxij(k),itsType-1fuzzymembershipslij(xij(k)),l=1,...,Mij,arecalculatedby:

lij(xij(k))=

0, if any Dr ij(xij(k))=0, r=1,···Mij, r /=l 1 Mij

r=1 Dlij(xij(k)) Dr ij(xij(k)) , if Dr ij(xij(k)) /=0, r=1,···Mij 1, if Dl ij(xij(k))=0 (14)

(5)

Fig.2. Twotypicalunitstepresponses. whereDl ij(xij(k))=(xij(k)−x l c,ij) T

·(xij(k)−xlc,ij).TheoutputfromtheType-1T-SfuzzymodeliscalculatedbyEq.(5).WhileitsType-2

fuzzymemberships˜l ij(xij(k))=[ lij,lb(xij(k)),  l ij,rb(xij(k)) ]are:

l ij,lb(xij(k))=max



l ij(xij(k))−lij, 0



l ij,rb(xij(k))=min



l ij(xij(k))+lij, 1



(15)

TheoutputfromtheType-2T-SfuzzymodeliscalculatedbyEqs.(9)and(10).

3. Relativenormalizedgainarraybasedlooppairingcriterion

Looppairingdefinesthedecentralizedcontrol-loopconfiguration,i.e.,whichoftheavailableinputsshouldbechosentomanipulate eachoftheprocessoutputs.FromaT-Sfuzzymodel,twofactorscanbecalculatedforinteractionassessmentaccordingtoRNGAbased criterion[18,28]:steady-stategain,kTS,ij,whichindicatestheeffectofujonthegainofyiwhentheprocessreachesthesteady-state

condition,andnormalizedintegratederror,eTS,ij,whichreflectstheresponsespeedofyitouj.BothkTS,ijandeTS,ijaredefinedfromthe

stepresponse.TwoexamplesaregiveninFig.2,wheretheshadedareaandkTS,ijdetermineeTS,ijas[28]:

eTS,ij=

∞ r=0 yi(∞)−yi(r·T ) kTS,ij · T (16)

whereTisthesamplinginterval,yi(∞)=yi(k)|k→∞isthesteady-stateoutputoffTS,ijinunitstepresponse.Itiseasytoknowthatyi(∞)=kTS,ij.

yi(r·T)istheoutputatrthsamplingtime.eTS,ijcanbeusedtorepresentthedynamicpropertysincesmaller/largereTS,ijmeansyigives

faster/slowerresponsetouj[18,28].

Becauseofthenonlinearnatureinafuzzymodel,anoperatingpointshouldbegiventocalculatekTS,ijandeTS,ijfromfTS,ijsincedifferent

operatingconditionsmayhavedifferentkTS,ijandeTS,ijandresultindifferentcontrolconfigurations[28].GivenanoperatingpointforfTS,ij

as:

x0,ij=[ u0,j(k0−ij) ··· u0,j(k0−ij−p) y0,i(k0−1) ··· y0,i(k0−q) ] T

(17) Inthevicinityofx0,ij,aT-Sfuzzymodelcanbeapproximatelyrepresentedbyalinearfunctionbylettinglij(xij(k))=lij(x0,ij)[28]:

yi(k)=fTS,ij(xij(k))

=aij,0·uj(k−ij)+···+aij,p·uj(k−ij−p)+bij,1·yi(k−1)+···+bij,q·yi(k−q)

(18)

WhenfTS,ijisaType-1T-SfuzzymodelasinEq.(4),thecoefficientsofEq.(18)are

aij,r=



Mij l=1lij(x0,ij)aij,rl , r=0,1,···,p bij,s=



Mij l=1lij(x0,ij)blij,s, s=1,···,q (19)

WhenfTS,ijisaType-2T-SfuzzymodelasinEq.(6),thecoefficientsofEq.(18)are

aij,r=(aij,lb,r+aij,rb,r)/2, r=0,1,···,p

bij,s=(bij,lb,s+bij,rb,s)/2, s=1,···,q

(6)

where aij,lb,r=



Mij l=1lij,lb(x0,ij)·a l ij,lb,r/



Mij

l=1lij,lb(x0,ij), aij,rb,r=



Mij

l=1lij,rb(x0,ij)·a

l

ij,rb,r/



Mij

l=1lij,rb(x0,ij), bij,lb,s=



Mij

l=1lij,lb(x0,ij)·

bl

ij,lb,s/



Mij

l=1lij,lb(x0,ij) and bij,rb,s=



Mij

l=1lij,rb(x0,ij)·b

l

ij,rb,s/



Mij

l=1lij,rb(x0,ij).Based on Eq. (18), kTS,ij and eTS,ij can be calculated by

followingequations[28]:

kTS,ij=

aij,0+aij,1+···+aij,p

1−(bij,1+bij,2+···+bij,q)

(21) eTS,ij=



p r=0raij,r−



p w=0



q s=1aij,w·bij,s·|w−s|·sgn(w−s)

(aij,0+aij,1+···+aij,p)(1−(bij,1+···+bij,q)) ·

T+ij·T (22)

Eqs.(21)and(22)couldbeverysimpleforrealapplicationssincepandqaregenerallynotlarge.Forexample,whenp=0andq=2,they become: kTS,ij= aij,0 1−(bij,1+bij,2) ,eTS,ij= bij,1+2bij,2 1−(bij,1+bij,2)· T+ij·T (23)

CollectingthecalculatedresultsofEqs.(21)and(22)ofeachelementinFTSformsasteady-stategainmatrixKTS=



kTS,ij



n×nanda

normalizedintegratederrormatrixETS=



eTS,ij



n×n.Next,weintroducetheimportantconceptsofRNGAlooppairingcriterionasfollows:

RGA:therelativegainofacontrolpairyi−uj,denotedbyTS,ij,isdefinedas[10]:

TS,ij=

kTS,ij

ˆkTS,ij

(24)

where ˆkTS,ijisthesteady-stategainofyi−ujwhenallothercontrol-loopsareclosed.RGAisanarrayformedbyassemblingalltherelative

gainsasRGA=



TS,ij



n×n,whichcanbecalculatedonlyusingindividualopen-loopinformation[12]:

RGA=KTS⊗K−TTS (25)

where⊗iselement-by-elementproduct,K−T

TS isthetransposeofinverseKTS.

RNGA:thenormalizedgainforcontrolpairyi−uj,denotedbykNTS,ij,reflectsthetotaleffectofujonyibyincludingbothkTS,ijandeTS,ij

as[18,28]:

kNTS,ij=

kTS,ij

eTS,ij

(26)

ExtendEq.(26)totheoverallprocesstoobtainthenormalizedgainmatrixKNTSas[18,28]:

KNTS=KTS ETS (27)

where iselement-by-elementdivision.Denotethenormalizedgainofloopyi−ujwhenallothercontrol-loopsareclosedas ˆkNTS,ij,where

ˆkNTS,ij= ˆkTS,ij/ˆeTS,ij, ˆeTS,ijisthenormalizedintegratederrorofyi−ujwhenotherloopsareclosed.Therelativenormalizedgain,denotedby

TS,ij,canbedefinedas[18,28]:

TS,ij=

kNTS,ij

ˆkNTS,ij

(28)

RNGAisanarrayderivedbycollectingallthenormalizedgainsasRNGA=



TS,ij



n×n,whichcanbecalculatedonlyusingindividual

open-loopinformation[18,28]:

RNGA=KNTS⊗K−TNTS (29)

FromRGAandRNGA,thecontrolpairscanbeselectedaccordingtothefollowingrules[18,28]:

i)AllpairedRGAandRNGAelementsshouldbepositive;

ii)ThepairedRNGAelementsareclosestto1;

iii)LargeRNGAelementsshouldbeavoided;

PlacethepairedelementsonthediagonalpositionsofKTS throughcolumnswap,thevalueofNiederlinskiindex(NI)[31],canbe

calculatedas: NI= det [KTS]

˘n

i=1kTS,ii

(30)

wheredet [KTS] denotesdeterminantofKTSaftercolumnswap,˘in=1kTS,iiistheproductofpairedelements.ApositiveNIisanecessary

conditionforpairedsystemtobestable[31].Therefore,anadditionalruleforpairingis

iv)NI>0

4. EffectiveT-Sfuzzymodel

TheETSMforacontrolpairyi−uj,denotedby ˆfTS,ij,istheopen-loopT-Sfuzzymodelforyi−ujwhenallothercontrol-loopsareclosed.

Thusitssteady-stategainandnormalizedintegratederrorare ˆkTS,ijand ˆeTS,ij.Sincetheopen-loopmodelforacertaincontrolpairwhen

(7)

tokeeppartofthecoefficientsof ˆfTS,ijsametothatoffTS,ij.InspiredbytheETFconstructionproposedin[15],wechoosetheType-1ETSM

consistingoffollowingfuzzyrules: Rule l: IF xij(k) is Cijl THEN yl i(k)= ˆa l ij,0·uj(k− ˆij)+ ˆa l ij,1·uj(k− ˆij−1)+···+ ˆa l ij,p·uj(k− ˆij−p) +bl ij,1·yi(k−1)+···+blij,q·yi(k−q) (31) where ˆal

ij,r(r=0,1,...,p)and ˆijarethecoefficientsrevisedfroma l

ij,r(r=0,1,...,p)andijoftheindividualopen-loopType-1T-Sfuzzy

modelasinEq.(4).Similarly,wechoosetheType-2ETSMconsistingoffollowingfuzzyrules: Rule l: IF xij(k) is C˜ijl THEN ˜yl i(k)= ˆ˜a l ij,0·uj(k− ˆij)+ ˆ˜a l ij,1·uj(k− ˆij−1)+···+ ˆ˜a l ij,p·uj(k− ˆij−p) + ˜bl ij,1·yi(k−1)+···+ ˜blij,q·yi(k−q) (32)

where ˆ˜alij,r=[ ˆalij,lb,r, ˆaij,rb,rl ]and ˆijarerevisedfrom ˜alij,r=[ a l

ij,lb,r, alij,rb,r]andijoftheindividualopen-loopType-2T-Sfuzzymodel

asinEq.(6).

Thequantifiedinteractingeffectsonsteady-stategainofyi−ujcanbederivedfromrelativegainTS,ij=kTS,ij/ˆkTS,ij,whilethequantified

interactingeffectsondynamicpropertycanbederivedfrombothrelativegainTS,ijandrelativenormalizedgainTS,ijby[17]:

TS,ij

TS,ij =

ˆeTS,ij

eTS,ij ≡

TS,ij (33)

whereTS,ijistherelativenormalizedintegratederror[17].Forthewholeprocesswehave:

TS=



TS,ij



n×n=RNGA RGA (34)

BasedonTS,ijandTS,ij,therevisedcoefficientsofType-1andtheType-2ETSMcanbecalculatedasfollows:

AccordingtoEq.(21),thesteady-stategain ˆkTS,ijofanETSM ˆfTS,ijbasedonagivenoperatingpointx0,ijcanbecalculatedas:

ˆkTS,ij=

ˆaij,0+ ˆaij,1+···+ ˆaij,p 1−(bij,1+bij,2+···+bij,q)

(35)

ForaType-1ETSM,thecoefficients ˆaij,r(r=0,1,...,p)inEq.(35)arecalculatedby

ˆaij,r=

Mij

l=1

l

ij(x0,ij)ˆalij,r (36)

SubmittingEqs.(21)and(24)intoEq.(35)tohavethefollowingequationtodetermine ˆal

ij,r: ˆalij,r= a l ij,r TS,ij (37)

ForaType-2ETSM,thecoefficients ˆaij,r(r=0,1,...,p)inEq.(35)aredeterminedby

ˆaij,r=

ˆaij,lb,r+ ˆaij,rb,r

2 (38)

where ˆaij,lb,r=



Mij

l=1lij,lb(x0,ij)· ˆalij,lb,r/



Mij

l=1lij,lb(x0,ij)and ˆaij,rb,r=



Mij

l=1lij,rb(x0,ij)· ˆalij,rb,r/



Mij

l=1lij,rb(x0,ij).SubmittingEqs.(20),(21),

(24)and(38)intoEq.(35),thefollowingequationstoderive ˆ˜alij,r=[ ˆalij,lb,r ˆalij,rb,r]canberevealed:

ˆal ij,lb,r= al ij,lb,r TS,ij , ˆal ij,rb,r= al ij,rb,r TS,ij (39)

AccordingtoEq.(22),thenormalizedintegratederror ˆeTS,ijofaType-1orType-2ETSM ˆfTS,ijbasedonthegivenoperatingpointx0,ijis

computedby: ˆeTS,ij=



p r=0r ˆaij,r−



p w=0



q

s=1ˆaij,w·bij,s·|w−s|·sgn(w−s)

(ˆaij,0+ ˆaij,1+···+ ˆaij,p)(1−(bij,1+···+bij,q))

·T+ ˆij·T (40)

ForaType-1ETSM, ˆaij,risdeterminedbyEq.(36)andbij,sisdeterminedbyEq.(19).WhileforaType-2ETSM, ˆaij,risdeterminedbyEq.

(38)andbij,sisdeterminedbyEq.(20).SubmittingEqs.(22),(33),(37)/(39)into(40),afterarrangement,givesthefollowingequationto

calculate ˆij: ˆij=



p r=0raij,r−



p w=0



q s=1aij,w·bij,s·|w−s|·sgn(w−s)

(aij,0+aij,1+···+aij,p)(1−(bij,1+···+bij,q)) ·

(8)

Fig.3. TheworkingprocedureforETSMbaseddecentralizedcontrollerdesign.

SeveralexperimentalresultsdemonstratethatforwellpairedMIMOprocesses,thevaluesofTS,ij’sofpairedcontrol-loopsareclosed

to1.ThusEq.(41)canbesimplifiedas:

ˆij≈ij·TS,ij (42)

Eqs.(37),(39)and(42)providesimplecalculationstorevisethecoefficientstodescribeinteractingeffects.However,animportant andnecessaryfactwhichcannotbeignoredisthatacontrolsystemshouldpossessintegrityproperty[15,17],whichmeans,thesystem shouldremainstablewhetherotherloopsareputinortakenout.Moreover,theintegrityrequiresthatwhencontrollingacertainloop afterallotherloopsremove,theperformanceofthecontrollerdesignedbasedontheETSMshouldbenomoreaggressivethanthatof thecontrollerdesignedbasedontheindividualopen-loopmodel[17].Notethatlargerabsolutevalueofsteady-stategainandlargertime delayimplymorechallengesforastablecontrolsystemdesign.Inabidtomaintaintheintegrityproperty,anETSMshouldchoosethe coefficientsbetweenoriginalandrevisedonesthatcanreflect“worsecondition”forcontrollerdesign.Therefore,wehavethefollowing criteriontodetermine ˆaij,r, ˆ˜aij,rand ˆijforType-1/Type-2ETSMs:

ˆal ij,r=

max{al ij,r, a l

ij,r/TS,ij}, kTS,ij>0

min{al

ij,r, a

l

ij,r/TS,ij}, kTS,ij<0

ˆal ij,lb,r=

max{al ij,lb,r, a l

ij,lb,r/TS,ij}, kTS,ij>0

min{al

ij,lb,r, a

l

ij,lb,r/TS,ij}, kTS,ij<0

, ˆal ij,rb,r=

max{al ij,rb,r, a l

ij,rb,r/TS,ij}, kTS,ij>0

min{al

ij,rb,r, a

l

ij,rb,r/TS,ij}, kTS,ij<0

ˆij=max



ij, ij·TS,ij



(43)

BasedonETSMs,linearSISOcontrolalgorithmscanbedirectlyappliedtodesigndecentralizedcontrollersfornonlinearMIMOprocesses. ThestepstodevisetheETSMbaseddecentralizedcontrollersaresummarizedasfollowswithaflowchartgiveninFig.3.

i)Forann×nprocess,collectdatasamplesfromeachinput-outputchanneltobuildanindividualType-1orType-2open-loopT-Sfuzzy modeltoformann×nType-1orType-2fuzzymodelmatrixFTS.

ii)Atacertainworkingcondition,calculatedsteady-stategainkTS,ijandnormalizedintegratederroreTS,ijforeachindividualelementin

FTStoobtainKTSandETS.

iii)UseRNGAbasedcriteriontopairinputsandoutputstodetermineadecentralizedcontrolconfiguration.

iv)Foreachcontrolpair,revisethecoefficientsofitsindividualType-1orType-2open-loopT-SfuzzymodelaccordingtoEq.(43)toobtain aType-1oraType-2ETSM.Afterwards,designalocalcontrollerbasedoneachETSMtoachieveadecentralizedcontrolsystem. v)Iftheworkingconditionchanges,repeatstepii)–iv).

(9)

5. Casestudies

5.1. Simulations

Considerathree-input-three-outputnonlinearprocess[19]:

˙x1=x2+5x12x2+6x22 ˙x2=−4x1−5x2+8x1x2+u1 ˙x3=x4 ˙x4=−6x3−5x4+3x33+10x3x4x5+u2 ˙x5=x6+4x72 ˙x6=x7+5x5x26x7 ˙x7=−14x5−23x6−10x7+7x5x6x7+u3 y1=5x1+5x2+6x3+2x4+14x5+9x6+x7 y2=8x1+2x2+3x3+4x5+6x6+2x7 y3=x1+x2+4x3+2x4+1.4x5+0.2x6 (44)

wherexr’s(r=1,...,7)arestatevariables.Thetimedelaysinthisprocessarei1=i2=2 (sec)andi3=1 (sec)fori=1,2,3.Choose

thesamplingintervalasT=0.1sec,supposetherearedisturbancesrandombutboundedin[-0.2,0.2]ontheinputsofthesampleddata pairs,constructaType-1andaType-2fuzzymodelwithp=0andq=2foreachinput-outputchannel(theresultsareshowninAppendix A).Giventheoperatingpointsasx0,ij=



u0,j(k0−ij) y0,i(k0−1) y0,i(k0−2)



=



0 0 0



fori,j=1,2,3,fromtheType-1T-Sfuzzy models,thefollowingresultscanbeobtained:

KTS=

1.25652.1238 0.97840.5486 1.07820.2905 0.2493 0.6743 0.1313

, ETS=

2.19542.8221 2.52343.5756 2.15381.1021 2.1872 2.3181 6.9247

RGA=

−0.14981.2235 −0.1944−0.0548 −0.16871.3442 −0.0737 1.2492 −0.1755

, RNGA=

−0.65221.6075 −0.10950.0945 −0.49801.5577 −0.0447 1.0150 −0.0598

AccordingtoRNGAbasedcriterion,thedecentralizedcontrolconfigurationcanbedeterminedy1−u3/y2−u1/y3−u2,NI=0.9598>0,

andthenormalizedintegratederrormatrixis:

TS=

4.35451.3138 −0.48611.9981 1.15892.9520 −0.6065 0.8125 0.3405

TheresultsderivedfromtheType-2T-Sfuzzymodelsare:

KTS=

1.25022.1205 0.97620.5480 1.07500.2902 0.2481 0.6724 0.1316

, ETS=

2.19392.8188 2.52213.5633 2.14791.1018 2.1847 2.3172 6.8859

RGA=

−0.14921.2228 −0.1961−0.0543 −0.16851.3453 −0.0736 1.2504 −0.1768

, RNGA=

−0.64781.6039 −0.10930.0930 −0.49461.5548 0.0439 1.0163 −0.0602

The decentralized control pairs selected by the RNGA based criterion is same to that derived from Type-1 fuzzy models: y1−u3/y2−u1/y3−u2,whereNI=0.9596>0,and TS=

4.34151.3117 −0.47422.0119 1.15572.9356 −0.5960 0.8127 0.3403

Thegainandphasemarginsbasedcontrolalgorithmemployedin[15,17]isselectedtodesigncontrollersbasedonType-1andType-2 ETSMs(ThedetailsaregiveninAppendixA),andtherequiredgainandphasemarginsfortheETSMbasedcontrolsystemaresetas3and /3.Forcomparison,welinearizethefunctionsofEq.(44)atthegivenoperatingpointstoobtainatransferfunctionmatrixtoapplythe RNGAbasedETFmethod[17]usingthesamecontrolalgorithmwiththesamerequiredgainandphasemargins(thedetailsarealsogiven inAppendixA).Letthereferencevaluesberv1=1.5,rv2=1andrv3=0,thecontrolperformancesareshowninFig.4.

AscanbeseeninFig.4,whengiventhesamegainandphasemarginrequirements,thecontrollersbasedonfuzzymodelsbuiltfromdata withinexactnesscanachievesmallerovershootscomparedtothatbasedontransferfunctionslinearizedfromexactmathematicalmodel.

(10)

0 5 10 15 20 25 0 0.5 1 1.5 y1 0 5 10 15 20 25 0 0.5 1 y2 0 5 10 15 20 25 0 0.1 0.2 y3 Time(sec) 4 6 1.451.5 1.551.6 1.65

ETF based control Type-1 ETSM based control Type-2 ETSM based control

4 6 0.75 0.8 0.85 4 5 6 0.16 0.18

Fig.4.ThecomparisonsofETFandETSMbasedcontrolforEq.(44).

Table1

PerformanceindexesofType-1andType-2ETSMbasedcontrolforEq.(44).

IAE ISE ITAE ITSE

y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

Type-1 4.83 4.99 0.90 5.49 2.99 0.10 10.81 21.81 6.08 7.19 5.97 0.54

Type-2 4.77 4.81 0.89 5.42 2.91 0.10 10.56 19.89 5.83 6.97 5.59 0.54

Table2

PerformanceindexesofType-1andType-2ETSMbasedcontrolforCase-IandCase-II.

IAE ISE ITAE ITSE

y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

Case-I Type-1 8.71 4.84 2.59 7.63 2.71 0.78 57.18 27.05 20.90 21.30 5.74 4.21

Type-2 8.15 4.60 2.42 6.73 2.67 0.73 48.90 23.33 18.55 18.44 5.21 3.92

Case-II Type-1 33.2 17.8 11.2 21.4 6.6 2.8 1077.5 562.3 372.4 328.4 89.4 41.7

Type-2 24.7 13.5 8.33 16.2 5.2 2.1 586.5 307.3 204.7 182.3 50.2 24.5

TheperformancesofType-1andType-2ETSMbasedcontrolarecamparableinthiscase.Inabidtoexplicitlydemonstratetheirdifferences,

thecomparisionsoffourperformanceindexes,IAE=



∞k=0|r

v

i−yi(k)|·T ,ISE=



k=0(r

v

i−yi(k))2·T ,ITAE=



k=0k·|r

v

i−yi(k)|·Tand

ITSE=



∞k=0k·(r

v

i−yi(k))2·T ,betweenType-1andType-2ETSMbasedcontrolareemployedandshowninTable1,whichproveType-2

controlcanachievesmallerintegratederrors.

Supposethethirdstateequation ˙x3=x4inEq.(44)ischangedtothefollowingtwocasesduetotheuncertainties:

Case-I: ˙x3=x4+1.5u1;Case-II: ˙x3=x4+2.31u1

Applythecontrollerstothechangedprocesses,thecomparisonsareshowninFig.5,andthefourindexesofETSMbasedcontrolare giveninTable2.

AscanbeseeninFig.5andTable2,ETSMbasedcontrolcanprovidemuchbetterresultsthanETFbasedcontrol,andType-2ETSM

basedcontrolcanachievesmallerovershoots,lesssettlingtimeandsmallerintegratederrorscomparedtoitsType-1counterpart.When thechangedcoefficientbecomeslargerduetotheincreaseddegreeofuncertaintyas:

Case-III: ˙x3=x4+2.5u1

TheprocessundertheETFbasedcontrolbecomesinstablewhileitsoutputsundertheETSMbasedcontrolcanstillreachthereference valuesasshowninFig.6.ThefourindexesofETSMbasedcontrolinTable3provethatType-2ETSMbasedcontrolismorerobust.

ConcludedfromFig.4–6andTable1–3,ETSMbasedcontrolcangivebetterperformanceswhencomparedtotheirETFbasedcounterparts ineverycase.Asthedegreeofuncertaintybecomelager,Type-2ETSMbasedcontrolcanprovidemoresatisfactoryresultsthanType-1 ETSMbasedcontrolintermsofrobustness.

(11)

0 10 20 30 40 50 0 1 2 3 Time(sec) y1 0 10 20 30 40 50 0 0.5 1 1.5 Time(sec) y2 Case-I 0 10 20 30 40 50 -0.2 0 0.2 0.4 0.6 0.8 Time(sec) y3 0 50 100 -1 0 1 2 3 4 Time(sec) y1 0 50 100 -0.5 0 0.5 1 1.5 2 Time(sec) y2 Case-II 0 50 100 -0.5 0 0.5 1 Time(sec) y3

ETF based control

Type-1 ETSM based control

Type-2 ETSM based control

2 4 6 2 2.2 2 4 6 81012 1.2 1.4 6 8 10121416 -0.2 -0.1 0 90 95 100 1.2 1.4 1.6 90 95 100 0.8 1 90 95 100 -0.1 0 0.1

ETF based control

Type-1 ETSM based control

Type-2 ETSM based control

Fig.5.ComparisonsofETFandETSMbasedcontrolforCase-IandCase-II.

0 10 20 30 40 50 -4 -2 0 2 4 6 8 10 12 Time (sec) Outputs

ETF based control

0 50 100 150 200 0 1 2 3 y1

ETSM based control

0 50 100 150 200 0 1 2 y2 0 50 100 150 200 -0.5 0 0.5 Time(sec) y3 y1 y2 y3

Type-1 ETSM based control Type-2 ETSM based control

Fig.6. ComparisonsofETFandETSMbasedcontrolforCase-III.

Table3

PerformanceindexesofType-1andType-2ETSMbasedcontrolforCase-III.

IAE ISE ITAE ITSE

y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

Type-1 116 62.4 40.4 67.5 19.8 8.51 1457.1 7758 5079 4051 1145 495.4

Type-2 53.1 28.9 18.4 32.4 9.96 4.24 296.1 1582 1038 832.4 237.0 105.0

5.2. Applicationinamulti-evaporatorrefrigerationsystem

Anexperimentalmulti-evaporatorrefrigerationsystemwiththreeevaporators(EVAP1,EVAP2andEVAP3)isshowninFig.7,andits

schematicdiagramandpressure(P)-enthalpy(h)chartareshowninFig.8.Inthissystem,R134aisusedastherefrigerant.ForEVAP1,water isusedasheattransferfluidtoconveythecoolingtomeettheair-conditioningrequirements.WhileforEVAP2usedforperishablefood

(12)

Fig.7.Theexperimentalmulti-evaporatorrefrigerationsystem.

Fig.8.Theschematicdiagramandpressure(P)-enthalpy(h)chartofthemulti-evaporatorrefrigerationsystem.

storageandEVAP3usedforfreezingwhereevaporatingtemperaturesarelowthatwatermaybefrozen,ethyleneglycolsolutionisused instead.TheworkingprocessasshowninFig.8is:therefrigerantasasaturatedvaporwithalowpressure(state1)entersthecompressor andiscompressedisentropicallytoasuperheatedvaporwithahighpressure(state2).Thenitentersintothecondenserwhereitiscooled andcondensedintoliquidphase(state3)byrejectingheattotheexternalenvironment.Afterwardsitisdividedintothreeflows(states

4,5and6),whichgointoEVAP1(state7),EVAP2(state8)andEVAP3(state9)aftertheirpressuresarereducedthroughthreeexpansion valves(EV1,EV2,andEV3)respectively.Byabsorbingheatsfromtheambientenvironmentsoftheevaporators,thethreeflowsevaporate atspecifiedtemperaturestobecomesaturatedvapor(states10,11and14).Inthepressureregulationdevice,theflowsatstate10and11

arethrottledtostate12and13respectivelysuchthattheirpressuresareequaltothatoftheflowatstate14fromEVAP3whichhasthe lowestevaporatingpressureandtemperature.Finally,thethreeflowsmixupintooneatstate1andreturntocompressortocompletethe refrigerationcycle.

Intheexperiment,thecompressorpowerandthespeedsoffansarefixed.Theflowratesofrefrigerantinthreeevaporatorscanbe adjustedtosatisfydifferentcoolingloadsthroughregulatingtheopeningdegreesofthreeEVs.TheopeningchangeinanyoneoftheEVs willhaveimpactsonthreerefrigerantflowratesofthreeevaporatorssubsequentlyaffectthetemperaturesofheattransferfluidsT1,T2

andT3asshowninFig.8.Therefore,aninterconnectednonlinearthree-input-three-output(3×3)processcanbeformedwherethethree

EVopeningdegreesareusedtoregulatetheheattransferfluidtemperaturesofthreeevaporators.Sincethedesignedworkingcondition forthismulti-evaporatorrefrigerationsystemisT1,d=17oC,T2,d=3oCandT3,d=−8oCwiththecorrespondingEVopeningdegreesas

85%,43%and16%respectively,lettheoutputsofthis3×3processbeyi=Ti−Ti,d(i=1,2,3),andtheopeningrangesofEV1,EV2andEV3be

[70%,100%],[31%,55%]and[12%,20%]whichareuniformlyscaledto[−3,3]tobethevariationrangesofinputsuj(j=1,2,3)forconstructing

fuzzymodels.Thestepresponsesforthis3×3processareshowninFig.9.

Thetimedelaycanbemeasuredas:11=1 (min),12=1.6 (min),13=1.5 (min),21=1.4 (min),22=1.2 (min),23=

1.4 (min),31=1.4 (min),32=1.5 (min)and33=1.2 (min),andthesamplingintervalischosenasT=0.5(min).Basedonthedata

(13)

Fig.9.Stepresponsesforthe3×3process.

outintheareaofdesignedworkingconditionaroundtheoperatingpointsx0,ij=



u0,j(k0−ij) y0,i(k0−1) y0,i(k0−2)



=



0 0 0



fori,j=1,2,3.FromType-1fuzzymodels,thefollowingresultscanbeobtained:

KTS=



−1.7958 0.6011 0.2011 0.7983 −0.6962 0.0996 0.2005 0.0993 −0.2961



, ETS=



1.0409 1.8491 1.7683 1.5136 1.3125 1.6252 1.5769 1.6966 1.4837



RGA=



2.2836 −0.9984 −0.2852 −1.0239 2.2168 −0.1929 −0.2597 −0.2184 1.4780



, RNGA=



1.3730 −0.2860 −0.0870 −0.2936 1.3614 −0.0679 −0.0794 −0.0755 1.1549



TS=



0.6012 0.2864 0.3051 0.2867 0.6141 0.3519 0.3058 0.3456 0.7813



Thedecentralizedcontrolstructureisy1−u1/y2−u2/y3−u3,whereNI=0.4169>0.FromType-2fuzzymodels,theresultsare:

KTS=



−1.7995 0.6000 0.2009 0.7968 −0.7012 0.0994 0.1997 0.0990 −0.2970



, ETS=



1.0427 1.8483 1.7692 1.5118 1.3163 1.6258 1.5762 1.6959 1.4844



RGA=



2.2432 −0.9669 −0.2763 −0.9916 2.1777 −0.1861 −0.2516 −0.2108 1.4624



, RNGA=



1.3688 −0.2829 −0.0859 −0.2905 1.3573 −0.0668 −0.0784 −0.0743 1.1527



TS=



0.6102 0.2926 0.3109 0.2929 0.6233 0.3589 0.3115 0.3526 0.7882



Thedecentralizedcontrolstructureisy1−u1/y2−u2/y3−u3,sameasthatobtainedfromType-1fuzzymodels,NI=0.4247>0.Usingthe

gainandphasemarginsbasedcontrolmethodtodevisethelocalcontroller,giventherequiredgainandphasemarginsare4and3 /8 respectively,theperformancesofType-1andType-2ETSMbaseddecentralizedcontrolforthismulti-evaporatorrefrigerationsystemare showninFig.10.

ItcanbeseenfromFig.10thattheoutputsunderbothType-1andType-2ETSMbasedcontrolcantracktheirreferencevaluesinspiteof disturbances.Theirperformanceindexesintegratedk=6tok=60/TarecomparedinTable4,whichdemonstratethatType-2ETSMbased controlcanachievesmallerintegratederrorsinrealapplications.

(14)

0 10 20 30 40 50 60 14 16 18 20 22 T1 (° C) 0 10 20 30 40 50 60 -2 0 2 4 T2 (° C) 0 10 20 30 40 50 60 -8.4 -8.2 -8 -7.8 -7.6 T3 (° C) Time(min) Reference

Type-1 ETSM based control Type-2 ETSM based control

Fig.10.Type-1andType-2ETSMbaseddecentralizedcontrolfortherefrigerationsystem.

Table4

PerformanceindexesofType-1andType-2ETSMbasedcontrolforthemulti-evaporatorrefrigerationsystem.

IAE ISE ITAE ITSE

y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

Type-1 38.3 25.6 9.4 62.3 34.7 1.96 973.7 609.4 280.3 1272.2 690.6 58.2

Type-2 34.6 25.0 6.4 52.3 34.5 0.96 850.8 575.6 184.2 1036.7 629.2 26.7

6. Conclusions

ThispaperpresentedType-1andType-2ETSMmethodstomeasureanddescribeinteractionstofacilitatedecentralizedcontroller

design.ForeachcontrolpairofanMIMOprocess,aType-1/Type-2ETSMcanbebuiltbymergingthesteadyandthedynamicinteracting

effects,quantifiedbyRNGAbasedcriterion,intoitsindividualopen-loopType-1/Type-2 T-Sfuzzymodelthroughsimplyscalingthe

coefficients.BasedoneachETSM,alocalcontrollercanbeindependentlydevisedbyusinglinearSISOcontrolalgorithms,andthena

decentralizedcontrolsystemcanbeformedbyassemblingalltheselocalcontrollerstomanipulateanonlinearMIMOprocess.Compared

totheexistingdecentralizedfuzzycontrolmethodsinsertingextratermsintheindividualopen-loopmodelstoexpresstheinteracting

effects,ETSMmethodcangreatlyreducethecostandcomplexityinmodelingandcontrollerdesigns.WhilecomparedtotheexistingRNGA

basedETFmethod,ETSMmethodcanbeimplementedwithoutrequiringexactmathematicalprocessfunctionsandisabletoprovidemore

satisfactorycontrolresults.Type-2ETSMswithadditionaldegreesoffuzzinesscanachievemorerobustperformancesthantheType-1

counterpartsundertheinfluenceofuncertainties,whichhavebeenprovedbysimulationandexperimentalresults.SinceanETSMcan

expresstheinteractingeffects,moreinterestingtopics,suchasblockdecentralizedcontrolandsparsecontrol,canbeinvestigated.These

topicswillbereportedlater.

Acknowledgements

TheworkwasfundedbyNationalResearchFoundationofSingapore:NRF2011NRF-CRP001-090.SchoolofElectrical&Electronic

(15)

AppendixA.

TheparametersofType-1andType-2T-SfuzzymodelsfortheprocessinEq.(44)aregiveninTableA1andA2,whereRldenotesRule

TableA1

ThecentersoffuzzyclustersfortheprocessinEq.(44).

CentersofCl

ij’s

inloopyi−uj

No.offuzzyclusters

R1(l=1) R2(l=2) R3(l=3) R4(l=4) R5(l=5) R6(l=6) fTS ,11 ( l 11=0.05) ul c,111 0.5622 1.3647 0.8080 1.2917 1.3446 0.6003 yl c,11 1.3286 0.9915 1.2043 1.1904 1.5125 0.9530 yl c,12 1.1450 1.1523 1.3147 1.0916 1.3482 1.1075 yl c,1 1.1055 1.2062 1.0991 1.3174 1.6284 0.8485 fTS ,12 ( l 12=0.05) ul c,212 1.2909 0.8570 1.3501 0.5789 0.6350 1.2364 yl c,11 1.0727 0.9838 0.9385 1.0686 0.9503 1.0267 yl c,12 1.0145 1.0085 0.9997 1.0040 1.0149 0.9979 yl c,1 1.1222 0.9727 1.0153 0.9847 0.8888 1.0575 fTS ,13 ( l 13=0.05) ul c,313 0.6910 0.6976 1.2953 1.2328 1.3997 0.6252 yl c,11 1.1078 1.0586 1.0414 1.0761 1.0703 1.0272 yl c,12 1.0911 1.0471 1.0593 1.0804 1.0460 1.0584 yl c,1 1.0822 1.0196 1.0782 1.0774 1.1201 1.0064 fTS ,21 ( l 21=0.05) ul c,121 1.1255 0.9491 0.5658 1.4285 0.5358 1.3894 yl c,21 2.0363 2.1622 2.1112 2.0109 1.9872 2.1456 yl c,22 1.9934 2.2249 2.0555 2.0733 2.0470 2.0585 yl c,2 2.0275 2.1363 2.0055 2.1058 1.9364 2.2626 fTS ,22 ( l 22=0.05) ul c,222 1.1127 0.8016 0.5747 1.4044 1.2765 0.7716 yl c,21 0.5326 0.4769 0.5144 0.5023 0.4934 0.5007 yl c,22 0.5303 0.4824 0.5160 0.4970 0.5015 0.4931 yl c,2 0.5327 0.4761 0.5152 0.5022 0.5039 0.4902 fTS ,23 ( l 23=0.05) ul c,323 1.2047 0.7098 1.3109 0.6307 0.8037 1.2922 yl c,21 0.3152 0.2388 0.2396 0.3261 0.2656 0.3328 yl c,22 0.2842 0.2888 0.2839 0.2673 0.2936 0.2966 yl c,2 0.3275 0.2264 0.3076 0.2541 0.2461 0.3571 fTS ,31 ( l 31=0.05) ul c,131 1.3618 0.6121 0.7111 1.2980 1.3706 0.6179 yl c,31 0.2010 0.2782 0.2186 0.2335 0.2980 0.2037 yl c,32 0.2405 0.2419 0.2171 0.2216 0.2627 0.2448 yl c,3 0.2425 0.2354 0.1998 0.2574 0.3258 0.1773 fTS ,32 ( l 32=0.05) ul c,2 32 1.3431 0.6205 1.2799 0.6305 1.2034 0.8962 yl c,31 0.6055 0.7323 0.7242 0.6044 0.7122 0.6536 yl c,32 0.6633 0.6627 0.6880 0.6667 0.6706 0.6782 yl c,3 0.6858 0.6514 0.7517 0.5572 0.7462 0.6429 fTS ,33 ( l 33=0.03) ul c,333 0.8772 1.2857 0.6684 1.2590 0.5560 1.3119 yl c,31 0.1077 0.1117 0.1109 0.1092 0.1096 0.1102 yl c,32 0.1080 0.1111 0.1090 0.1113 0.1105 0.1093 yl c,3 0.1082 0.1130 0.1086 0.1100 0.1109 0.1086

l,Mij’s(i,j=1,2,3)arechosenas6.

When ˆfTS,ijofcontrolpairyi−ujisaType-1ETSMwithp=0andq=2,itis:

Rule l: IF xij(k) is Cijl

THEN yli(k)= ˆal

ij,0·uj(k− ˆij)+blij,1·yi(k−1)+blij,2·yi(k−2)

(A.1)

Applyinggainandphasemarginsbasedcontrolalgorithm[15,17]onthelinearpolynomialoflthfuzzyrulecancalculateacontrol

variableul j(k)by[19]: ulj(k)=uj(k−1)+ (r

v

i(k)−yi(k))− blij,1(r

v

i(k−1)−yi(k−1))− blij,2(r

v

i(k−2)−yi(k−2)) 2ˆal ij,0Am,ijˆij (A.2)

whereAm,ijisthegainmarginforthecontrolsystem.Accordingtotherequirement,Am,ij=3,whichassociatedwithaphasemarginof /3

[15,17].Accordingtoparalleldistributedcompensation[4],thetotalcontrolvariableuj(k)isaweightedsumofulj(k)(l=1,...,Mij)andshare

thesamefuzzymembershipswithEq.(A.1):

uj(k)=

Mij l=1 l ij



xij(k)



ulj(k)

(16)

TableA2

TheparametersofType-1andType-2T-SfuzzymodelsfortheprocessinEq.(44).

No.offuzzyrules Type–1fuzzymodel Type–2fuzzymodel

al

ij,0 blij,1 blij,2 alij,lb,0 bij,lb,1l blij,lb,2 alij,rb,0 blij,rb,1 blij,rb,2

fTS ,11 R1(l=1) 0.4168 0.6234 0.0503 0.4362 0.6849 0.0205 0.3974 0.5620 0.0801 R2(l=2) 0.3746 0.8545 −0.1103 0.4063 0.8622 −0.1055 0.3429 0.8468 −0.1150 R3(l=3) 0.3863 0.8449 −0.1765 0.4012 0.8446 −0.1448 0.3714 0.8452 −0.2082 R4(l=4) 0.3621 0.7834 −0.1002 0.3859 0.8059 −0.0979 0.3383 0.7608 −0.1025 R5(l=5) 0.4159 0.7726 −0.0442 0.4317 0.8055 −0.0558 0.4001 0.7396 −0.0327 R6(l=6) 0.3931 0.7623 −0.0971 0.4217 0.7919 −0.0774 0.3646 0.7327 −0.1169 fTS ,12 R1(l=1) 0.1853 0.7450 0.0959 0.1948 0.7958 0.0751 0.1758 0.6943 0.1168 R2(l=2) 0.1745 0.6941 0.1611 0.1825 0.7393 0.1618 0.1665 0.6489 0.1604 R3(l=3) 0.1845 0.7492 0.0625 0.1997 0.7782 0.0625 0.1693 0.7202 0.0626 R4(l=4) 0.1831 0.7475 0.0791 0.1858 0.8249 0.0418 0.1805 0.6702 0.1164 R5(l=5) 0.1519 0.6249 0.1768 0.1594 0.6537 0.1946 0.1443 0.5960 0.1590 R6(l=6) 0.1822 0.6979 0.0894 0.1916 0.7502 0.0701 0.1727 0.6456 0.1086 fTS ,13 R1(l=1) 0.0980 0.7854 0.1420 0.0991 0.8415 0.1272 0.0969 0.7293 0.1569 R2(l=2) 0.0931 0.8095 0.0692 0.0971 0.8475 0.0773 0.0891 0.7716 0.0610 R3(l=3) 0.0946 0.8083 0.1186 0.1047 0.8468 0.1152 0.0845 0.7699 0.1219 R4(l=4) 0.0919 0.7504 0.1254 0.0987 0.7647 0.1474 0.0851 0.7361 0.1034 R5(l=5) 0.1062 0.6681 0.2587 0.1147 0.7141 0.2457 0.0978 0.6222 0.2717 R6(l=6) 0.0956 0.8711 0.0580 0.1010 0.9326 0.0447 0.0902 0.8096 0.0712 fTS ,21 R1(l=1) 0.1881 1.0126 −0.1523 0.2011 1.0316 −0.1280 0.1751 0.9935 −0.1766 R2(l=2) 0.2028 0.8467 0.0421 0.2154 0.8228 0.0992 0.1903 0.8705 −0.0151 R3(l=3) 0.2350 1.0616 −0.1896 0.2459 1.0841 −0.1675 0.2242 1.0391 −0.2116 R4(l=4) 0.2127 0.8061 0.0828 0.2404 0.8094 0.1061 0.1851 0.8028 0.0595 R5(l=5) 0.2605 1.0580 −0.1312 0.2805 1.0763 −0.1038 0.2406 1.0397 −0.1586 R6(l=6) 0.1848 0.9333 0.0234 0.2087 0.9642 0.0203 0.1608 0.9024 0.0265 fTS ,22 R1(l=1) 0.0254 1.1676 −0.2225 0.0262 1.2035 −0.2183 0.0245 1.1316 −0.2267 R2(l=2) 0.0159 1.2794 −0.2973 0.0166 1.3471 −0.3081 0.0151 1.2116 −0.2864 R3(l=3) 0.0326 1.1339 −0.1470 0.0336 1.1633 −0.1308 0.0316 1.1045 −0.1632 R4(l=4) 0.0242 1.3626 −0.4637 0.0299 1.4041 −0.4739 0.0185 1.3212 −0.4534 R5(l=5) 0.0173 1.4796 −0.4639 0.0218 1.5131 −0.4600 0.0128 1.4460 −0.4678 R6(l=6) 0.0140 1.4328 −0.5218 0.0169 1.4874 −0.5301 0.0112 1.3782 −0.5134 fTS ,23 R1(l=1) 0.1431 0.4784 0.0008 0.1470 0.5093 −0.0062 0.1393 0.4475 0.0078 R2(l=2) 0.1472 0.5180 0.0102 0.1520 0.5509 0.0226 0.1424 0.4850 −0.0023 R3(l=3) 0.1460 0.4818 −0.0028 0.1525 0.4978 −0.0001 0.1395 0.4657 −0.0055 R4(l=4) 0.1448 0.4781 0.0295 0.1475 0.5224 0.0189 0.1422 0.4337 0.0400 R5(l=5) 0.1413 0.4808 −0.0026 0.1466 0.5059 0.0115 0.1360 0.4557 −0.0167 R6(l=6) 0.1495 0.5094 −0.0118 0.1539 0.5300 −0.0112 0.1451 0.4889 −0.0124 fTS ,31 R1(l=1) 0.0788 0.8838 −0.1595 0.0849 0.8820 −0.1458 0.0727 0.8857 −0.1731 R2(l=2) 0.0852 0.6130 0.0631 0.0864 0.6812 0.0276 0.0839 0.5447 0.0985 R3(l=3) 0.0823 0.6856 −0.0409 0.0855 0.7638 −0.0673 0.0792 0.6073 −0.0145 R4(l=4) 0.0747 0.7549 −0.0992 0.0796 0.7771 −0.0971 0.0698 0.7328 −0.1014 R5(l=5) 0.0802 0.7467 −0.0008 0.0841 0.7766 −0.0119 0.0763 0.7168 0.0103 R6(l=6) 0.0818 0.8178 −0.1564 0.0864 0.7850 −0.0949 0.0773 0.8506 −0.2180 fTS ,32 R1(l=1) 0.1778 0.6767 0.0550 0.1896 0.7009 0.0570 0.1661 0.6526 0.0530 R2(l=2) 0.1789 0.6433 0.1093 0.1830 0.7056 0.0848 0.1748 0.5811 0.1338 R3(l=3) 0.1711 0.6716 0.0518 0.1784 0.7101 0.0411 0.1639 0.6331 0.0624 R4(l=4) 0.1670 0.6305 0.0966 0.1762 0.6755 0.1000 0.1579 0.5854 0.0932 R5(l=5) 0.1775 0.7149 0.0543 0.1857 0.7500 0.0474 0.1693 0.6797 0.0613 R6(l=6) 0.1799 0.6413 0.0997 0.1944 0.6931 0.0796 0.1654 0.5895 0.1198 fTS ,33 R1(l=1) 0.0024 1.0770 −0.0830 0.0029 1.1021 −0.0621 0.0019 1.0520 −0.1040 R2(l=2) 0.0038 0.6604 0.3255 0.0045 0.6959 0.3242 0.0030 0.6248 0.3268 R3(l=3) 0.0005 1.0561 −0.1007 0.0007 1.0956 −0.0965 0.0003 1.0166 −0.1050 R4(l=4) 0.0035 0.6166 0.3367 0.0041 0.5863 0.4023 0.0029 0.6469 0.2711 R5(l=5) 0.0027 0.9986 0.0155 0.0029 1.0034 0.0547 0.0025 0.9938 −0.0236 R6(l=6) 0.0029 0.8095 0.1177 0.0035 0.8531 0.1108 0.0023 0.7660 0.1246

When ˆfTS,ijisaType-2T-Sfuzzymodelwithp=0andq=2,itis:

Rule l: IF xij(k) is C˜lij

THEN ˜yl

i(k)= ˆ˜a

l

ij,0·uj(k− ˆij)+ ˜blij,1·yi(k−1)+···+ ˜blij,2·yi(k−2)

(A.3) where ˜yl i(k)=[ y l i,lb(k), y l i,rb(k) ]that {y l

i,lb(k)= ˆalij,lb,0·uj(k− ˆij)+bij,lb,1l yi(k−1)+blij,lb,2·yi(k−2)

yl

i,rb(k)= ˆalij,rb,0·uj(k− ˆij)+bij,rb,1l yi(k−1)+blij,rb,2·yi(k−2)

(A.4)

BasedonthetwolinearpolynomialsinEq.(A.4),twocontrolvariables,denotedbyul

j,lb(k)andulj.rb(k),canbecalculatedusingthegain

(17)

˜uj(k)=[ uj,lb(k), uj,rb(k) ]=

 

Mij l=1lij,lb



xij(k)



ul j,lb(k)



Mij l=1lij,lb



xij(k)



,



Mij l=1lij,rb



xij(k)



ul j,rb(k)



Mii l=1lij,rb



xij(k)





(A.5)

Thetotalcontrolvariableuj(k)isderivedbydefuzzifying ˜uj(k)[25]as

uj(k)=

uj,lb(k)+uj,rb(k)

2 (A.6)

LinearizetheprocessinEq.(44)atthegivenoperatingpointstohavethefollowingtransferfunctionmatrix:

G(s)=



gij(s)



n×n=

1.25 0.25s+1e −2s 1 0.5s+1e −2s 1 s+1e −s 2 s+1e −2s 0.5 0.1667s2+0.8333s+1e−2s 0.2857 0.1429s+1e −s 0.25 0.25s+1e−2s 0.6667 0.3333s+1e−2s 0.1 0.5s2+1.5s+1e−s

LooppairingstructureselectedusingRNGAbasedcriterionisy1−u3/y2−u1/y3−u2.TheETFs ˆgij(s)’sandthecontrollersGc,i(s)(i=1,2,

3)designedwiththerequiredgainandphasemarginswhichare3and /3are:

Loopy1−u3: ˆg13(s)=1.2756s+11 e−1.2756s,andGc,1(s)=0.5236s+0.4105s .

Loopy2−u1: ˆg21(s)=1.3462s2 +1e−2.6924s,andGc,2(s)=0.1309s+0.0972s .

Loopy3−u2: ˆg32(s)=0.3333s+10.6667 e−2,andGc,3(s)= 0.1309ss+0.3927.

AppendixB.

TheparametersofType-1andType-2T-Sfuzzymodelsforthemulti-evaporatorrefrigerationsystemaregiveninTableB1andB2, whereRldenotesRulel,M

ij=6,i,j=1,2,3).

TableB1

Thecentersoffuzzyclustersforthemulti-evaporatorrefrigerationsystem.

CentersofCl

ij’sinloopyi−uj No.offuzzyclusters

R1(l=1) R2(l=2) R3(l=3) R4(l=4) R5(l=5) R6(l=6) fTS ,11 ( l 11=0.05) ul c,111 −0.0895 −0.0753 −0.0958 −0.0379 −0.0614 −0.1178 yl c,11 0.1123 0.1214 0.0602 0.2745 0.2665 0.0027 yl c,12 0.0469 0.2542 0.1135 0.1654 0.0066 0.2075 yl c,1 0.1584 0.1340 0.1632 0.0865 0.1211 0.1965 fTS ,12 ( l 12=0.05) ul c,212 −1.2258 0.4658 −0.6004 0.7367 −0.6717 0.8497 yl c,11 −0.5747 0.2136 0.2547 −0.1123 0.3494 −0.4642 yl c,12 −0.0492 −0.3563 0.1002 0.2441 0.1283 −0.3066 yl c,1 −0.6855 0.2591 −0.1491 0.2547 −0.1602 0.1935 fTS ,13 ( l 13=0.03) ul c,313 −0.7445 0.8525 −1.0112 0.3896 0.8216 −0.8990 yl c,11 0.1154 −0.1251 −0.2065 0.0716 0.0239 0.0259 yl c,12 0.0342 0.0011 −0.0611 −0.1126 0.0145 0.0301 yl c,1 −0.0589 0.0698 −0.2045 0.0768 0.1141 −0.1077 fTS ,21 ( l 21=0.05) ul c,121 −0.1187 −0.0572 −0.1087 −0.0453 −0.0830 −0.0632 yl c,21 −0.0307 −0.1017 −0.0422 −0.0838 −0.0611 −0.0490 yl c,22 −0.0365 −0.0673 −0.0680 −0.0661 −0.1000 −0.0122 yl c,2 −0.0823 ‘−0.0565 −0.0786 −0.0449 −0.0653 −0.0502 fTS ,22 ( l 22=0.05) ul c,222 −0.0990 −0.0686 −0.1687 0.0210 −0.0938 −0.0671 yl c,21 0.0301 0.1051 0.0699 0.0324 0.0323 0.0510 yl c,22 0.0287 0.0783 0.0851 −0.0026 0.0421 0.0729 yl c,2 0.0615 0.0588 0.1090 −0.0065 0.0589 0.0477 fTS ,23 ( l 23=0.03) ul c,323 0.0016 −0.1283 −0.1004 −0.0738 −0.1648 −0.0101 yl c,21 −0.0108 −0.0053 −0.0030 −0.0115 −0.0073 −0.0075 yl c,22 −0.0086 −0.0086 −0.0094 −0.0052 −0.0033 −0.0083 yl c,2 −0.0034 −0.0103 −0.0078 −0.0087 −0.0136 −0.0030 fTS ,31 ( l 31=0.03) ul c,131 −0.0210 −0.1501 −0.1141 −0.0507 −0.0651 −0.0758 yl c,31 −0.0058 −0.0259 −0.0092 −0.0208 −0.0268 −0.0039 yl c,32 −0.0156 −0.0110 −0.0052 −0.0257 −0.0141 −0.0163 yl c,3 −0.0046 −0.0291 −0.0193 −0.0130 −0.0167 −0.0123 fTS ,32 ( l 32=0.05) ul c,232 −0.0602 −0.1107 −0.0780 −0.1081 −0.0713 −0.0484 yl c,31 −0.0037 −0.0127 −0.0134 −0.0020 −0.0092 −0.0052 yl c,32 −0.0050 −0.0064 −0.0096 −0.0064 −0.0082 −0.0083 yl c,3 −0.0053 −0.0116 −0.0094 −0.0083 −0.0078 −0.0050 fTS ,33 ( l 33=0.05) ul c,333 0.4512 0.5290 0.1056 −1.2862 −0.9391 0.8002 yl c,31 −0.1045 0.1306 −0.1123 0.1961 −0.1869 0.2330 yl c,32 −0.0183 −0.1162 0.0914 0.0075 −0.0369 0.2063 yl c,3 −0.1251 −0.0543 −0.0580 0.3157 0.1087 −0.0659

References

Related documents

∆-CT)*100] correlated in each sample, sharing the same pattern of higher full length CTLA-4 than soluble CTLA-4 mRNA, for all study groups; T1D four days after diagnosis (b), one

Figure 2.13: Membership functions of the dependent variable “quality of RMS” Therefore, the rule-based table can be obtained.. And the result is sketched in Fig. And

Hazard ratios for coronary heart disease (CHD) and CVD per 1%-unit increase in baseline HbA1c were 1.31 and 1.26 (p&lt;0.001), respectively, when adjusted for age, sex, duration

ISBN 978-91-7833-882-5 (PRINT) ISBN 978-91-7833-883-2 (PDF) http://hdl.handle.net/2077/63285 Printed by Stema Specialtryck AB, Borås. Congenital

The large retrospective cohort design study in paper IV, describing the prevalence, incidence and mortality in patients with CHD and DM over up to 87 years

Hero C, Rawshani A, Svensson A-M, Franzén S, Eliasson B, Eeg-Olofsson K, Gudbjörnsdottir S Association Between Use of Lipid-Lowering Therapy and Cardiovascular Diseases and Death

It is enough to prove the claim for a chain with three links, because we may join extra links together with theorem 20. The projections agree on such subgraphs, so we may view a

Research design and methods: PTEN and SHIP2 were immunoprecipitated from murine insulin producing βTC-6 cells and human embryonic kidney 293T cells, respectively; and the impacts