• No results found

Moisture transport in wood and wood-based panels a literature survey

N/A
N/A
Protected

Academic year: 2021

Share "Moisture transport in wood and wood-based panels a literature survey"

Copied!
85
0
0

Loading.... (view fulltext now)

Full text

(1)

Liu Tong

Moisture Transport in Wood

and Wood-based Panels —

A Literature Survey

Trätekn i kCentru m

INSTITUTET FÖR TRÄTEKNISK FORSKNING

(2)

MOISTURf TRANSPORT I N WOOD AND WOOD-BASED PANELS A l i t e r a t u r e survey TräteknikCentrum, Rapport P 8609056 Key words; diffusion free water moisture measurement moisture movement permeabi tity sorption Shockholm, November 1986

(3)

3.1.4 Bound water 3.1.3 Moment method

3.2 P e r m e a b i l i t y measurements 3.2.1 Water and non-polar l i q u i d s 5.2.2 Gases

0. SUMMARY 3 0. 1 Swedish summary - svensk sammanfattning 4

1. INTRODUCTION 3 1.1 Nomenclature 6 1.2 U n i t s 6 2. THEORETICAL BACKGROUND 7 2.1 D i f f u s i o n 8 2.1.1 Approach v/ith s o r p t i o n 9 2.1.1.1 A d s o r p t i o n and d e s o r p t i o n 9 2.1.1.2 E x t e r n a l r e s i s t a n c e i n s o r p t i o n 13 2.1.2 S t e a d y - s t a t e and dynamic d i f f u s i o n 14

2.1.3 Bound water and water vapor 15 2.1.4 Gas and vapor d i f f u s i o n 17 2.1.3 Non-isothermal m o i s t u r e d i f f u s i o n 18

2.1.6 S u c t i o n and p e n e t r a t i o n 21

2.2 P e r m e a b i l i t y 23 2.2.1 The expansion and s l i p flow o f gases 23

2.2.2 The i n f l u e n c e o f k i n e t i c energy and end e f f e c t s 24

2.2.3 S e r i e s c a p i l l a r y s t r u c t u r e i n wood 23

2.2.4 A c t i o n s o f f l u i d s on wood 23 2.3 A mathematical model as an example 26

3. MEASUREMENT TECHNIQUES 28 3.1 D i f f u s i v i t y measurements 28 3.1.1 Cup method 28 3.1.2 S o r p t i o n 28 3.1.3 Non-polar gases 29 30 30 3.1.6 Non-isothermal t r a n s p o r t 32 32 33 3.2.3 R e l a t i v e p e r m e a b i l i t y 33 3.2.4 Osmotic method 34 3.2.3 S u c t i o n and p e n e t r a t i o n 34 3.2.6 Pseudo-steady s t a t e method 35 3.2.7 Dynamic method 35 3.2.8 Computed tomography 36 3.3 Summary on measurement t e c h n i q u e s 36

(4)

4. INFLUENCING FACTORS 40

4.1 Density and species 40

4.2 Grain d i r e c t i o n 41 4.3 Temperature 41 4.4 Moisture content 42 4.5 Steaming 44 4.6 Freezing 45 4.7 M i c r o b i o l o g i c a l degradation 46 4.8 D r y i n g 46 4.9 Stress 47 4.10 Specimen t h i c k n e s s 48

5. PERMEABILITY AND DIFFUSIVITY OF WOOD BASED PANELS 50

5.1 Fundamental a n a l y s i s 50

5.2 Lehmann's work on p a r t i c l e b o a r d s and f i b e r b o a r d s 51

5.3 S c h u l t z ' and K e l l y ' s work on plywood 54

5.4 B r i s t o w ' s work on f i b e r b o a r d 56

5.5 D i f f u s i v i t y o f polymer composites 57

5.6 Comments on wood based panels 59

6. DATA ON DIFFUSIVITY AND PERMEABILITY 61

7. CONCLUSIONS 65

8. PROPOSAL FOR RESEARCH WORK ON WOOD-BASED PANELS 67

9. LITERATURE 69

This r e p o r t r e f e r s t o research grant 840970-6 from Swedish Council f o r B u i l d i n g Research t o Swedish I n s t i t u t e f o r Wood Technology Research.

(5)

Wood and wood-based panel.s f f iberhoardMi, port io loboards, plywoods) are hygroscopic m a t e r i a l s w i t h .1 complin-jtHd inner ' i t r u c t u r e . Their moi3ture content e x i s t s and moist m -^ transpuit. . ) i 1 m i i i three phases: as hound water, as vapor and as f r o e water. I h i s l i t e r a t u r e survey intends t o pay a t t e n t i o n mainly t o wood based ptrnt'ls, but dHMl-i a l s o w i t h the l i t e r a t u r - e on t l i e o r i e s and devices f o r irieas-ii i m j muisturb t i r i n s f j o r t i n wood, sinct? m o i s t u r e t r a n s p o r t i n wcod-l)asj;d panols lias tiej.-n s c a r c e l y s t u d i e d and tlie l i t e r a t u r e a v a i l a b l e i s q u i t e l i m i t e d .

M o i s t u r e moves i n wood i n the funius of d i f f u s i o n and t»ull)-flow (permeabi-l i t y ) . The d i f f u s i v i t y and permea(permeabi-lu(permeabi-liLy of wot)d or wood-(permeabi-liased pane(permeabi-ls are d i f f e r e n t f o r each moisture phase which i s d r i v e n by d i f f e r e n t f o r c e s

d u r i n g m o i s t u r e t r a n s p o r t . I n measuring tlie d i f f u s i v - i t y and p e r m e a b i l i t y of a m a t e r i a l , both s t e a d y - s t a t e and dynamic methods can be a p p l i e d . E i t h e r

l i q u i d s or gases can be used as t e s t i n g media, e.g. water, non-polar gases, a i r , n i t r o g e n and ethane e t c . With every technique or device the d i f f u s i -v i t y or p e r m e a b i l i t y of one or two m o i s t u r e phases i n a m a t e r i a l can be de-r i v e d and a combified u t i l i z a t i o n of s e v e de-r a l metluids can give d i f f u s i v i t y and p e r m e a b i l i t y of a l l t h r e e moisture phases. L.g. m o i s t u r e a d s o r p t i o n or d e s o r p t i o n of specimens can be a p p l i e d to determine the d i f f u s i v i t y of com-bined bound water and water vapor movement. With the technique of l i q u i d flow or gas f l o w , p e r m e a b i l i t y can be measured. The method w i t h non p o l a r gases i s s u i t a b l e f o r measuring the d i f f u s i v i t y of vapor through a i r - f i l l e d c a p i l l a r i e s .

D i f f u s i v i t y and p e r m e a b i l i t y of wood and wood-based panels are i n f l u e n c e d by s e v e r a l f a c t o r s , u s u a l l y i n c r e a s i n g w i t h temperature, m o i s t u r e content or r e l a t i v e humudity of t h e a i r , and d e c r e a s i n g w i t h den:,ity of specimens. Presteaming, f r e e z i n g or m i c r o b i o l o g i c a l d e g r a d a t i o n of wood m a t e r i a l a l l r e s u l t i n an increased p e r m e a b i l i t y .

Each type of wood-based panel has some p e c u l i a r i t i e s . I n f i b e r b o a r d s and p a r t i c l e b o a r d s m o i s t u r e i s t r a n s p o r t e d more as water vapor through i n t e r -p a r t i c l e c a -p i l l a r i e s and less as bound water. For -plywood b o i l i n g and p e e l i n g of wood i n i t s manufacturing process s o f t e n the m a t e r i a l , but glue l i n e s which j o i n t the veneer and p a r t i a l l y f i l l the lumens of wood can lead to a s t r o n g hinderance to vapor and f r e e water movement, causing a l a r g e r p r o p o r t i o n of bound water t r a n s p o r t . The d e n s i t y , amount and type of adhesive as w e l l as a d d i t i v e s , a f t e r - t r e a t m e n t and surface c o a t i n g are the s p e c i a l f a c t o r s which i n f l u e n c e the f ) e r m a b i l i t y and d i f f u s i v i t y of wood-based panels.

The i n t e n t i o n w i t l i t i n s survey i s t o form a basis f o r f u t u r e work on de-t e r m i n i n g de-the moisde-ture de-t r a n s p o r de-t in d i f f de-t ^ r e n de-t de-types of wood-based panels. A proposal f o r rosea roll work i s t l i e r e f o r e presented.

(6)

Trä och träbaserade s k i v o r är hygroskopiska m a t e r i a l med en komplicerad i n -re s t r u k t u r . Deras fuktinnehåll f i n n s i t r e o l i k a f a s e r , som bundet v a t t e n , som vattenånga och som f r i t t v a t t e n . Denna l i t t e r a t u r s t u d i e avser främst träbaserade s k i v o r , men behandlar också massivt trä, eftersom det f i n n s få s t u d i e r om f u k t t r a n s p o r t i träbaserade s k i v o r .

Fukt vandrar i trä och träbaserade m a t e r i a l genom d i f f u s i o n och massflöde ( p e r m e a b i l i t e t ) . Denna vandring sker på o l i k a sätt i de o l i k a f u k t f a s e r n a . O l i k a provmetoder kan också användas, där vätskor e l l e r gaser används som transportmedium. Därvid kan d i f f u s i o n e l l e r p e r m e a b i l i t e t för en e l l e r f l e -r a f a s e -r bestämmas. Kombination av o l i k a mätteknike-r kan ge de t -r e fase-rnas d i f f u s i v i t e t och p e r m e a b i l i t e t som är nödvändiga för en fullständig b i l d av f uktförloppen.

F u k t t r a n s p o r t e n påverkas av f l e r a o l i k a f a k t o r e r , t ex fuktinnehåll e l l e r l u f t e n s r e l a t i v a f u k t i g h e t , temperatur, d e n s i t e t , t j o c k l e k , t o r k n i n g och n e d b r y t n i n g .

V a r j e s k i v t y p har v i s s a särdrag. I f i b e r s k i v o r ocli spånskivor sker f u k t -t r a n s p o r -t e n mer som va-t-tenånga och mindre som bunde-t v a -t -t e n . I plywood har t i l l v e r k n i n g s p r o c e s s e n mjukat upp m a t e r i a l e t hos träet, men l i m f o g a r n a agerar som späragerar för vattenånga och f r i t t v a t t e n . En s t o r d e l av f u k t t r a n s -p o r t e n i -plywood sker därför genom bundet v a t t e n . Andra f a k t o r e r är också b e t y d e l s e f u l l a för f u k t t r a n s p o r t e n i o l i k a s k i v o r , t ex l i m t y p , t i l l s a t s e r , y t b e h a n d l i n g .

S y f t e t med denna Översikt är a t t ge underlag för s t u d i e r av f u k t t r a n s p o r t i o l i k a s k i v t y p e r . F t t förslag t i l l program ges i s l u t e t av r a p p o r t e n .

(7)

The alm of t h i s survey i s fociis>^il (jn mo i r, 11 i f f ti-anspuit i n wood-based pa-n e l s , which may be a probleii. i pa-n b pa-n i h l i pa-n i ) fipjiI Lcat iopa-ns. New b u i l d i pa-n g

techniques w i t h t h i c k e r and lunrt:' t i g h t w a l l s become more dependent on a b e t t e r basic knowledge of Mu d i f f e r e n t b u i l d i n g components. I t i s espec i a l l y i m p o r t a n t t o know tlie im^'espechanisms f o r moisture t r a n s p o r t t o a v o i d l o -cal accumulation of moisture w i t h i n a b u i l d i n g c j m s t r u c t i o n (Sandberg 1973, Sherwood 1977, V e r a l l 1962, Nevander ar.d I linar^.jon 1981).

However, very few s t u d i e s are r e l a t e i J t u moisture trans|)ort i n wood-based panels. This survey w i l l t h e r e f o r e a l s o cover moisture t r a n s p o r t i n wood more g e n e r a l l y i n order t o get a background f o r f u t u r e work on wood-based panels. I t i s mainly l i m i t e d t o t h e o r i e s and methods f o r s t e a d y - s t a t e and i s o t h e r m a l t r a n s p o r t of m o i s t u r e , which i s the basis f o r p r e d i c t i n g and mo-d e l l i n g a l s o mo-dynamic ( u n s t e a mo-d y - s t a t e ) anmo-d non-isothermal moisture t r a n s p o r t behaviour t h a t occurs i n p r a c t i c e i n b u i l d i n g c o n s t r u c t i o n s . But these as-pects are not so developed y e t .

Wood-based panels have w i d e l y d i f f e r e n t p r o p e r t i e s depending on e.g. raw m a t e r i a l s , m a n u f a c t u r i n g process, a d d i t i v e s and adiiesives. The basic types are plywood, p a r t i c l e boards and f i b e r boards. P r o p e r t i e s l i k e v a r y i n g dens i t y , pore dens t r u c t u r e and dens u r f a c e q u a l i t y may probably i n f l u e n c e t h e i r a b i

-l i t y t o t r a n s p o r t m o i s t u r e . Basic handbooks (e.g. Nevander and F-lmarsson 1981) and reviews (e.g. Andersson J985) c o n t a i n l i t t l e i n f o r m a t i o n on mois-t u r e mois-t r a n s p o r mois-t i n wood and d i f f e r e n mois-t wood-based panels.

M o i s t u r e t r a n s p o r t i s u s u a l l y discussed i n terms of d i f f u s i v i t y ( d i f f u s i o n c o e f f i c i e n t ) and p e r m e a b i l i t y . Ihese p r o p e r t i e s have been e x t e n s i v e l y

s t u d i e d f o r wood s i n c e they i n f l u e n c e the impregnation of wood, timber d r y i n g e t c . New advances (Rosen 1985) and a textbook ( .iau 1984) are r e c e n t l y p u b l i s h e d . A l i t e r a t u r e study was a l s o made ( B e r t e l s e n 1982). A r i -gorous understanding of the f l o w p r o p e r t i e s of wood, however, has not been reached yet s i n c e wood i s a b i o l o g i c a l m a t e r i a l of v a r i a b l e s t r u c t u r e and the t r a n s p o r t mechanisms very c o m p l i c a t e d .

G e n e r a l l y i t i s recognized t h a t m o i s t u r e t r a n s p o r t through wood, which i s a hygroscopic m a t e r i a l , i n v o l v e s t h r e e mechanisms:

1) vapor movement through c e l l lumens and p i t c a v i t i e s ; 2) bound water movement through the c e l l w a l l s ;

3) f r e e water movement a l s o through c e l l lumens and p i f c a v i t i e s , but i n a l i q u i d form.

In p r e d i c t i n g o r a n a l y z i n g m o i s t u r e m i g r a t i o n through l i u i l d i n g w a l l s a knowledge of d i f f u s i v i t y and p e r m e a b i l i t y of each l a y e r (^ofistituent mater i a l s i s always e s s e n t i a l , w h i mater h can be .jeen e.g. i n n moiiel f o mater c a l c u l a -t i n g -the m o i s -t u r e -t r a n s p o r -t i n w.ills presen-ted by l»*nwalde ( 1982) and -the a r t i c l e by Q u i r o u e t t e (19H'0.

This survey reviews the theurt;! i i « I h a t - k g i oun i , ava i I - i h 1»-; iiir^asuring t e c h -niques and present knowleilge f'- r su'-'i an appr i m J i . ) ! • ^ I MI and v/ond-tia'5i:d

(8)

A Specimen area p e r p e n d i c u l a r t o moisture f l o w

C Moisture c o n c e n t r a t i o n (kg moisture per m-' wet wood) D D i f f u s i v i t y

Db Bound water d i f f u s i v i t y Dv Water vapor d i f f u s i v i t y

Dt D i f f u s i v i t y i n the t r a n s v e r s e d i r e c t i o n of wood E E r a c t i o n a l moisture content change of a specimen

d u r i n g s o r p t i o n

Eh A c t i v a t i o n energy of bound water r Elux of moisture G S p e c i f i c g r a v i t y h R e l a t i v e h u m i d i t y K P e r m e a b i l i t y Ks S p e c i f i c p e r m e a b i l i t y L Specimen t h i c k n e s s i n the f l o w d i r e c t i o n

M Moisture content (kg moisture per kg dry wood) Mi I n i t i a l moisture c o n t e n t as s o r p t i o n s t a r t s Mm f i n a l moisture content as s o r p t i o n ceases Mt Moisture content at time t d u r i n g s o r p t i o n Mw Molecular weight of water

N Number of pores per u n i t area i n a specimen P Pressure AP Pressure d i f f e r e n c e P Average pressure m-^ kq/m^ m2/s m2/s m2/s m2/s J/mol kg/m2 m2/Pa s m2 m kg/kg kg/kg kg/kg kg/kg kg/mo1 Pa Pa Pa

Q Volume of f l u i d f l o w i n g through or i n t o a specimen R Gas c o n s t a n t

r Mean r a d i u s of pores i n specimen T Temperature t Time u P o r o s i t y X Distance r] V i s c o s i t y JLi Chemical p o t e n t i a l o- Surface t e n s i o n 8 Contact angle m-^ Pa mVmol. K m K s m Pa.s J/mol N/m rad

NOTE: Some nomenclature are e x p l a i n e d i n the i n t i m a t e c o n t e x t of the r e l e v a n t equations and u n l i s t e d here.

1.2 U n i t s

U n i t s i n t a b l e s and on a x i s of diagrams are i n some cases m u l t i p l i e d by a f a c t o r 10"^- This means t h a t the data i n e.g. a column of such a t a b l e s h a l l be d i v i d e d by lOn t o get the c o r r e c t order of magnitude.

(9)

As the c e l l u l a r wood f i b r e s are almost e n t i r e l y o r i e n t e d i n the l o n g i t u d i n a l d i r e c t i o n of t r e e stems and as the d i s t r i b u t i o n and s t r u c t u r e of d i f f e r e n t types of c e l l s are u s u a l l y somewhat d i f f e r e n t i n the r a d i a l and t a n g e n t i a l d i r e c t i o n s o f t r e e stems, wood possesses d i f f e r e n t t h e r m a l , moisture-con-d u c t i v e anmoisture-con-d mechanical p r o p e r t i e s i n l o n g i t u moisture-con-d i n a l , r a moisture-con-d i a l anmoisture-con-d t a n g e n t i a l d i r e c t i o n s . The r a d i a l and t a n g e n t i a l p r o p e r t i e s are o f t e n s i m i l a r and r e -f e r r e d to as t r a n s v e r s e p r o p e r t i e s .

Water e x i s t s i n wood i n three d i f f e r e n t forms: as water bound w i t h hydrogen bonds t o c e l l u l o s e m a t e r i a l s i n s i d e and on c e l l w a l l s and thus w i t h h i g h e r d e n s i t y than l i q u i d water; as f r e e water and as water vapor, which both occurs i n c e l l lumens and p i t pores. Below the f i b e r s a t u r a t i o n p o i n t

( u s u a l l y 30% m o i s t u r e c o n t e n t ) , which corresponds to e q u i l i b r i u m w i t h a i r a t 100 % r e l a t i v e h u m i d i t y , t h e r e are only bound water and water vapor i n wood. Free ( l i q u i d ) water comes about when the moisture c o n t e n t i s higher

than the f i b e r s a t u r a t i o n p o i n t .

I n tnoisture t r a n s p o r t bound water moves through the c e l l w a l l s d r i v e n by m o i s t u r e c o n c e n t r a t i o n d i f f e r e n c e below the f i b e r s a t u r a t i o n p o i n t , water vapor moves through c e l l lumens and p i t c a v i t i e s due t o p a r t i a l vapor p r e s sure d i f f e r e n c e below the f i b e r saturat"ioti p o i n t and f r e e water i s t r a n s -p o r t e d through c e l l lumens and -p i t c a v i t i e s above f i b e r s a t u r a t i o n -p o i n t by c a p i l l a r y pressure d i f f e r e n c e . Bound water and vapor movement i n wood i s regarded as a d i f f u s i o n process, w h i l e f r e e water flow i s a bulk flow de-s c r i b e d ade-s p e r m e a b i l i t y . They f o l l o w d i f f e r e n t lawde-s and move d i f f e r e n t l y i n wood s t r u c t u r e s .

D i f f u s i o n i s the spontaneous movement of one m a t e r i a l i n another from a zone of h i g h e r c o n c e n t r a t i o n to a zone of lower c o n c e n t r a t i o n , u s u a l l y w i t h the system under a constant pressure. The r a t e of d i f f u s i o n s i s represented by d i f f u s i v i t y ( d i f f u s i o n c o e f f i c i e n t ) . P e r m e a b i l i t y ia a measure of the ease w i t h which a f l u i d flows through a porous m a t e r i a l m o t i v a t e d by a pressure d i f f e r e n c e . I f c o n c e n t r a t i o n and pressure d i f f e r e n c e s occur s i m u l -t a n e o u s l y , bo-th d i f f u s i o n and p e r m e a b i l i -t y c o n -t r i b u -t e -t o -the f l u i d move-ment. I t must be emphasized t h a t i n many s c i e n t i f i c areas d i f f u s i o n i s more g e n e r a l l y d e f i n e d , and sometimes encompasses the realm of [ j e r m e a b i l i t y . The laws d e s c r i b i n g d i f f u s i o n and p e r m e a b i l i t y are F i c k ' s laws and Darcy's law.

F i c k ' s f i r s t law ( f o r s t e a d y - s t a t e d i f f u s i o n ) :

F i c k ' s second law ( f o r dynamic d i f f u s i o n ) :

(10)

cable:

8 ^ 1 (4) P o i s e u i l l e ' s law can a c t u a l l y be regarded as Darcy's law expressed from the

s t a n d p o i n t of pore s t r u c t u r e . When i t i s combined w i t h Darcy's law, the mean r a d i u s of the c a p i l l a r i e s can be c a l c u l a t e d .

In l e s s hygroscopic m a t e r i a l s as most i n o r g a n i c porous b u i l d i n g m a t e r i a l s l i k e b r i c k s , porous concretes and rocks, t h e r e are a l s o t h r e e moisture phases, but the mobile bound water, known as evaporable water, e x i s t s only on the pore w a l l s and i s t h e r e f o r e much less than i n wood m a t e r i a l s and

un-important. Bound water movement i n such m a t e r i a l s can be d i s r e g a r d e d and the whole moisture t r a n s p o r t c o n s i s t s of water vapor and c a p i l l a r y con-densed l i q u i d water movement, which can u s u a l l y be d e p i c t e d by a s i n g l e d r i v i n g p o t e n t i a l ( A h l g r e n , 1972; Bazant, 1972; N i l s s o n , 1980). I n tliese b u i l d i n g m a t e r i a l s r e l a t i v e h u m i d i t y i n s i d e the m a t e r i a l or chemical potent i a l i s used i n s potent e a d of moispotenture c o n potent e n potent i n potenthe research of moispotenture d i f f u -s i o n becau-se i t i -s e a -s i e r t o mea-sure (Adam-son and Gaffner, 1972).

For wood and wood products moisture content i s e a s i e r t o measure than r e l a -t i v e h u m i d i -t y i n s i d e -the m a -t e r i a l s . However, mois-ture con-ten-t and r e l a -t i v e h u m i d i t y are l i n k e d through s o r p t i o n h y s t e r e s i s isotherms and can be con-v e r t e d from one t o another. Moisture content ( u s u a l l y k i l o g r a m of water per k i l o g r a m oven-dry wood) and moisture c o n c e n t r a t i o n ( k i l o g r a m of water per cubic meter of wet wood) can be considered as p r o p o r t i o n a l w i t h only neg-l e g i b neg-l e inaccuracy, they can be useti e q u i v a neg-l e n t neg-l y (but not e q u a neg-l neg-l y ) i n v a r i o u s expressions.

I n s y n t h e t i c non-porous polymers ( p l a s t i c s ) and t h e i r composits w i t h glass or g r a p h i t e f i b e r s , bound water alone moves.

The p a t t e r n of moisture movement i n wood m a t e r i a l s i s t h e r e f o r e more com-p l i c a t e d . A t t e n t i o n should be com-p a i d t o d i f f e r e n t moisture com-phases and how each of them i s a f f e c t e d by v a r i o u s v a r i a b l e s i n a n a l y z i n g moisture t r a n s -p o r t d u r i n g d i f f e r e n t c o n d i t i o n s . Such a n a l y s i s w i l l lay a sound basis f o r the comprehension of the o v e r a l l moisture movement t h a t alone i s s i g n i f i -cant and considered i n p r a c t i c e .

The laws presented above are only basic ones. I n p r a c t i c a l measurements and c a l c u l a t i o n s q u i t e d i f f e r e n t equations which are f u r t h e r developed are u s u a l l y a p p l i e d . A b r i e f p r e s e n t a t i o n i s given below:

2.1 D i f f u s i o n

E a r l y s t u d i e s of moisture d i f f u s i o n i n wood were done by l u t t l e (192';'); e t c . They s t u d i e d wood d i f f u s i v i t y d u r i n g d r y i n g by s o l v i n g F i c k ' s law ana-l y t i c a ana-l ana-l y i n d i f f e r e n t ways w i t h o u t n o t i c i n g t h a t wood d i f f u s i v i t y changeii w i t h moisture c o n t e n t and temperature, a negligence which was noun rc^j/1 fi-nished by o t h e r researchers, d i s t i n g u i s h a b l y by Stamm. D i f f u s i o n i-.-. tlic only mean of wood moisture t r a n s p o r t i n most p r a c t i c a l circumstances, an(i

(11)

cess. The reason can be seen i n t h e s e c t i o n S u c t i o n and P e n e t r a t i o n of t h i s survey, chapter 2.1.6.

2.1.1 Approach w i t h s o r p t i o n 2.1.1.1 A d s o r p t i o n and d e s o r p t i o n

I t might be Prager and Long (1951) who f i r s t v e r i f i e d t h e a p p l i c a b i l i t y o f s o r p t i o n process ( i n c l a d s o r p t i o n and d e s o r p t i o n ) of a gaseous f l u i d i n t o

or out o f a s o l i d f o r t h e measurement o f d i f f u s i v i t y . This method has gene-r a l l y been used by chemists on polymegene-rs, composite m a t e gene-r i a l s e t c (Kates and Long, 1953; Bagley and Long, 1955; Shen and S p r i n g e r , 1976; Bonniau and B u r n s e l l , 1981; e t c ) and on measuring wood d i f f u s i v i t y i n d i f f e r e n t man-n e r s . (Stamm, 1960a, b; Chooman-ng, 1963; Comstock, 1963; B i g g e r s t a f f , 1965; Choong 1965 and 1969; Prichananda 1966; Stamm 1967b; McNamara and H a r t , 1971; Koponen, 1984.)

The e q u a t i o n mostly used i n s o r p t i o n method i s known as Newmann's form of Pick's law;

D

/6 t (5)

where E = (M^-M^)/(M^-Mj^) i s t h e f r a c t i o n o f a o r p t i v e moisture g a i n ( o r l o s s ) a t time t . The e q u a t i o n i s a v a i l a b l e only when E i s l e s s than 0.66. L i s t h e t h i c k n e s s of t h e specimen a l o n g which u n i d i r e c t i o n a l d i f f u s i o n occurs.

Equation ( 5 ) i s d e r i v e d from t h e i n i t i a l l i n e a r p a r t o f t h e s o r p t i o n curve ( f i g u r e 1 ) .

f i g u r e 1. The curve of moisture gain o r l o s s o f a specimen d u r i n g moisture s o r p t i o n versus the square r o o t o f t i m e .

4t

The whole s o r p t i o n curve i s d e p i c t e d by an equation developed d i r e c t l y from Pick's law under s o r p t i o n a l c o n d i t i o n s :

(12)

For Ot/u*- > 0.05 the equation reduces t o

For E l e s s than 0.66 the s o r p t i o n i s r a t h e r a c c u r a t e l y d e s c r i b e d by Eq.(5). Some researchers a p p l i e d Eq.(7) f o r measuring d i f f u s i v i t y under the c o n d i -t i o n E l a r g e r -than 0.4, bu-t Eq.(5) have been much more popular owing -t o i -t s s i m p l i c i t y . I f Eq. (5) and Eq. ( 7 ) are a p p l i e d below and above E = 0.5 r e s p e c t i v e l y , t h e d i f f u s i v i t y d u r i n g t h e whole s o r p t i o n process can be d e t e r -mined.

Wood s o r p t i o n method has been used e i t h e r as a d s o r p t i o n by p l a c i n g s p e c i -mens of low moisture content i n high r e l a t i v e h u m i d i t y or as d e s o r p t i o n by d r y i n g specimens t o a lower moisture c o n t e n t . The r e l a t i v e h u m i d i t y and temperature of the ambient a i r must be constant and, most important of a l l , the moisture content of the specimen should not be above the f i b e r s a t u r a -t i o n p o i n -t . Then bound wa-ter and wa-ter vapor move s i m u l -t a n e o u s l y i n -t o or out of the specimens and the d i f f u s i v i t y measured belongs t o the combined bound water and vapor movement.

During the process of a d s o r p t i o n , some secondary l i n k a g e s i n wood m a t e r i a l break down, producing more s o r p t i v e s i t e s t h a t give wood m a t e r i a l a h i g h e r e q u i l i b r i u m moisture content i n d e s o r p t i o n than i n a d s o r p t i o n a t each r e l a t i v e h u m i d i t y , which i s known as h y s t e r e s i s e f f e c t . The e x t e n t of h y s t e r e -s i -s and the mean e q u i l i b r i u m moi-sture content decrea-se w i t h i n c r e a -s i n g tem-p e r a t u r e due t o decreased s o r tem-p t i v e s i t e s . The e q u i l i b r i u m a d s o r tem-p t i o n a l moisture content i s 0.84 time s m a l l e r than the corresponding e q u i l i b r i u m d e s o r p t i o n a l moisture c o n t e n t a t d i f f e r e n t r e l a t i v e h u m i d i t i e s .

Owing t o the h y s t e r e s i s e f f e c t , the d i f f u s i v i t y measured w i t h a d s o r p t i o n i s s m a l l e r than d i f f u s i v i t y measured w i t h d e s o r p t i o n , but t h e i r p r o p o r t i o n s h o u l d be somehow d e f i n i t e . The average of a d s o r p t i o n a l and d e s o r p t i o n a l d i f f u s i v i t y can normally be used i n p r a c t i c e (Newns, 1956; Watt, 1960; Bramhall, 1971).

D i f f u s i v i t y of m o i s t u r e increases r e g u l a r l y w i t h an increase i n temperature or moisture content of wood. The e f f e c t i v e temperature of wood specimens d u r i n g s o r p t i o n i s not equal t o the ambient a i r due t o e v a p o r a t i o n heat taken away d u r i n g d e s o r p t i o n ( d r y i n g ) and condensation heat deposited i n specimens d u r i n g a d s o r p t i o n . But t h i s e f f e c t , u n l i k e i n the case of the v i o l a n t process of k i l n d r y i n g , i s small because of t h e slow r a t e of mois-t u r e s o r p mois-t i o n and has g e n e r a l l y been neglecmois-ted.

For the e f f e c t of moisture content change on d i f f u s i v i t y i n s o r p t i o n pro-cess, the s i t u a t i o n i s d i f f e r e n t . Eq.(5) i s a v a i l a b l e on the basis t h a t the s u r f a c e s of wood specimens come i n t o e q u i l i b r i u m w i t h ambient a i r imme-d i a t e l y , animme-d the moisture content i n the core has not changeimme-d a p p a r e n t l y .

(13)

McNamara and Hart (1971) proposed t h a t t h e more p r e c i s e mean d i f f u s i v i t y corresponding t o each s m a l l m o i s t u r e content range (Mt, Mt+ J^H) could be d e r i v e d by d i f f e r e n t i a t i n g Eq.(5):

The same d e d u c t i o n f o r Eq.(7) i s :

D = _ J ^ ^ ( 9 )

Eq.(8) and Eq.(9) can be a p p l i e d f o r E l e s s and l a r g e r than 0.5 respec-t i v e l y .

A t h e o r e t i c a l l y p r e c i s e c a l c u l a t i o n o f s o r p t i o n a l d i f f u s i v i t y can be de-r i v e d i n anothede-r mannede-r. The d i f f u s i v i t y measude-red accode-rding t o

Eq.(5) i s t h e mean value D i n t h e moisture content range (Mi, Mm). By d e f i -n i t i o -n , i t s r e l a t i o -n t o t h e exact d i f f u s i v i t y D i s

(10)

When we have known t h e change r a t e o f D t o Mm v i a some measurements, t h e exact d i f f u s i v i t y a t Mm w i l l be:

D(M^) — Dt f ^^'^i

( 1 1 )

Eq.(5) was d e r i v e d on t h e b a s i s o f constant sample t h i c k n e s s . Stamm (1956) s t u d i e d t h e d i f f u s i v i t y o f moisture i n cellophane and found t h a t i t s t h i c k -ness c o u l d vary over 100% between t h e s w o l l e n and oven-dry c o n d i t i o n s . He proved t h a t i n such a case, Eq.(5) s h o u l d be m o d i f i e d t o t a k e t h e t h i c k n e s s

v a r i a t i o n i n t o account as:

^ = / 6 " C^t

76"

C/t (^2)

where s i s t h e f r a c t i o n a l s w e l l i n g and Lo i s t h e i n i t i a l t h i c k n e s s .

The s w e l l i n g o f wood i s l e s s t h a n 13%, so i t s e f f e c t on d i f f u s i v i t y has not been accounted f o r . But f o r some wood—based panels, t h e t h i c k n e s s s w e l l i n g i s r e l a t i v e l y l a r g e i n a d s o r p t i o n and might have t o be considered.

I n another a p p l i c a t i o n o f s o r p t i o n method (Skaar, 1958; Koponen, 1984), t h e specimens a r e taken o u t from t h e s o r p t i o n chamber and sawn i n t o t h i n sheets p e r p e n d i c u l a r t o t h e m o i s t u r e d i f f u s i o n d i r e c t i o n ( a l l t h e o t h e r specimen s u r f a c e s a r e s e a l e d ) as shown i n f i g u r e 2. Each sheet i s weighed subse-q u e n t l y t o measure t h e m o i s t u r e d i s t r i b u t i o n . The moisture d i s t r i b u t i o n can a l s o be determined w i t h X-ray (tomography) or 7 -ray w i t h o u t d e s t r o y i n g t h e specimens.

(14)

f i g u r e 2. Sawn p a t t e r n of wood specimens i n s o r p t i o n method. A f t e r moisture content d i s t r i b u -t i o n i s measured by weighing, d i f f u s i v i t y can be c a l c u l a t e d a t any moisture c o n t e n t . (Koponen, 1984.)

As the moisture d i s t r i b u t i o n curve ( f i g u r e 3) changes from t j ^ t o t 2 (which can be o b t a i n e d by s o r p t i o n of two i d e n t i c a l specimens a t time t j ^ and t 2 r e s p e c t i v e l y ) t h e exact d i f f u s i v i t y a t the moisture content corresponding t o moisture c o n c e n t r a t i o n C can be d e r i v e d from t h e f o l l o w i n g equation which i s i n t e g r a t e d from Pick's second law.

(13) M a r t i n and Moschler (1970) presented a s i m i l a r approach f o r d i f f u s i v i t y c a l c u l a t i o n w i t h s o r p t i o n method.

f i g u r e 3. Moisture d i s t r i b u t i o n i n wood specimen d u r i n g adsorp-t i o n and d e s o r p adsorp-t i o n a adsorp-t adsorp-time adsorp-t j ^ and

(15)

2.1.1.2 E x t e r n a l r e s i s t a n c e i n s o r p t i o n

I n s o r p t i o n process, s u r f a c e s of t h e t e s t samples are assumed t o reach moisture e q u i l i b r i u m w i t h s u r r o u n d i n g a i r as soon as they have been placed i n a t e s t chamber and t h e r e i s no r e s i s t a n c e f o r moisture t r a n s p o r t i n the s u r f a c e s . But i n r e a l i t y , t h e r e does e x i s t r e s i s t a n c e on sample s u r f a c e which i s described w i t h s u r f a c e e m i s s i v i t y .

The d i f f u s i v i t y measured w i t h s o r p t i o n according t o E q . ( 5 ) , Eq.(7) and f i g u r e 1 should t h e r e f o r e be e n t i t l e d as apparent d i f f u s i v i t y because i t i s c o n t r i b u t e d from two r e s i s t a n c e s : t h e i n t e r n a l r e s i s t a n c e o r i g i n a t e d from the sample s t r u c t u r e i t s e l f , and t h e e x t e r n a l r e s i s t a n c e caused by the a i r boundary l a y e r adjacent t o t h e sample s u r f a c e . Ogura e t a l (1957) found t h a t f o r wood specimens o f Chamaecyparis Obtus, t h e e x t e r n a l r e s i s t a n c e i n s t i l l a i r i n l o n g i t u d i n a l d i r e c t i o n was e q u i v a l e n t t o t h e r e s i s t a n c e of 2.50 cm of specimen l e n g t h , and i n t r a n s v e r s e d i r e c t i o n t o 1.10 cm. E x t e r -nal r e s i s t a n c e i s represented by s u r f a c e e m i s s i v i t i e s , which i s d e f i n e d as

s =

(14)

where a i s the moisture f l u x f l o w i n g through t h e specimen s u r f a c e , Ca and Ce a r e moisture c o n c e n t r a t i o n s a t the s u r f a c e of specimen and of t h e am-b i e n t a i r r e s p e c t i v e l y . I f D i s t h e d i f f u s i v i t y o f t h e sample r e f l e c t i n g i n t e r n a l r e s i s t a n c e , 5 t h e s u r f a c e e m i s s i v i t y r e f l e c t i n g t h e e x t e r n a l r e s i s t a n c e , and D* t h e apparent d i f f u s i v i t y , t h e r e a r e r e l a t i o n s h i p s (Newmann's e q u a t i o n , 1931):

- ^ ^ - ^ - t - f - (13)

20to.s l_ , ? — D ^ 5/- (16)

Here t g 5 i s h a l f s o r p t i o n a l time corresponding t o E = 0 . 5 i n E q . ( 5 ) and Eq.(7).*

D i f f u s i v i t y and s u r f a c e e m i s s i v i t y can e a s i l y be c a l c u l a t e d from the equa-t i o n s above i f s e v e r a l apparenequa-t d i f f u s i v i equa-t y D* or h a l f dry equa-time of equa-t h e same m a t e r i a l w i t h two d i f f e r e n t thicknesses are measured.

For s o r p t i o n method described by F i g u r e 2, F i g u r e 3, and Eq.(13), t h e mea-sured data f o r c a l c u l a t i n g d i f f u s i v i t y can r e a d i l y be u t i l i z e d t o d e r i v e s u r f a c e e m i s s i v i t y :

.^ÉLSÉSI.S^ (17)

dt C.-Ce

(16)

E x t e r n a l r e s i s t a n c e i n wood a d s o r p t i o n and d e s o r p t i o n ( d r y i n g ) were also s t u d i e d by Choong e t a l (1969), Bazant (1972), and Rosen (1979). Rosen proved from wood d r y i n g t e s t s , t h a t s u r f a c e e m i s s i v i t y i s s t r o n g l y a f f e c t e d by a i r v e l o c i t y over t h e s u r f a c e up t o 3 m/s and t h e angle between a i r vel o c i t y and wood g r a i n . The r e vel a t i v e importance o f e x t e r n a vel r e s i s t a n c e i n -creases as sample t h i c k n e s s or a i r v e l o c i t y decrease. I n t h e case water s o r p t i o n process i s r e l a t i v e l y slow ( u n l i k e wood k i l n d r y i n g ) and t h e r e i s an a i r c i r c u l a t i o n i n t e s t chamber, the s u r f a c e e m i s s i v i t y has o f t e n been neglected and the measured apparent d i f f u s i v i t y regarded as t r u e d i f f u s i -v i t y .

2.1.2 Steady-state and dynamic d i f f u s i o n

The s o r p t i o n process i n d e t e r m i n i n g d i f f u s i v i t y i s a dynamic (unsteady-s t a t e ) one, (unsteady-s i n c e moi(unsteady-sture content i n (unsteady-specimen(unsteady-s change(unsteady-s a l l t h e t i m e . A(unsteady-s a c o u n t e r p a r t t h e r e are s t e a d y - s t a t e methods t o measure d i f f u s i v i t y , the mostly used is-tKccup method (vapometer).

I n o r d i n a r y cup method, t h e atmospheres on t h e two s i d e s of specimen are c o n t r o l l e d and kept a t two d e f i n i t e r e l a t i v e h u m i d i t i e s , moisture

d i f f u s i o n r a t e and moisture content i n t h e specimens are s t a b l e . With a cup method, t h e measured d i f f u s i v i t y i s a mean value corresponding t o a mois-t u r e conmois-tenmois-t range i n mois-t h e specimen. The exacmois-t d i f f u s i v i mois-t y can be c a l c u l a mois-t e d w i t h E q . ( l l ) : By s e t t i n g t h e atmosphere a t constant r e l a t i v e humidity on one specimen s i d e and changing s u c c e s s i v e l y on t h e o t h e r s i d e i n a s e r i e s of measurements, t h e exact d i f f u s i v i t y can be d e r i v e d from average d i f f u s i -v i t y and i t s change r a t e w i t h moisture content on one specimen s u r f a c e . But i t can a l s o be obtained w i t h a somewhat more d i r e c t approach by measuring the f l u x change w i t h t h e successive moisture content change on one specimen s i d e (Bazant, 1972):

where M i s the s u r f a c e moisture content i n e q u i l i b r i u m w i t h t h e successively changing r e l a t i v e h u m i d i t y .

In t h e cup method t h e a i r space between t h e s u r f a c e s of t h e specimen and s a t u r a t e d s a l t s o l u t i o n a l s o r e s i s t s moisture d i f f u s i o n . Newns (1950) p r o -vided two means t o measure t h e r e s i s t a n c e : Keep t h e a i r space constant and measure t h e d i f f u s i v i t y o f one, two l a y e r s of i d e n t i c a l specimen respec-t i v e l y , or change respec-t h e d i s respec-t a n c e of respec-t h e a i r space berespec-tween respec-the s u r f a c e s of respec-t h e specimen and the s o l u t i o n w i t h one l a y e r of specimen. T v e i t (1966) and Siau

(1984, P.171) presented methods t o c a l c u l a t e t h e r e s i s t a n c e i n t h e cup d i -r e c t l y w i t h o u t change i n t h e t e s t s e t .

Cup method, l i k e s o r p t i o n method, has been e x t e n s i v e l y used by wood r e -searchers, f o r l i t e r a t u r e , see chapter 3.1.1. There are many v a r i a t i o n s o f cup methods. E.g. specimens can be placed between two channels through which a i r of two constant r e l a t i v e h u m i d i t i e s f l o w s (more s e n s i t i v e i f one i s s e t a t z e r o ) , o r one channel i s evacuated. I n t h e l a t t e r case, bulk flow and d i f f u s i o n occur s i m u l t a n e o u s l y . But i f the r e l a t i v e h u m i d i t y of a i r i n the channels changes w i t h time a t a c e r t a i n r a t e , t h e cup method w i l l be t u r n e d t o a dynamic one.

(17)

The advantage of the s t e a d y - s t a t e cup method i s t h a t the r e l a t i v e h u m i d i t y i n t h e t e s t can be c o n t r o l l e d t o change s u c c e s s i v e l y w i t h h i g h accuracy, thus o b t a i n i n g t h e p r e c i s e d i f f u s i v i t y - m o i s t u r e content r e l a t i o n w i t h great c e r t a i n t y . But the t e s t u s u a l l y takes a l o n g t i m e , o f t e n s e v e r a l months f o r one r u n , and thus i n c r e a s i n g t h e c o m p l e x i t y i n c o n t r o l l i n g the device w i t h necessary accuracy. The advantage of dynamic s o r p t i o n method i s t h a t i t takes much l e s s time, u s u a l l y one to t h r e e weeks f o r one r u n , and the de-v i c e as w e l l as t h e method i s s i m p l e r . The inaccuracy i n the measurement i s t h e r e f o r e a l s o s m a l l e r , a l t h o u g h t h e c a l c u l a t i o n i s more c o m p l i c a t e d . Near-ly a l l s t e a d y - s t a t e methods and device can a l s o be used f o r dynamic mea-surements^ i t can always save experiment time, but cause g r e a t e r complica-t i o n i n d i f f u s i v i complica-t y c a l c u l a complica-t i o n .

There i s some discrepancy i n t h e measured d i f f u s i v i t y w i t h s t e a d y - s t a t e and dynamic methods. I n t h e dynamic method, t h e moisture c o n t e n t of specimens a l t e r s w i t h t i m e , causing them t o s w e l l or s h r i n k . This can i n t e r f e r e t o some e x t e n t w i t h t h e pure m o i s t u r e d i f f u s i o n process. Stamm (1935, 1959) proved t h a t t h e s w e l l i n g and s h r i n k a g e of wood were about p r o p o r t i o n a l t o the m o i s t u r e c o n t e n t a l t e r a t i o n . Prichananda (1966) s t a t e d t h a t i n dynamic measurement d i f f u s i o n was n o t t h e o n l y mechanism i n v o l v e d . Stress r e l a x a -t i o n o r e v o l u -t i o n accompanying -the s w e l l i n g or shrinkage s -t r e s s a l s o played a p a r t , making t h e process d e v i a t e somewhat from Pick's law. The e f f e c t o f s t r e s s r e l a x a t i o n or e v o l u t i o n was l e s s a t low r e l a t i v e h u m i d i t y and h i g h temperature. Newns (1956), Downes (1958), and Watt (1960) found t h a t f o r c e l l u l o s e and wool, t h e a d s o r p t i o n of m o i s t u r e was a two stage process. I n i n i t i a l stage T i c k ' s law was obeyed, but i n t h e second stage t h e s o r p t i o n was n o n - F i c k i a n . They a t t r i b u t e d t h e non-Fickian behaviour t o t h e change i n the polymer i n t e r n a l s t r u c t u r e caused by t h e s w e l l i n g s t r e s s r e l a x a t i o n as the m o i s t u r e adsorbed i n t h e i n i t i a l stage e x e r t e d pressure and broke the secondary l i n k a g e . N e v e r t h e l e s s , f o r wood, t h e s t r u c t u r a l change seems t o be so s m a l l t h a t t h e second stage a d s o r p t i o n phenomenon have never been ob-served. Though t h e dynamic method i s i n f l u e n c e d by s t r e s s r e l a x a t i o n and t h e r e f o r e i s i n some discrepancy w i t h s t e a d y - s t a t e measurement, i t i s be-l i e v e d and proven t o obey F i c k ' s be-law i n generabe-l and have been e x t e n s i v e be-l y used by wood researchers w i t h s a t i s f a c t o r y r e s u l t s .

2.1.3 Bound water and water vapor

When the c e l l lumens and p i t pores o f wood have been f i l l e d w i t h metal (Stamm, 1959, 1960), p a r a f f i n (Yokota, 1959), o r r e s i n (Choong, 1969), va-por movement i s e l i m i n a t e d and t h e d i f f u s i v i t y measured belongs t o t h a t o f bound water.

Being i n d i f f e r e n t p h y s i c a l s t a t e s and movement manners, bound water and water vapor each have a d i f f u s i v i t y i n wood which changes i n d i f f e r e n t ways when temperature and m o i s t u r e c o n t e n t changes ( i t w i l l be discussed l a t e r ) , and which i s a f f e c t e d i n a q u i t e d i f f e r e n t way by t h e m i c r o s t r u c t u r e of v a r i o u s wood species. The d i f f u s i v i t y of bound wood depends mainly on wood d e n s i t y ( p o r o s i t y ) , d i f f e r e n t wood c e l l s t r u c t u r e s have only a l i t t l e i n -f l u e n c e , whereas -f o r t h e vapor d i -f -f u s i v i t y t h i s -f a c t o r has a very s t r o n g i n f l u e n c e . Bound water d i f f u s i v i t y dominates a t h i g h moisture content near the f i b e r s a t u r a t i o n p o i n t , w h i l e vapor d i f f u s i v i t y i s d e c i s i v e a t low moisture c o n t e n t s as w e l l as i n wood o f low d e n s i t y or a t h i g h tempera-t u r e s . Below 6% m o i s tempera-t u r e c o n tempera-t e n tempera-t bound watempera-ter n e a r l y ceases tempera-t o nwve. As

(18)

these two moisture phases always move s i m u l t a n e o u s l y , except when wood ma-t e r i a l s have d i r e c ma-t c o n ma-t a c ma-t w i ma-t h l i q u i d wama-ter, ma-t h e i r d i f f u s i v i ma-t y i s n o ma-t se-parated and the combined d i f f u s i v i t y i s r e f e r r e d t o ^ i moisture d i f f u s i v i t y . However, f o r a b e t t e r understanding, they should be s e p a r a t e l y analyzed and then considered combined a g a i n , as i n p r a c t i c a l use.

Stamm (1946, 1960) and Choong (1965), analogized the c a l c u l a t i o n o f e l e c -t r i c c o n d u c -t i v i -t y when a n a l y z i n g -the -t r a n s p o r -t o f bound wa-ter and wa-ter va-por and r a i s e d a model f o r t h e c a l c u l a t i o n o f t h e combined d i f f u s i v i t y , on the base t h a t both bound water d i f f u s i v i t y and vapor d i f f u s i v i t y were a l -ready known ( f i g u r e 4 ) . C e n t inuou» Bound W o t » r M o v e m e n t 7—rr-r P A T H N o . 4 P A T H No. 3 P A T H No 2 PATH No 1 • ' ' / / • M o v e m e n t •> / C e l l C o v i t y R5 p V l M e m b r o n e WQII R J P i t C h o m b e r R3 P i t P o r e R i C r o » » W a l l R4 F i g u r e 4. Diagrammatic sketches showing t h e movement paths through the c e l l s t r u c t u r e o f softwood (Choong, 1965)

C o n t i n u o u s C e l l W o n R(,

To c a l c u l a t e t h e combined d i f f u s i v i t y i n e i t h e r l o n g i t u d i n a l o r t r a n s v e r s e d i r e c t i o n s from t h i s model, a group of average g e o m e t r i c a l f i g u r e s d e s c r i -b i n g t h e v a r i o u s c a p i l l a r i c s t r u c t u r e s o f wood c e l l s , t h e -bound water d i f f u s i v i t y and vapor d i f f u s i v i t y i n t h e l o n g i t u d i n a l o r t a n g e n t i a l d i r e c -t i o n were -t o be s u b s -t i -t u -t e d i n Eq.(19). S-tamm proved -t h a -t -t h e model predic-ted moisture d i f f u s i o n i n wood d r y i n g f a i r l y good.

- f

(19)

Bound water d i f f u s i v i t y i s g e n e r a l l y found t o f o l l o w t h e A r r h e n i u s ' equa-t i o n .

(20)

whereof t h e a c t i v a t i o n energy Eb i s a f u n c t i o n o f moisture c o n t e n t . The l o n g i t u d i n a l bound water d i f f u s i v i t y i s two t o t h r e e times t h e t r a n s -verse bound water d i f f u s i v i t y (Stamm, 1960). An average value o f 2.5 can be used.

Water vapor d i f f u s i v i t y i n t h e c e l l lumens o f wood i s i n f e r r e d t o be (Stamm, 1946; Choong, 1965; Siau, 1971):

(19)

where G i s s p e c i f i c g r a v i t y o f moist c e l l - w a l l substance, /O i s d e n s i t y o f water, Po i s s a t u r a t e d vapor pressure and Da i s water vapor d i f f u s i v i t y i n bulk a i r t h a t has been proven t o be:

(22) Tarkow and Stamm (1960) s a i d t h a t water vapor d i f f u s i o n through t h e p i t membrane pores was r e s t r i c t e d and i t s d i f f u s i v i t y was about 1/40 t h a t o f f r e e water vapor d i f f u s i v i t y o b t a i n e d w i t h Eq.(21). P e t t y (1973) l a t e r mo-d i f i e mo-d t h e f i g u r e anmo-d provemo-d a c c o r mo-d i n g t o more a c c u r a t e measurements t h a t the d i f f u s i v i t y r a t i o n was 1/3.

2.1.4 Gas and vapor d i f f u s i o n

Non-polar gases as carbon d i o x i d e , n i t r o g e n and ethane do n o t form chemical bonds w i t h wood substance and move i n t h e same c a p i l l a r y path as water va-por as they d i f f u s e through wood and wood composites. I t i s v e r i f i e d by Tarkow and Stamm (1960, a, b ) , Evers (1965) and B e a l l and Wang (1974) t h a t the d i f f u s i v i t y r a t i o o f a non-polar gas t o water vapor i n bulk a i r i s equal t o t h e d i f f u s i v i t y r a t i o o f them i n a i r f i l l e d c a p i l l a r i e s o f wood. Vapor d i f f u s i v i t y i n wood was measured a c c o r d i n g t o t h i s assumption and t h e r e s u l t s o b t a i n e d were s a t i s f a c t o r y . Tarkow and Stamm (1960, b) proved t h a t at low m o i s t u r e c o n t e n t s , m o i s t u r e movement i n wood was e s s e n t i a l l y water vapor movement and i t was t h e r e f o r e p r e d i c t a b l e from t h e d i f f u s i v i t y o f non-polar gas. With i n c r e a s i n g m o i s t u r e c o n t e n t t h e bound water d i f f u s i o n becomes i n c r e a s i n g l y i m p o r t a n t and combined d i f f u s i o n i n c r e a s e d .

But p r a c t i c a l l y t h e r e should be some d i f f e r e n c e between non-polar gases and p o l a r water vapor as t o t h e i r i n t e r a c t i o n w i t h wood c e l l w a l l s . For vapor d i f f u s i o n though wood, t h e r e a r e two r e t a r d a n t f o r c e s : mechanical b l o c k i n g by t h e t o r t u o u s c a p i l l a r i e s , and r e s i s t a n c e due t o p r o x i m i t y of t h e p o l a r water molecules t o t h e c a p i l l a r y w a l l s whereupon c l u s t e r s o f p o l a r hyd-r o x y l s ahyd-re phyd-resent (Cady, 1935). The second hyd-r e t a hyd-r d a n t f o hyd-r c e does not e x i s t f o r non-polar gas molecules. This should l e a d t o some d e v i a t i o n between t h e t r u e vapor d i f f u s i v i t y and t h a t p r e d i c t e d w i t h non-polar gas d i f f u s i o n . I t might, however, be t o o s m a l l t o have been d e t e c t e d by Tarkow, Evers, e t c . Gas d i f f u s i v i t y through wood can a l s o be c a l c u l a t e d w i t h t h e analogy o f e l e c t r i c c i r c u i t i f t h e geometry o f t h e c a p i l l a r y s t r u c t u r e i s known

(Stamm, 1946). When t h e mean f r e e path o f gas i s of t h e same s i z e order as the diameters o f t h e p i t membrane pores, t h e d i f f u s i o n through t h e pores i s c o n t r i b u t e d by t h e mutual gaseous d i f f u s i o n and Knudsen d i f f u s i o n . I n d r i e d s o f t wood a r a t h e r l a r g e p r o p o r t i o n o f t h e t r a i c h e i d s , mainly i n latewood, i s a s p i r a t e d and n o t c o n d u c t i v e . With these two c o n s i d e r a t i o n s and a more advanced knowledge o f wood c e l l m i c r o s t r u c t u r e . P e t t y (1973) m o d i f i e d Stamm's model (1946) f o r gas d i f f u s i v i t y c a l c u l a t i o n i n softwood.

(20)

2.1.5 Non-isothermal moisture d i f f u s i o n

I t has been found f o r a l o n g time ( J o s t , 1952, P.521; Crank, 1975, P.353) t h a t besides c o n c e n t r a t i o n d i f f e r e n c e , temperature d i f f e r e n c e also causes m o i s t u r e d i f f u s i o n i n non-isothermal moisture circumstances. This has been r e f e r r e d t o as thermal d i f f u s i o n or Soret e f f e c t . E r i c k s o n et a l (1981) and Siau and Babiak (1983) showed i n experiments t h a t moisture i n wood boards was d r i v e n by both moisture content g r a d i e n t and temperature g r a d i e n t and under some c o n d i t i o n s m o i s t u r e even moved a g a i n s t moisture content g r a d i e n t and down the temperature g r a d i e n t .

Moisture t r a n s p o r t and heat t r a n s p o r t under non-isothermal c o n d i t i o n s are coupled. Lebedev (1961) and Luikov (1975) s t a t e d t h a t i f the thermal p r o -p e r t i e s ( s -p e c i f i c heat a, thermogradient c o e f f i c i e n t f ) and t r a n s f e r

c o e f f i c i e n t s ( m o i s t u r e d i f f u s i v i t y , thermal d i f f u s i v i t y Dh) were assumed t o be independent of p o s i t i o n s i n a porous s o l i d , the coupled r e l a t i o n i n the temperature below 100"C c o u l d be expressed as

-^=0-^^ t O - f ^ (23)

c ^ y ^ q

^oc

(24)

The second terms i n Eq.(24) accounts f o r the moisture e v a p o r a t i o n i n the s o l i d evolved w i t h the temperature f i e l d change, e i s moisture evaporations c o e f f i c i e n t , s i s the e v a p o r a t i o n heat of l i q u i d water. These two equations can be used i n any m o i s t u r e content range, so D i n Eq.(23) s h o u l d be the combined expression of moisture d i f f u s i v i t y and l i q u i d water t r a n s p o r t cons t a n t (consee S u c t i o n and P e n e t r a t i o n , chapter 2.1.6), adopting each i n c o r r e -spondance t o the moisture content l e v e l .

I n h i g h moisture content range D would remain constant when the temperature i s c o n s t a n t . At r e l a t i v e l y low m o i s t u r e c o n t e n t , D decreases w i t h decrea-s i n g moidecrea-sture c o n t e n t , t i l l moidecrea-sture movement changedecrea-s from l i q u i d flow t o vapor and bound water d i f f u s i o n . The thermogradient c o e f f i c i e n t f decreases w i t h i n c r e a s i n g temperature.

I n the case of wet s o l i d d r y i n g , whui^ the temperature i s above 100"C, i n -tense moisture e v a p o r a t i o n w i l l occur and excessive vapor pressure g r a d i e n t becomes the main d r i v i n g f o r c e i n a d d i t i o n t o moisture c o n c e n t r a t i o n gra-d i e n t angra-d temperature g r a gra-d i e n t , then Eq.(23) angra-d Eq.(24) each ought to be added w i t h a term on the r i g h t s i d e r e p r e s e n t i n g the c o n t r i b u t i o n of ex-cessive vapor pressure on moisture and heat t r a n s p o r t , and the moisture f l u x i s :

F = Fc i - P t i - F p

^äc^^fär ^opä^ ^^^^

where p i s the excessive vapor pressure i n the porous s o l i d and Dp molar vapor t r a n s p o r t c o e f f i c i e n t .

(21)

The coupled moisture and heat t r a n s p o r t at non-isothermal circumstances i s much more c o m p l i c a t e d than i s o t h e r m a l moisture t r a n s p o r t . Many problems are s t i l l u n c e r t a i n and unsolved i n t h i s f i e l d . Crank (1975) s t u d i e d vapor d i f f u s i o n , heat d i f f u s i o n and some o t h e r s p e c i a l problems, s e t up t h e i r e q u a t i o n s , and f u r t h e r discussed t h e i r a n a l y t i c a l s o l u t i o n s . Luikov (1966, 1980) a l s o i n v e s t i g a t e d a g r e a t deal i n t h i s f i e l d t h e o r e t i c a l l y .

Skaar and Siau (1981) and Siau (1983 a, b) w i t h coworkers t r i e d from

another approach: M o i s t u r e movement i n i s o t h e r m a l c o n d i t i o n s was assumed to be m o t i v a t e d e i t h e r by g r a d i e n t of a c t i v a t e d moisture molecules i n wood M* or by g r a d i e n t of chemical p o t e n t i a l xi alone, but both of the v a r i a b l e s M* and -u i n c o r p o r a t e d moisture content and temperature i n t h e i r e x p r e s s i o n :

Bb .

(26)

M = 0,0077 7' +6 J6 T-^ZåO-f RTLnh (27)

M o i s t u r e t r a n s p o r t can be expressed and c a l c u l a t e d from:

^ — ^ ^ ^ ^ (29)

where D^* and can be converted i n t o moisture d i f f u s i v i t y .

Siau and Babiak (1983) and Siau and J i n (1985) l a t e r experimented w i t h both the assumed d r i v i n g f o r c e s M* and A J , but t h e i r p r e d i c t i o n s were i n e x a c t . S t a n i s h (1986) r e c e n t l y f u r t h e r developed the concept of chemical p o t e n t i a l as d r i v i n g f o r c e .

I t might be w o r t h m e n t i o n i n g here t h a t Bramhall (1976 a, 1976 b, 1977, 1978, 1979) proposed t h a t the t r a n s p o r t of a l l the t h r e e moisture phases i n wood should be considered t o be d r i v e n by pressure d i f f e r e n c e s alone b o t h a t i s o t h e r m a l and n o n - i s o t h e r m a l c o n d i t i o n s . He remarked t h a t moisture t r a n s p o r t m o t i v a t e d by m o i s t u r e c o n c e n t r a t i o n d i f f e r e n c e and temperature d i f f e r e n c e a l l c o u l d be u n i f o r m l y regarded and expressed as being caused by pressure d i f f e r e n c e i n wood. From such a s t a n d p o i n t he regarded P i c k ' s law t h a t took m o i s t u r e c o n c e n t r a t i o n d i f f e r e n c e as d r i v i n g f o r c e as i n c o r r e c t , a p p l i c a b l e only a t i s o t h e r m a l c o n d i t i o n s . He s a i d t h a t when moisture con-c e n t r a t i o n was used as the d r i v i n g f o r con-c e as i n Picon-ck's law, the d i f f u s i v i t y of wood changed tremendously w i t h change i n moisture content or tempera-t u r e , butempera-t tempera-t h e d i f f u s i v i tempera-t y would notempera-t a l tempera-t e r i f pressure was used as tempera-t h e

d r i v i n g f o r c e . M o i s t u r e c o n c e n t r a t i o n d i f f e r e n c e alone c o u l d not e x p l a i n nonisothermal moisture t r a n s p o r t , but pressure d i f f e r e n c e c o u l d . The r e l a

(22)

-t i o n o f p a r -t i a l vapor pressure, -tempera-ture, and mois-ture con-ten-t c o u l d be expressed, a c c o r d i n g t o Bramhall (1979), as:

(30) where a and b were l i n e a r and q u a d r a t i c f u n c t i o n s o f temperature respec-t i v e l y , d was a c o n s respec-t a n respec-t .

Babbit (1950, 1951, 1956) s t a t e d t h a t j u s t as water vapor d i f f u s i o n was d r i v e n by t h e g r a d i e n t o f p a r t i a l vapor pressure, bound water should be d r i v e n by t h e g r a d i e n t o f a "spreading pressure", s i n c e t h e adsorbed mole-c u l e s on s o l i d s u r f a mole-c e mole-c o u l d he mole-considered as a two-dimensional gas. The mathematical expression o f spreading pressure c o u l d be i n f e r r e d from proper m o i s t u r e a d s o r p t i o n model, which would be a p p l i c a b l e f o r both i s o t h e r m a l and non-isothermal bound water d i f f u s i o n . Skaar (1982) and Nelson (1986) f u r t h e r developed t h e expression o f spreading pressure.

The i d e a l s of Bramhall, Babbit and Nelson r e g a r d i n g pressure or spreading pressure as t h e genuine d i v i n g f o r c e come from a n a l y s i s and d e d u c t i o n . Ex-p e r i m e n t a l v e r i f i c a t i o n s are s t i l l l a c k i n g today exceEx-pt Skaar's t e s t (1982) w i t h spreading pressure, which u n f o r t u n a t e l y gave poor coincidence w i t h h i s t e s t r e s u l t s .

Although Bramhall's remark t h a t d i f f u s i v i t y would not change w i t h moisture content i f pressure should be used as d r i v i n g f o r c e conforms w i t h some ex-periments made by o t h e r s , (e.g. S t i l l w e l l 1926, P.4), i t v i o l a t e s w i t h o t h e r t e s t r e s u l t s i n o t h e r cases (e.g. T v e i t , 1966).

The attempt o f Siau, Skaar, and Nelson e t c . t o take chemical p o t e n t i a l , mo-t i v a mo-t e d moismo-ture conmo-tenmo-t o r spreading pressure as mo-t h e only d r i v i n g pomo-ten- poten-t i a l f o r bound wapoten-ter d i f f u s i o n , and f u r poten-t h e r f o r combined moispoten-ture d i f f u s i o n i n non-isothermal c o n d i t i o n s and Bramhall's proposal o f u t i l i z i n g pressure as t h e only d r i v i n g f o r c e f o r a l l moisture phases would g r e a t l y s i m p l i f y , i f e v e n t u a l l y s u c c e s s f u l , t h e a n a l y s i s and probably a l s o t h e c a l c u l a t i o n o f n o n i s o t h e r m a l moisture t r a n s p o r t . The m o t i v a t i n g f o r c e s o f moisture t r a n s -p o r t i n i s o t h e r m a l c o n d i t i o n s are a c t u a l l y two: moisture content g r a d i e n t and temperature g r a d i e n t , which can be r e p l a c e d i n a n a l y s i s by some two o t h e r r e l e v a n t parameters. A n a l y z i n g and c a l c u l a t i n g made w i t h t h e two f o r -ces s e p a r a t e l y a r e t h e r e f o r e normal and n a t u r a l as Sandberg (1973) and N i l s s o n (1980) d i d i n b u i l d i n g m a t e r i a l s . I f t h e attempts o f Siau, Skaar, Nelson, and Bramhall should e v e n t u a l l y be proven t o be r e a l l y s u c c e s s f u l i n i n c o r p o r a t i n g two working parameters i n t o one i n a d e f i n i t e manner i n t h e f u t u r e , i t would c o n t r i b u t e a l o t t o t h e comprehension o f non-isothermal m o i s t u r e movement.

I n t h e i n v e s t i g a t i o n o f t h e coupled moisture and heat t r a n s p o r t i n wood and wood composites under non-isothermal c o n d i t i o n s , i t i s i m p e r a t i v e t o have the knowledge o f thermal p r o p e r t i e s l i k e t h e thermal c o n d u c t i v i t y and t h e r -mal d i f f u s i v i t y o f t h e m a t e r i a l s . The d e f i n i t i o n o f these two c o e f f i c i e n t s come from t h e basic law o f heat c o n d u c t i v i t y , F o u r i e r ' s laws, which are analogous w i t h F i c k ' s laws m a t h e m a t i c a l l y .

Wood and wood composites a r e good heat i n s u l a t o r s , they possess low thermal c o n d u c t i v i t y due t o t h e e f f e c t i v e r e s i s t a n c e t o heat f l o w o f t h e a i r t r a p

(23)

-ped I n c e l l c a v i t i e s and i n t e r - c e l l u l a r spaces. The thermal c o n d u c t i v i t y p a r a l l e l t o the g r a i n have been found t o range from 2.25 t o 2.75 of the va-l u e p e r p e n d i c u va-l a r t o the g r a i n d i r e c t i o n of wood.

Siau (1971) s e t a model based on i d e a l i z e d wood c e l l s t r u c t u r e and analo-gized heat c o n d u c t i o n I n wood t o e l e c t r i c conduction. With the model, dry wood thermal c o n d u c t i v i t y was c a l c u l a t e d a p p l y i n g wood d e n s i t y of the spe-cimens and a i r thermal c o n d u c t i v i t y . Siau showed t h a t the model r e s u l t e d i n good agreement w i t h e x p e r i m e n t a l data. This proved t h a t heat t r a n s p o r t i n wood i s a much s i m p l e r phenomenon than moisture t r a n s p o r t .

The thermal p r o p e r t i e s of wood as s p e c i f i c heat and thermal c o n d u c t i v i t y , thermal d i f f u s i v i t y were also found t o be i n simple l i n e a r r e l a t i o n s w i t h wood d e n s i t y and m o i s t u r e c o n t e n t (Rowley, 1933, Maclean, 1941).

2.1.6 S u c t i o n and p e n e t r a t i o n

In a d d i t i o n t o water s o r p t i o n , water s u c t i o n ( o r a b s o r p t i o n ) has also been u t i l i z e d t o measure moisture t r a n s p o r t i n wood, though t o a l e s s e r e x t e n t . Here some c o n f u s i o n was easy t o a r i s e when a few researchers ( T u t t l e , 1925) designated the measured values as d i f f u s i v i t y , since i n water s u c t i o n f r e e l i q u i d water movement I s i n v o l v e d t h a t i s not a d i f f u s i o n process.

Rosen (1974 a, b) c o r r e c t l y s a i d t h a t i n s u c t i o n process when a piece of wood was immersed i n water, bound water, water vapor, as w e l l as f r e e water

( t h a t i s Immediately i n c o r p o r a t e d i n t o the c e l l w a l l ) moved i n the wood be-low the f i b e r s a t u r a t i o n p o i n t , and t h a t moisture t r a n s p o r t c o n s i s t e d of combined bound water and vapor d i f f u s i o n . As moisture c o n t e n t reached the f i b e r s a t u r a t i o n p o i n t , f r e e water movement became the only moving moisture phase, bound water and water vapor ceased t o move.

Thus m o i s t u r e movement i s d r i v e n by d i f f e r e n t f o r c e s and i s i n d i f f e r e n t phases i n s u c t i o n d u r i n g two d i s t i n c t stages. Below the f i b e r s a t u r a t i o n p o i n t , i t i s the same as s o r p t i o n and Eq.(5) and Eq.(7) c o u l d be used. Spolek and Plumb (1981) showed t h a t above the f i b e r s a t u r a t i o n p o i n t , f r e e water movement was caused by l i q u i d phase pressure d i f f e r e n c e o r i g i n a t e d from the c a p i l l a r y pressure of c e l l lumens and p i t pores, which was even-t u a l l y r e l a even-t e d even-t o even-the waeven-ter s a even-t u r a even-t i o n grade and f u r even-t h e r even-t o f r e e waeven-ter con-t e n con-t g r a d i e n con-t . This was a l s o s con-t a con-t e d and proven by Berger and Pel (1973). I n such case, l i k e bound water below f i b e r s a t u r a t i o n p o i n t , f r e e water t r a n s -p o r t should be regarded t o be caused by f r e e water content d i f f e r e n c e . The parameter d e n o t i n g f r e e water c o n d u c t i v i t y was defined by Rosen (1974, a, b) as f r e e water t r a n s p o r t c o n s t a n t . Free water t r a n s p o r t c o n s t a n t i s d i f f e r e n t from the combined d i f f u s i v i t y of bound water and vapor though i t c o u l d be c a l c u l a t e d from Eq.(5) or Eq.(7) i f f r e e water c o n t e n t change i s accounted o n l y . Therefore, i t appears t h a t moisture d i f f u s i o n and bulk flow i n wood c o u l d be c o h e r e n t l y d e s c r i b e d w i t h i d e n t i c a l equations, w i t h Pick's law, a l t h o u g h the l a t t e r i s not a d i f f u s i o n process and the f r e e water t r a n s p o r t c o n s t a n t i s more a d i r e c t e x p r e s s i o n of p e r m e a b i l i t y r a t h e r than d i f f u s i v i t y .

Free water movement d u r i n g wood d r y i n g above the f i b e r s a t u r a t i o n p o i n t i s the c o u n t e r p a r t t o f r e e water s u c t i o n and t h e i r f r e e water t r a n s p o r t con-s t a n t con-should be very con-s i m i l a r . Free water t r a n con-s p o r t c o n con-s t a n t , according to

(24)

Spolek's deduction i s p r o p o r t i o n a l t o wood p e r m e a b i l i t y and i s t h e r e f o r e a simple expression of i t . Skaar (1958) s t a t e d t h a t above f i b e r s a t u r a t i o n p o i n t , f r e e water t r a n s p o r t constant i s a p p a r e n t l y s m a l l e r than moisture d i f f u s i v i t y below f i b e r s a t u r a t i o n p o i n t . Choong (1972) and Yao (1966) con-f i r m e d t h i s statement w i t h t h e i r experimental r e s u l t s .

Yao (1966) s t a t e d t h a t f r e e water t r a n s p o r t constant, l i k e bound water d i f -f u s i v i t y , changed e x p o n e n t i a l l y w i t h the r e c i p r o c a l o-f temperature accor-ding t o Eq.(12). But t h i s bears no t h e o r e t i c a l base and has obtained no f u r t h e r testimony from o t h e r researches. L i k e p e r m e a b i l i t y , f r e e water t r a n s p o r t constant i s s t r o n g l y i n f l u e n c e d by the m i c r o c a p i l l a r y s t r u c t u r e of wood and wood composites. This e x p l a i n s why some wood species take much longer time than others of s i m i l a r d e n s i t y i n d r y i n g .

Closely r e l a t e d w i t h s u c t i o n i s p e n e t r a t i o n , which has been i n v e s t i g a t e d by wood workers f o r wood treatments t o render i t w i t h s p e c i a l l y s u p e r i o r p r o -p e r t i e s . P e t t y (1985) s t u d i e d the -p e n e t r a t i o n of a non--polar l i q u i d i n t o wood. His work proved t h a t i f the c o n t a i n e r h o l d i n g the specimens was eva-cuated p r i o r to t e s t , the p e n e t r a t i o n d i s t a n c e s and the a b s o r p t i o n amount V c o u l d be a c c u r a t e l y p r e d i c t e d by Darcy's law;

3 = (31)

Thus the p e n e t r a t i o n and a b s o r p t i o n i n vacuum p e n e t r a t i o n process i s p r o -p o r t i o n a l t o the square r o o t of time t and the -p e r m e a b i l i t y of s-pecimens K. Petty f u r t h e r showed t h a t w i t h vacuum p e n e t r a t i o n , the two p a r a l l e l ca-p i l l a r y s t r u c t u r e of d i f f e r e n t s i z e order i n the t a n g e n t i a l d i r e c t i o n of the f i v e c o n i f e r wood he t e s t e d c o u l d be revealed and t h e i r p e r m e a b i o l i t y mean r a d i i a s c e r t a i n e d .

For p e n e t r a t i o n of non-vacuum processes Washburn (1921) deduced t h a t f o r porous s o l i d s w i t h pores of small i n t e r n a l surfaces the p e n e t r a t i o n o f l i q u i d was also p r o p o r t i o n a l to the square r o o t of time when c a p i l l a r y f o r c e and some e x t e r n a l pressure f u n c t i o n e d as d r i v i n g f o r c e s . This was ex-pressed as Lucas-Washburn equation. Back (1965 a, b, 1966) i n v e s t i g a t e d the p e n e t r a t i o n of water i n t o i n s u l a t i o n boards, paper, and f i b e r b u i l d i n g boards w i t h t h i s equation and proposed a method to t e s t the water r e s i -stance of i n s u l a t i o n board. Österberg and Back (1960), Morgan and Purslow

(1973) and Stamm (1973) s t a t e d t h a t the Lucas-Washburn equation was not obeyed d u r i n g p e n e t r a t i o n i n the i n i t i a l i n s t a n t , the p r a c t i c a l p e n e t r a t i o n and a d s o r p t i o n were proven being:

5 bo

i - t (33)

^ = V. -t K. / T o ~ c o ^ ( ^

(25)

where Kj^ and K2 were constants. So and Vo were p o s i t i v e or negative con-s t a n t con-s depending on w e t t i n g procecon-scon-s. For water and wood, they are p o con-s i t i v e r e p r e s e n t i n g an i n i t i a l r a p i d uptake of water.

Eg.(33), Eq.(34) are i n t i m a t e l y r e l a t e d t o Eq.(31) and Eq.(32), the pene-t r a pene-t i o n of non-vacuum process oughpene-t a l s o pene-t o be f u n c pene-t i o n s of wood permeabi-l i t y . Therefore, p e n e t r a t i o n , e s p e c i a permeabi-l permeabi-l y vacuum p e n e t r a t i o n can be u s e f u permeabi-l i n i n v e s t i g a t i n g p e r m e a b i l i t y .

2.2 P e r m e a b i l i t y

P e r m e a b i l i t y ( b u l k f l o w ) has been I n v e s t i g a t e d f o r v a r i o u s types of porous media l i k e rocks, sands, s o i l , p o r c l a i n and wood e t c i n many d i f f e r e n t areas i n order to c l a r i f y how f l u i d s t r a n s f e r i n these m a t e r i a l s (Whitney, Ingmanson and Han, 1955; Scheidegger 1957; Wiest 1969; Siau 1972). For wood and wood—based panels, as f o r other porous s o l i d s , p e r m e a b i l i t y has been measured w i t h e i t h e r l i q u i d s or gases by e x e r t i n g a pressure d i f f e r e n c e t o d r i v e a f l u i d t o move through them. The pressure d i f f e r e n c e c o u l d be kept constant as i n s t e a d y - s t a t e methods or changing w i t h time as i n dynamic or u n s t e a d y - s t a t e methods. As p e r m e a b i l i t y i s g e n e r a l l y i n v e r s e l y p r o p o r t i o n a l t o the v i s c o s i t y of f l u i d (both gases and l i q u i d s ) , i t can be m u l t i p l i e d by the v i s c o s i t y of the f l o w i n g f l u i d , g i v i n g the s p e c i f i c p e r m e a b i l i t y which i s not a f f e c t e d by the measuring f l u i d but a p r o p e r t y of the porous s t r u c -t u r e of -the medium:

K5 = Kq

(35)

I t should be n o t i c e d t h a t i n some a r t i c l e s s p e c i f i c p e r m e a b i l i t y i s named as p e r m e a b i l i t y whereas p e r m e a b i l i t y i s c a l l e d apparent p e r m e a b i l i t y . I t i s because the a u t h o r s i n c o r p o r a t e d the v i s c o s i t y of f l u i d s i n Darcy's law. With s t e a d y - s t a t e methods, which have been much more commonly used than dynamic methods, Darcy's law i n Eq.(3) i s d i r e c t l y a p p l i c a b l e f o r l i q u i d s . For gases as t e s t media, however, some m o d i f i c a t i o n s of Darcy's law must be made.

2.2.1 The expansion and s l i p flow of gases

As gases are u t i l i z e d t o measure p e r m e a b i l i t y , t h e i r c o m p r e s s i b i l i t y have t o be taken i n t o c o n s i d e r a t i o n and Darcy's law f o r gaseous p e r m e a b i l i t y Kg i s changed t o :

Q = K f - ^ |

(36)

where P i s the mean a b s o l u t e pressure w i t h i n the specimen and P i s the pressure a t which the f l o w volume Q i s measured.

When the mean f r e e path of a gas molecule approaches the s i z e of t h e

openings through which flow occurs as the p i t membrane pores of wood c e l l s , a t r a n s i t i o n from viscous f l o w t o molecular f l o w ( s l i p f l o w ) occurs (Babbit 1951; Comstock, 1967; Siau, 1984, p. 85-88). Pure s l i p flow i s described by

References

Related documents

A basic orthotropic viscoelastic model for composite and wood materials considering available experimental data and time-dependent Poisson’s ratios.. To cite this article: R

Källa STRADA (polisrapporterade olyckor preliminära värden). Risken att skadas och dödas i trafiken är enligt resultatet högst för gruppen 13–14 år, nästan 2 gånger så

The fundemental purpose of the thesis is to address privacy issues on SNSs with the focus on individual users perception of privacy risks. Within the topic, we would

kadetternas berättelser om att hitta dem man trivs med och inte att anpassa sig för att få vara med. Detta kan åter ses mot skillnaden mellan generationer där det beskrivs vilken

It was also apparent that the term SER means different things to different people and there is a clear need for guidelines on how SER can be used and what types of treatments

A panel of PCa cell lines (LNCap, PC3, DU-145) was subjected to a 8-week treatment using drugs influencing the RTK: trastuzumab (anti-HER2), 17-DMAG (Hsp90 inhibitor), alone or

Tess and Benny have here encountered different objects of learning, and in order to fill the gap they have to make relations to what they know, what is standing fast. None of them is