• No results found

Experimental investigation of post-dryout heat transfer in annuli with flow obstacles

N/A
N/A
Protected

Academic year: 2021

Share "Experimental investigation of post-dryout heat transfer in annuli with flow obstacles"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

NuclearEngineeringandDesignxxx (2011) xxx–xxx

ContentslistsavailableatScienceDirect

Nuclear

Engineering

and

Design

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / n u c e n g d e s

Experimental

investigation

of

post-dryout

heat

transfer

in

annuli

with

flow

obstacles

Ionut

Gheorghe

Anghel

,

Henryk

Anglart,

Stellan

Hedberg

NuclearReactorTechnology,SchoolofEngineeringSciences,RoyalInstituteofTechnology(KTH),Roslagstullsbacken21,SE-10691Stockholm,Sweden

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7April2011

Receivedinrevisedform4August2011 Accepted5August2011

a

b

s

t

r

a

c

t

Anexperimentalstudyonpost-dryoutheattransferwasconductedintheHigh-pressureWAterTest (HWAT)loopattheRoyalInstituteofTechnologyinStockholm,Sweden.Theobjectiveoftheexperiments wastoinvestigatetheinfluenceofflowobstaclesonthepost-dryoutheattransfer.Theinvestigated operationalconditionsincludemassfluxequalto500kg/m2s,inletsub-cooling10Kandsystempressure

5and7MPa.Theexperimentswereperformedinannuliinwhichthecentralrodwassupportedwith fivepinspacers.Twoadditionaltypesofflowobstacleswereplacedintheexitpartofthetestsection:a cylindersupportedonthecentralrodonlyandatypicalBWRgridspacercell.Themeasurementsindicate thatflowobstaclesimproveheattransferintheboilingchannel.Ithasbeenobservedthatthedryout powerishigherwhenadditionalobstaclesarepresent.Inadditionthewalltemperatureinpost-dryout heattransferregimeisreducedduetoincreasedturbulenceanddropdeposition.Thepresentdatacanbe usedforvalidationofcomputationalmodelsofpost-dryoutheattransferinchannelswithflowobstacles. © 2011 Elsevier B.V. All rights reserved.

1. Introduction

A forced convection heat transfer to a two-phase mixture consisting of the continuous vapour phase and the dispersed liquid phase, when the liquid film on the heater walls is no longersupported,istermedhereasthepost-dryout heat trans-ferregime.Othernamesusedintheliteraturetorefertothistype ofheattransferarepost-CHF(post-criticalheatflux),mistflowor dispersed-flowfilmboiling(DFFB).Oneofthecharacteristic fea-turesofpost-dryoutheattransferisadramaticreductionoftheheat transfercoefficient,andthusasignificantincreaseoftheheater walltemperature,ascomparedtotheconditionsbeforetheonset ofdryout.

Themaingoalofthepresentworkistoinvestigatethe influ-enceofflowobstaclesontheintensityofpost-dryoutheattransfer atconditionsrelevanttoBoilingWaterReactors(BWR) applica-tions.DuringthenormaloperationofBWRtheonsetofdryoutis precludedduetosufficientlyhighsafetymargins.However,during aBWRstart-up,whenthecoolantflowthroughthereactorcoreis relativelylowandthereactorpowerishighenough,corepower

∗ Correspondingauthor.Tel.:+46855378888.

E-mailaddresses:iganghel@kth.se(I.G.Anghel),henryk@kth.se(H.Anglart), stellan@energy.kth.se(S.Hedberg).

andflowinstabilitymayoccur.Duringsuchpowerandflow oscil-lationsshort-termpost-dryoutconditionsmightoccurinsomefuel rodassemblies.Forsafetyreasonsisthusimportanttopredictthe timehistoryofthecladwalltemperaturetoevaluateitsintegrity. Needlesstosaythatsuchpredictionsrequireknowledgeoftheheat transfercoefficientatgivenconditionsandtakingintoaccountthe geometrydetailsoffuelassemblies,inparticular,theinfluenceof spacergrids.

Post-dryoutheattransferhasbeeninvestigatedduringthepast severaldecadesandexperimentaldatahavebeenobtainedinboth simpletubesandinrodbundles(e.g.Koizumietal.,1987;Moon etal.,2005;Tuzlaetal.,1992).Theinfluenceofflowobstacleson post-dryoutheattransferatBWRconditionswasinvestigatedinan annulartestsectionwithasinglespacergridcellandasignificant improvement ofheat transfercoefficient wasreported(Anglart andPersson,2007).Thepresentexperimentsemployanannular testsectioninwhichtheinnerrodissupportedwithpinspacers, andtwoadditionalflow obstaclesareinsertedtomeasuretheir neteffectonthepost-dryout heattransfer.Thetest sectionhas beeninstrumentedwith88thermocouplestoallowfora signifi-cantimprovementoftheaccuracyofmeasurements,asdescribedin Angheletal.(2010).Duetothehighaccuracyofmeasurementsand thankstotheperformedanalysisoferrorpropagation,thepresent measurementsaresuitableforvalidationofcomputationalmodels ofpost-dryoutheattransfer.

0029-5493/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.nucengdes.2011.08.026

(2)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

2 I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx

Fig.1.TheHigh-pressureWAterTest(HWAT)loop.

2. Experimentalfacility

2.1. Theloop

TheHigh-pressureWAterTest(HWAT)loopusedforthe post-dryout experimentswasdesigned tooperateatpressuresupto 25MPa.Allpartsincontactwithwater (exceptthetestsection) aremadeofstainlesssteel.Theloopconstructionallowsfortest sectionsupto7minlength.InFig.1asimplifiedflowdiagramof theloopispresented.

Themaincomponentsoftheloopare:feedwaterpump, cir-culationpump,flowmeasurementsystem,automaticflowcontrol valve,pre-heater,testsection,condenserandblow-offvalve.A sec-ondarycircuitwithcoolantwaterat293.15Kisusedtocoolthe circulationpump.

Theloopisoperatingasfollows.Thecirculationwaterfirsthasto passthroughtheflowmeasurementsystem.Fromherewaterflows tothe155kWpre-heater,whichisneededtoadjusttheinlet tem-peraturetothetestsection.Lateron,subcooledwaterentersinto thetestsection.Afterthetestsection,thewater–steammixtureis passingthroughthecondenser.

Thewatercirculationintheloopisprovidedbythecirculation pump,which hasa pressureheadof100mwater, abigpartof thisbeingusedintheductsystembetweenthepumpandthetest sectiontosecureastableoperationoftheloop.

2.2. Testsection

The test section consists of 12.7mm×24.3mm×3650mm annulusassembledfromtwoconcentricpipes.Inthepresentwork theinnerpipeisreferredtoasarodwhiletheouterpipeisreferred toasa tube.Boththerodandthetubearemanufacturedfrom

Inconel600.Thismaterialhadbeenchosenbecauseofthesmallrate ofchangeoftheresistivitywiththetemperature(Inconel600).The designpressureandtemperatureforthetestsectionare18.3MPa and973K,respectively.

Twocopperrings,0.1mlongeach,weresolderedonboththerod andthetube.Inthepresentpaperthedistancebetweenthecopper ringsisreferredtoastheheatedlength.Theelectricalpowerwas suppliedviatwocopperelectrodesconnectedtothecopperrings.In ordertokeepheatlossesataninsignificantlevel,90mmthickglass fibreinsulationwasmountedaroundthetestsection.Nevertheless, forcalculationoftheheatfluxalltheheatlossesweretakeninto account.

Theexperimentswereconductedin threedifferenttest sec-tions:atestsectionwithpinspacersonlydenotedastestsection A,atestsectionwithpinspacersandcylindricalobstaclesdenoted astestsectionB,atestsectionwithpinspacersandgrid obsta-clesdenotedastestsectionC.Thefollowingoperationalconditions were employed in the experiments: inlet mass flux equal to 500kg/m2s,inletsub-coolingequalto10Kandsystempressure 5and7MPa.

Theblockageareaoftheflowobstaclesis:10.13%incaseofpin spacers,7.3%incaseofcylindricalobstaclesand10.07%incaseof gridobstacles.Theheatedlengthofallthreetestsectionstogether withpinspacersandflowobstaclesusedintheexperimentis pre-sentedinFig.2.

2.3. Temperaturemeasurements

Tocontroltheoperatingconditionsoftheloopoperationduring experiments,thetemperatureatsevenlocationsmustbemeasured onthecontinuousbasis.Thethermocouplesemployedforthefluid

(3)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx 3

Fig.2.Testsectionsemployedduringexperimentalruns.

measurementsweremountedinwells,120mmdeepand3mmin diameter.Themeasuredtemperaturesare:

• Coolantwatertemperaturefromsecondarycircuitofthe circula-tionpump;

• Coolantwatertemperatureoftheprimarycircuitbeforepump entrancetoavoidcavitations;

• Coolantwater temperature of theloop before theflow mea-surementsystemthatisnecessarytocalculateviscosity,specific volumeandthemassflux;

• Coolantwatertemperatureoftheloopafterpreheaternecessary torefinetheinletconditionsbeforetestsection;

• Coolantwatertemperaturesatinletandoutletofthetestsection thatarenecessarytocalculateheatbalancebeforestartingtwo

phaseflow.Theinlettemperatureisneededtoconfirm experi-mentalconditions;

• Coolantwaterfromthesecondarycircuitofthecondenser. Thetemperatureoftheannuluswallswererecordedwith88 K-typethermocouples,40locatedaxiallyontheinsidesurfaceofthe rodand48locatedontheoutsidesurfaceofthetube.Thepresent workcontainstemperaturemeasurementsperformedontheinside surfaceoftherod.Thethermocouplesmountedinsideoftherod werearrangedinabundle.Onelayerofaglassfibretapeandone layerofamicatapewereusedtokeepthebundletightenedand toinsulateandprotectthethermocoupleheadsfromthe electri-callyconductinghotsurfaceoftheheatedwalls.Thethermocouples werepressedagainstthewallsurfacebysmallspringslocatedinthe

(4)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

4 I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx

Fig.3.Temperaturedeviationsforrod.

oppositelocationonthediagonal.Axiallocationsofthe thermocou-ples,whichareequaltoboth,thetubeandtherod,arepresented inTable1.Tocorrectthereadingsoftheassembledthermocouples atvarioustemperaturelevels,threeexperimentswereconducted foradiabatic,singlephasewaterflowwithinlettemperatureequal to298,383and483K.Thewalltemperaturedeviationsfromthe waterbulktemperaturearepresentedinFig.3.

2.4. Experimentalmethod

Eachseriesofexperimentswasinitiatedwithameasurement ofheatbalanceforsinglephaseflowinthetestsection.Inthatway theaccuracyofinstrumentationwaschecked.Atthebeginningof themeasurements,tochecktheaccuracyoftheinstrumentation, theheatbalancesforsinglephaseflowwereperformedeverytime. Thetemperaturesoftheliquidmeasuredattheinletandoutletof thetestsectionwereusedtodeterminetheenthalpygainoverthe heatedlength.Thecalculatedthermalpowerwascomparedwith theelectricalpoweroutputsuppliedtothetestsectionbytheDC generator,bymeanscurrentsandvoltages.Iftheerrorwerebelow 0.5%,inthecalculationsneededfortwo-phaseflow,theelectrical powerhasbeenused.

Thestandardmethodtoperformmeasurementsofpost-dryout heattransferincludesthefollowingsteps:

• forasetofchosenparameterssuchastheinletsubcooling,the massfluxandthepressure,thepoweroftheheaterissetslightly belowthelevelthatcorrespondstothefirstoccurrenceofdryout inthetestsection,

• thepowerisincreasedstep-wise(keepingtherestofthe parame-tersconstant)andthetemperaturedistributionisrecordedonce thesteady-stateconditionisachieved.Theprocedureisrepeated forthesameinletconditions,employingallthreedifferentkinds offlowobstacles.

Table1

Thethermocoupleslocationsontherodandtubewalls(distancefromthebeginning oftheheatedlengthinmillimetres).

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 1607 1657 2225 2275 2353 2452 2553 2601 2616 2627 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 2637 2712 2767 2822 2878 2933 2986 2997 3004 3009 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 3018 3070 3107 3145 3181 3219 3256 3293 3329 3367 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 3378 3383 3389 3398 3442 3475 3510 3544 3588 3611 2.5. Uncertainties

Intheexperimentalstudies,oneofthemostimportantissues istoevaluatethe accuracyof measurements.The uncertainties inthepresentstudycanbeclassifiedasfollows:uncertaintyofa measuredparameter,uncertaintyofaderivedvariableduetothe propagationofuncertaintiesofmeasuredvariablesanduncertainty duetonumericaliterations.Allmeasurementsof temperatures, pressure,pressuredrops,massflowrates,currentsand voltages aresubjectstoacertaindegreeofuncertainty:

• Uncertainty of temperature measurements is indi-cated for standard K thermocouples class 1 as: 1.5K (http://www.omega.co.uk/guides/Thermocouples.html). • Uncertainty of mass flow rate measurements: ±0.5% (Flow

TechnologyInc.).

• Uncertaintyofstaticpressuremeasurements:±0.1%.

• Duringheatbalanceoperation,theelectricalpowerwas com-paredwiththeenthalpyincreaseoverthetestsectionandthe totalpoweruncertaintywasestimatedas±0.5%.

Theouterwalltemperatureoftherodandtheinnerwall tem-peratureofthetubearederivedfromtheconductionequationwith volumetricheatsources.Theoutersurfacetemperatureoftherod isobtainedas: Tro=Tri+ qv 2



r2 ri−r 2 ro 2 −r 2 ri ln rri rro



, (1)

whereTroisthewalltemperatureattheouter(wetted)surface,Tri

isthewalltemperatureattheinner(insulated)surface,riandrois theinner/outerradiusoftherodandqvistheheatsourceperunit

volume.

Theuncertaintyofthetemperatureoftherodoutersurfaceis foundas: uTro=



∂Tro ∂Tri uTri



2 +



∂Tro ∂qvuqv



2 +



∂Tro ∂ u



2



1/2 , (2)

whereuTriistheuncertaintyofthetemperatureoftheinnerrod

sur-face,uqvistheuncertaintyoftheheatsource,uistheuncertainty ofthethermalconductivityofthewallmaterialanduTrorepresents

thecalculateduncertaintyofthetemperatureoftherodouterwall surface.Numericalcalculationsindicatethatthisuncertaintyisless than1.53K,asshowninFig.4foratypicalexperimentalcase.

(5)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx 5

Fig.4.Therodouterwalltemperaturewithindicatederror-bars.MassfluxG=500kg/m2s,inletsubcoolingT=10K,pressureP=5MPa,q=499kW/m2,testsectionA.

3. Experimentalresults

3.1. Generaltrends

Thepresentstudyshowsthattheinfluenceofflowobstacleson post-dryoutheattransferisquitesignificant.Theirprimaryeffectis todisturbtheflowfieldofthevapourphasewhichinturncausesan increaseofthedepositionrateofliquiddroplets.Theeffecthowever dependsontheobstacleshapeanditsaxiallocation.Inthisstudy theneteffectofobstacleswasinvestigatedbycomparingthedata obtainedinthereferencetestsection(withpinsonly)andthetest sectionwithintroducedflow obstacles.Theresultsofrunswith threedifferentgeometries(testsectionsA,BandC)arepresented inFigs.5–12.Theheatfluxesincaseofrodandtubearedenotedas qrandqt.

Atypicaldevelopmentofthedryoutpatchcanbeobservedin Fig.5,showingexperimentalresultsobtainedintestsectionA. Ini-tialdrypatchappearsattheexitofthetestsectionwhenheatflux ontherodsurfaceisequalto509.7kW/m2.Afterincreasingthe heatfluxto529.5kW/m2,therodwettedsurfacesuperheatatthe

testsectionexitincreasestoalmost300K.Inbothcases,thedryout patchisstilllocateddownstreamofthelastlevelofpinspacers. Whentheheatfluxisslightlyincreasedto529.9kW/m2,asecond dryoutpatchisdevelopedupstreamofthelastpinspacer posi-tion.Inthiscase,theeffectofthepinspacerisveryclear:thedry patchisquenchedjustdownstreamofthepinspacerandthe sur-facesuperheatisreducedtothevalueswhicharetypicalforthe pre-dryoutconditions.Inthelastexperimentalrun,theheatflux wasincreasedto534.3kW/m2.Asaconsequencewallsuperheat increasedto250Kupstreamofthelastpinspacerlocation.Dueto theturbulenceinducedbythepinspacer,theliquidfilmwas re-madeandtheannularflowregimewasrestoredforapproximately 50mm.

3.2. Influenceofthecylindricalobstacle

Theneteffectofthecylindricalobstaclecanbeseenby compar-ingthemeasuredwallsuperheatshowninFigs.5and6.Asshown inFig.6,thefirstappearanceofadrypatchtakesplaceattheexit ofthetestsectionwhentheheatfluxattherodsurfaceisequal

(6)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

6 I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx

Fig.6.Measuredsuperheatofrodwallsurfaceforvariousheatfluxes.MassfluxG=500kg/m2s,inletsubcoolingT=10K,pressureP=5MPa,testsectionB.

Fig.7. Measuredsuperheatofrodwallsurfaceforvariousheatfluxes.MassfluxG=500kg/m2s,inletsubcoolingT=10K,pressureP=7MPa,testsectionA.

(7)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx 7

Fig.9. Measuredsuperheatofrodwallsurfaceforvariousheatfluxes.MassfluxG=500kg/m2s,inletsubcoolingT=10K,pressureP=5–7MPa,testsectionB.

Fig.10.Measuredsuperheatofrodwallsurfaceforvariousheatfluxes.MassfluxG=500kg/m2s,inletsubcoolingT=10K,pressureP=7MPa,testsectionC.

(8)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

8 I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx

Fig.12.Measuredsuperheatofrodwallsurfaceforvariousheatfluxes.MassfluxG=500kg/m2s,inletsubcoolingT=10K,pressureP=7MPa.

to519.5kW/m2,andthemeasuredmaximum wallsuperheatis equal to50K.IntestsectionA,which haspinspacersonly,the wallsuperheatisabout150Katslightlylowerheatfluxequalto 509.7kW/m2.Thisresultindicatesthatinsertionofthecylindrical flowobstaclebothincreasesthecriticalpowerlevelanddecreases thewallsuperheat,asexpected.Thiseffectcanbeexplainedby increaseofthedepositionrateofdropletscausedbythecylindrical flowobstacle.

When the heat flux on the rod surface is increased to 524.9kW/m2,aseconddrypatchappearsjustupstreamofthelast pinspacer.Thisdrypatchslightlygrowsintheupstream direc-tionwhentherodsurfaceheatfluxisfurtherincreasedto543.2 and560kW/m2.FromFig.5itcanbeseenthattheonsetofdryout occursatapproximately3.1mfromthebeginningofheatedlength, whentheheatfluxontherodsurfaceisequalto534.3kW/m2.The onsetofdryoutpointismovedabout80mmdownstreamwhenthe cylindricalobstacleisinsertedandtheheatfluxontherodsurface isincreasedto543.2kW/m2.

Figs.7and8showtheeffectofthecylindricalobstacleatsystem pressureequalto7MPa,whereas.Itcanbeseen,thatinsertionof thecylindricalflowobstaclesincreasesthecriticalheatfluxfrom about463.1kW/m2to496.9kW/m2.Itisinterestingtonotethat fortheheatfluxhigherthan537.7kW/m2,thecylindrical obsta-cleiscausingatemperaturedropjustdownstreamofitslocation, however,fullquenchingofadrypatchisnottakingplace.Onthe contrary,afullquenchingofadrypatchiscausedbythelastpin spacer. Thisindicatesthat pinspacersaremoreeffectivein re-buildingtheliquidfilmthanthecylindricalobstacles.

Fig.9showstheeffectofpressureonheattransferandthe occur-renceofdryoutintestsectionwiththecylindricalobstacles.Ascan beseen,thepost-dryoutregimeprevailsatpressure7MPa,whereas nodryoutoccursatpressure5MPa,eventhoughtheheatfluxon therodsurfaceishigherinthelattercase.

3.3. Influenceofthegridobstacle

TheeffectofthegridobstaclecanbeseeninFig.10in compari-sonwithFig.7.Thefiguresshowthemeasuredwallsuperheatfor increasingpoweratsystempressureequalto7MPa.Theinsertion ofthegridflowobstaclesincreasesthecriticalheatfluxfromabout 463.1kW/m2to503.9kW/m2.Thisresultindicatesthatgridspacers areslightlymoreefficientinpreventingdryoutthanthe

cylindri-calobstacles.Aplausibleexplanationofthisdifferencemaybethe higherblockageratioofthegridobstaclecausinghigherturbulence levelandthushigherdepositionrateofdropletsdownstreamofthe obstacle.

Directcomparisonsoftheexperimentalresultsobtainedinall threetestsectionsareshowninFigs.11and12.Fig.11showsthe resultsobtainedinthethreetestsectionatalmostthesame opera-tionalconditions,withheatfluxontherodsurfaceinarangefrom 494.6to500.8kW/m2.Theshownresultscorrespondtofully devel-opedpost-dryoutconditionsintestsectionA,onsetofdryoutintest sectionBandpre-dryoutconditionsintestsectionC.Fig.12shows themeasuredrodsurfacesuperheatforthethreetestsectionat fullydevelopedpost-dryoutconditions.Itcanbeseenthatthe low-estwallsuperheatismeasuredintestsectionC,eventhoughthe appliedpoweristhehighest.

4. Summaryandconclusions

Newmeasurementsofpost-dryoutheattransferinannuliwith variousflowobstacleshavebeenpresented.Theexperimentshave beenperformedwithwater asworkingfluidatpressures5and 7MPa,inletmassflux 500kg/m2sand inletsub-cooling10K.A thorough analysis of experimental uncertainties has been per-formedtoprovideaccuratedatathatcanbeusedfor validation ofcomputationalmodels.Ahighspatialresolutioninthe measure-mentshasbeenobtainedbyplacing88thermocouplesalongtest sections,fromwhich40thermocoupleshavebeenplacedinsideof theheatedrod.

Theneteffectsofthecylindricalandgridflowobstacleshave beenmeasuredbyusingareferencetestsectionwhereonlypin spacerswereusedtosupportthecentralrod.Itisconcludedthat flowobstaclesimproveover-allcriticalpowerintestsections.This effectseemstodependontheobstaclelocation,shapeand block-ageratio.Inpost-dryoutregimetheobstacleseitherquenchthe drypatchdownstreamoftheirlocation,orreducethewall temper-ature.

Acknowledgment

ThefinancialsupportprovidedbySwedishCentreforNuclear Technology(SKC)isgratefullyacknowledged.

(9)

ARTICLE IN PRESS

GModel

NED-6456; No.ofPages9

I.G.Angheletal./NuclearEngineeringandDesignxxx (2011) xxx–xxx 9

References

Anghel,I.G.,Anglart,H.,Hedberg,S.,2010.Studyofpostdryoutheattransferin annu-luswithflowobstacles.In:Proc.14thInternationalHeattransferConference, IHTC-14,Washington,USA.

Anglart,H.,Persson,P.,2007.Experimentalinvestigationofpost-dryoutheattransfer withspacers.Int.J.MultiphaseFlows33(8),809–821.

FlowTechnologyInc.,CA03-UserManual.

Inconel600 detailedtechnicalreport.Availablefrom:<http://www.haraldpihl. se/engelsk/index.html>.

Koizumi,Y.,Kumamaru,H.,Yonomoto,T.,Tasaka,K.,1987.Post-dryoutheattransfer ofhigh-pressuresteam-watertwo-phaseflowinsinglerodchannelandmulti rodbundle.Nucl.Eng.Des.99,157–165.

Moon,S.-K.,Chun,S.-Y.,Cho,S.,2005.Anexperimentalstudyofpost-CHFheat transferforlowflowofwaterina3×3rodbundle.Nucl.Eng.Technol.37, 457–468.

Tuzla,K., Unal,C., Chen,J.C.,1992. An experimental study ofpost-CHF heat transfer in a 3× 3 rod bundle. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (Eds.),MultiphaseScienceandTechnology,Post-DryoutHeatTransfer.CRC Press.

References

Related documents

12 The adhesion force map (Fig. 4f) shows a distinct contrast between the polymer matrix and the regions where PCBM-rich domains are present, but the contrast between uncoated

 - mass transfer per unit volume due to subcooled boiling. We will briefly mention mass transfer due to subcooled boiling in section 1.4.5. Here we briefly discuss mass transfer

Figure 5.39: Heat transfer coefficient and pressure drop, laminar, 25°C inlet, AFN-CeO 2 -nanofluid In Figure 5.39 , it can be seen that, with one exception, the base fluid has an

This is a natural area of high shear stress since this is after the supra aortic arteries which will morph the flow field, the boundary conditions are set to a percentage of

The correlations discussed in the previous section employ an exponential function exp(-f·z/D h ) to describe the axial dependence of the heat transfer coefficient, where f is

On Post-Dryout Heat Transfer in Channels with Flow Obstacles Preface Paper 5….submitted to… Paper 5…published in….. The captions of the following figures from the

Additionally, different Operational Amplifiers (OpAmps) will be used to observe how the noise level is affecting the measurements, so that the best one will be used in the end.

This work is limited to the study of supply energy requirements and conditions of a circular Eo5 heavy fuel oil tank described earlier in the introduction, as well as performing