• No results found

Complement  activation-­‐  good  or  evil  in  HIV-­‐1  infection?

N/A
N/A
Protected

Academic year: 2021

Share "Complement  activation-­‐  good  or  evil  in  HIV-­‐1  infection?"

Copied!
81
0
0

Loading.... (view fulltext now)

Full text

(1)

 

Linköping  University  Medical  Dissertations  No.  1281    

   

Complement  activation-­‐  good  or  evil  in  

HIV-­‐1  infection?  

 

Interaction  of  Free  and  Complement  Opsonized  HIV-­‐1  with  

Monocyte  Derived  Dendritic  Cells  and  Immune  Cells  in  the  

Cervical  Mucosa  

 

Veronica  Tjomsland  

 

 

     

Department  of  Clinical  and  Experimental  Medicine   Linköping  University,  Sweden  

     

(2)

 

 

Copyright © Veronica Tjomsland, 2011 Division of Molecular Virology

Department of Clinical and Experimental Medicine Linköping University

SE-581 85 Linköping

Cover: The Human immunodeficiency virus

The cover is designed by Caroline Dennerqvist, Pixeltown Arts, all rights reserved.

The pictures in this thesis are illustrated by Rada Ellegård. Published articles have been reprinted with permission from respective copyright holder.

Printed by LiU-Tryck, Linköping, Sweden, 2011 ISBN: 978-91-7393-010-9

(3)

 

”They  don't  actually  see  the  real  world,  where  95%  of  the  people  with  HIV  are  not  treated   and  are  dying.  And  even  though  we  have  some  blue  sky  now  in  our  country,  the  sky  could   become  cloudy  again  very  soon”  

  Luc  Montagnier          

“The   world   needs   people   who   dare   to   think   differently,   you   don’t   change   anything   by   walking  in  other  peoples  footsteps”  

  Veronica  Tjomsland            

 

 

 

 

 

Dedicated   to   my   husband   and   children   for   their   unending   love   and  

support  

(4)

 

Linköping  2011  

 

Supervisor  

 

Marie  Larsson,  Associate  Professor   Division  of  Molecular  Virology   Department  of  Clinical  and     Experimental  Medicine   Linköping  University,  Sweden  

 

 

Faculty  opponent  

 

Barbara  L.  Shacklett,  Associate  professor   Department  of  Medical  Microbiology     and  Immunology  

University  of  California,  Davis,  USA  

 

 

 

Co-­‐supervisors  

Committee  Board  

 

Jorma  Hinkula,  Professor

 

 

Kristina  Broliden,  Professor

 

Division  of  Molecular  Virology     Unit  of  Infectious  Diseases     Department  of  Clinical  and       Department  of  Medicine    

Experimental  Medicine     Karolinska  Institute,  Sweden  

Linköping  University,  Sweden  

 

 

Karl-­‐Eric  Magnusson,  Professor     Maria  Jenmalm,  Associate  professor  

Division  of  Molecular  Virology     AIR/Clinical  Immunology  

Department  of  Clinical  and       Department  of  Clinical  and  

Experimental  Medicine       experimental  Medicine    

Linköping  University,  Sweden     Linköping  University,  Sweden  

 

 

 

 

 

Sven  Hammarström,  Professor   Division  of  Cell  Biology  

Department  of  Clinical  and   Experimental  Medicine   Linköping  University,  Sweden  

(5)

PREFACE  

 

This   thesis   describes   the   results   of   my   research   carried   out   during   my   PhD   study   at   the   University   of   Linköping.   The   thesis   gives   you   first   a   general   introduction   to   the   world   of   HIV-­‐1,   the   complement   system,   dendritic   cells   (DCs),   and   antigen   presentation.   This   is   followed  by  a  presentation  of  the  papers.  Not  much  is  known  about  the  MHC  class  I  and  II   antigen  presentation  pathways  used  by  immature  and  mature  DCs  to  present  antigens  from   whole  HIV-­‐1  particles  and  the  first  project  focused  on  this  topic.  In  the  second  project  we   studied   the   initial   interactions   of   free   and   opsonized   HIV-­‐1   with   DCs   with   the   focus   on   receptor  families  involved  in  the  viral  binding.  Since  our  results  had  shown  that  opsonized   HIV-­‐1  interacted  with  DCs  in  a  unique  way  we  continued  in  the  third  project  to  study  the   receptors   and   pathways   used   by   DCs   to   process   and   present   antigens   derived   from  both   free   and   complement   opsonized   HIV-­‐1.   In   addition,   this   project   also   studied   the   effects   these  viral  sources  had  on  the  antigen  presentation  machinery.  In  the  final  project  we  used   the   knowledge   acquired   from   our   in   vitro   experiments   with   free   and   complement   opsonized  HIV-­‐1  and  applied  it  on  an  ex  vivo  study.  The  HIV-­‐1  interactions  and  infection  of   immune   cells   located   in   cervical   mucosa   were   studied   using   an   explant   model   and   we   examined   if   infection   could   be   prevented   by   targeting   different   receptors   expressed   by   immune  cells  and  mucosa.  Finally,  I  want  to  thank  my  supervisor  Marie  Larsson  for  making   this  thesis  possible.  

   

Veronica  Tjomsland         November  2011  

 

 

 

 

 

 

 

(6)

ABSTRACT  

 

Worldwide,  the  heterosexual  route  is  the  most  common  mode  of  sexual  transmission  of   HIV-­‐1  and  women  are  particularly  susceptible  to  this  infection.  After  penetration  of  the   mucosal  epithelium  HIV-­‐1  interacts  with  potential  target  cells,  i.e.  dendritic  cells  (DCs)   and   CD4+   T   cells.   The   complement   system,   a   key   component   of   the   innate   immune   system,   is   immediately   activated   by   HIV-­‐1   in   vivo.   However,   HIV-­‐1   can   resist   complement   mediated   lysis   and   become   coated   with   complement   fragments   and   this   opsonization   influences   the   viral   interaction   with   immune   cells.  The   DCs   are   the   most   potent  antigen  presenting  cell.  This  cell  effectively  links  the  innate  recognition  of  viruses   to  the  generation  of  an  adaptive  immune  response.  However,  HIV-­‐1  exploits  the  function   of   the   DCs   to   facilitate   viral   spread   and   infection.   HIV-­‐1   interacts   with   a   range   of   receptors   expressed   by   the   DCs   including   C-­‐type   lectins,   integrins   and   complement   receptors  (CRs).  The  uptake  of  virions  by  DCs  leads  to  their  activation  and  migration  to   the  lymph  nodes.  At  this  site  DCs  present  HIV-­‐1  derived  antigen  on  MHC  class  I  and  II   molecules  and  trigger  an  HIV-­‐1  specific  T  cell  response.  The  interplay  between  the  virus   and   the   DCs   is   complex   and   the   initial   receptor   binding   may   affect   antigen   uptake,   infection,  and  antigen  presentation.  

The  fundamental  questions  of  this  thesis  are  the  following:  How  is  free  and  opsonized   HIV-­‐1   internalized,   processed,   and   presented   on   MHC   class   I   and   II   molecules   by   DCs   and   how   do   free   and   opsonized   HIV-­‐1   particles   interact   with   immune   cells   in   the   cervical  mucosa?  

Our   results   indicate   that   opsonization   of   HIV-­‐1   plays   a   critical   role   in   the   interaction   with   immune   cells.   Complement   opsonization   of   HIV-­‐1   (C-­‐HIV)   significantly   enhanced   the   internalization   by   the   DCs   compared   to   free   HIV   (F-­‐HIV).   Both   C-­‐HIV   and   F-­‐HIV   interacted  with  the  CD4  receptor,  C-­‐type  lectins  and  integrins.  In  addition,  opsonization   of  HIV-­‐1  favored  an  MHC  class  I  presentation  by  DCs  compared  to  F-­‐HIV.  However,  the   endocytic   receptors   macrophage   mannose   receptor,   β7   integrin,   and   CR3   guided   the   antigens   to   different   compartments   with   distinct   properties   and   efficiencies   for   degradation   and   MHC   class   I   and   II   presentation   of   viral   antigens.   MHC   class   I   presentation   of   F-­‐HIV   and   C-­‐HIV   was   dependent   of   viral   fusion   in   a   CD4/coreceptor   dependent  manner.  Moreover,  MHC  class  II  presentation  of  antigens  derived  from  HIV-­‐1   required   endocytosis   and   proteolysis   in   acidified   compartments.   HIV-­‐1   infection   of   cervical  mucosa  immune  cells  and  tissue  was  assessed  in  a  cervical  tissue  explant  model.  

(7)

 

C-­‐HIV   significantly   enhanced   infection   of   DCs   compared   to   F-­‐HIV,   whereas   C-­‐HIV   decreased  the  infection  of  CD4+  T  cells.  Blocking  the  viral  use  of  integrins  in  the  cervical   tissue   explants  significantly  decreased  the  HIV-­‐1  infection  of  both  emigrating  DCs  and   CD4+  T  cells  and  the  establishment  of  founder  populations  in  these  tissues.  This  thesis   work  has  brought  forward  new  facts  that  can  be  used  to  facilitate  the  development  of  an   effective  vaccine  or  microbicide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(8)

LIST  OF  PAPERS  INCLUDED  IN  THE  THESIS  

 

 

I  

Pathways   utilized   by   dendritic   cells   for   binding,   uptake,   processing   and  presentation  of  antigens  derived  from  HIV-­‐1.  

Sabado   RL,   Babcock   E,   Kavanagh   DG,   Tjomsland   V,   Walker   BD,   Lifson   JD,   Bhardwaj  N,  Larsson  M.  

Eur  J  Immunol.  2007  Jul;  37(7):1752-­‐63.    

II   Complement  Opsonization  of  HIV-­‐1  Enhances  the  Uptake  by  Dendritic   Cells   and   Involves   the   Endocytic   Lectin   and   Integrin   Receptor   Families.

Tjomsland  V,  Ellegård  R,  Che  K,  Hinkula  J,  Lifson  JD,  Larsson  M.     PLoS  One.  2011;  6(8):e23542.  Epub  2011  Aug  11.  

 

III   Complement   opsonization   of   HIV-­‐1   results   in   a   different   intracellular   processing   efficiency   and   pattern   leading   to   an   enhanced   MHC   I   class   presentation  by  dendritic  cells.    

Tjomsland  V,  Ellegård  R,  Burgener  A,  Hinkula  J,  Lifson  JD,  Larsson  M.     Manuscript  

 

IV   Blocking   of   integrins   significantly   inhibits   HIV-­‐1   infection   of   human   cervical   mucosa   immune   cells   and   development   of   founder   populations.    

Tjomsland  V,  Ellegård  R,  Kjölhede  P,  Hinkula  J,  Lifson  JD,  Larsson  M.  

Manuscript  

 

 

(9)

ABBREVIATIONS  

 

Ab   Antibody  

ABC   Avidin  biotin  complex  

AIDS   Acquired  immunodeficiency  syndrome  

APC   Antigen  presenting  cell  

APOBEC3G   Apoplipoprotein  B  mRNA-­‐editing,  enzyme-­‐catalytic,  polypeptide-­‐like  3G  

ART   Antiretroviral  therapy  

AT-­‐2   Aldrithiol-­‐2  

AZT   Azidothymidine  

CCR5   CC  chemokine  receptor  5   CXCR4   CXC  chemokine  receptor  4   C-­‐HIV   Complement  opsonized  HIV-­‐1  

C-­‐IgG-­‐HIV   Complement  opsonized  HIV-­‐1  in  combination  with  immune  complex  

DAPI   4’,6’-­‐diamidino-­‐2-­‐phenylindole  

DCs   Dendritic  cells  

DC-­‐SIGN   Dendritic  cell-­‐specific  ICAM-­‐3-­‐grabbing  non-­‐integrin   dsDNA   Double  stranded  DNA  

EDTA   Ethylene-­‐diamine-­‐tetra-­‐acetic  acid  

ER   Endoplasmic  reticulum  

F-­‐HIV   Free-­‐HIV  

fH   factor  H  

FITC   Fluorescein  isothiocyanate  

gp41   HIV-­‐1  glycoprotein  41   gp120   HIV-­‐1  glycoprotein  120  

HAART   Highly  active  anti-­‐retroviral  therapy   HIV-­‐1   Human  immunodeficiency  virus-­‐1   ICAM   Intercellular  adhesion  molecule   IgG-­‐HIV   IgG  opsonized  HIV-­‐1  

IDCs   Immature  dendritic  cells  

IFN   Interferon  

IFRs   Interferon  regulatory  factors  

IL   Interleukin  

(10)

 

LFA-­‐1   lymphocyte  function-­‐associated  antigen  1  

LCs   Langerhans  cells  

LTR   Long  terminal  repeats  

MAC   Membrane  attack  complex  

MHC   Major  histocompatibility  complex  

MDC   Mature  dendritic  cells  

MDDC   Monocyte  derived  dendritic  cells  

MMR   Macrophage  mannose  receptor  

Nef   Negative  factor  

PAMPS   Pathogen  associated  molecular  patterns   PBMC   Peripheral  blood  mononuclear  cells  

PBS   Phosphate-­‐buffered  saline  

PDCs   Plasmacytoid  dendritic  cells  

PE   Phycoerythrin  

PFA   Para  formaldehyde    

PHS   Pool  human  serum  

PIC   Pre-­‐integration  complex  

PR   HIV-­‐1  protease  

RNA   Ribonucleic  acid  

RT   Reverse  transcriptase  

SIV   Simian  immunodeficiency  virus  

SAMHD-­‐1   SAM  domain  and  HD  domain  containing  protein  1   ssRNA   Single  stranded  RNA  

TAR   Transactivation  response  element  

TLR   Toll  like  receptor    

TRIM   Tripartite  motif-­‐  containing  protein   Vif   Viral  infectivity  factor  

             

(11)

 

TABLE  OF  CONTENTS  

 

PREFACE………...I   ABSTRACT………...  II   LIST  OF  PAPERS………...III   ABBREVIATIONS………...  IV     CHAPTERS   1.  INTRODUCTION………...1   2.  HIV-­‐1………...3   2.1  Life  cycle.………...4  

  2.2  Relevant  aspects  of  HIV-­‐1  innate  and  adaptive  immunity………..7  

  3.  THE  COMPLEMENT  SYSTEM………10  

  3.1  Overview……….10  

  3.2  Complement  opsonization  of  HIV-­‐1………...12  

3.3  Outcomes  after  complement  activation  by  HIV-­‐1………...15  

    4.  DENDRITIC  CELLS...16  

4.1  The  role  of  dendritic  cells  in  immunity………...16  

4.2  Dendritic  cell  lineages  and  subsets  ………...17  

    4.2.1  Plasmacytoid  dendritic  cells  (PDCs)………..………...17  

    4.2.2  Myeloid  dendritic  cells  (MDCs)………...18  

    4.2.3  Monocyte  derived  dendritic  cells  (MDDCs)……….19  

4.3  HIV-­‐1  capture  by  dendritic  cells………..19  

4.4  Intrinsic  antiretroviral  factors………..21  

  5.  ANTIGEN  PRESENTATION  BY  DENDRITIC  CELLS………..23  

  5.1  Overview……….23  

5.2  MHC  class  I  restricted  antigen  presentation………...24  

(12)

6.  MUCOSAL  IMMUNITY  AND  HIV-­‐1………...30  

6.1  Transfer  of  HIV-­‐1  through  the  female  genital  tract………...30  

  7.  AIMS  OF  THESIS………33  

  8.  METHODS………...34  

  8.1  Propagation  of  monocyte  derived  DCs………..………..34  

8.2  Virus  propagation  and  opsonization…..………34

 

  8.3  ELISPOT  assays………...………...35  

  8.4  Quantification  using  Real-­‐time  PCR………...35  

  8.5  Preparation  of  cervical  tissue  samples………...36  

  8.6  Flow  Cytometry………..37  

  8.7  Immunofluorescence  and  confocal  microscopy……….38  

  8.8  Immunohistochemisty  (IHC)………..38  

  8.9  Statistical  analysis……….39  

    9.  RESULTS  AND  DISCUSSION………...40  

  9.1  Paper  I………..40       9.1.1  Background………..40       9.1.2  Principal  findings………...41       9.1.3  Discussion/  Conclusion………41     9.2  Paper  II……….42       9.2.1  Background………..42       9.2.2  Principal  findings………...42       9.2.3  Discussion/  Conclusion………43     9.3  Paper  III……….…….……….43       9.3.1  Background………..43       9.3.2  Principal  findings………...………..44       9.3.3  Discussion/  Conclusion………45     9.4  Paper  IV………...45       9.4.1  Background………..45       9.4.2  Principal  findings……….………46       9.4.3  Discussion/  Conclusion………....47

(13)

10.  CONCLUSIONS  AND  FUTURE  DIRECTIONS  ……….48   10.1  Complement  activation-­‐  good  or  evil  in  HIV-­‐1  infection?...48   10.2  Future  Challenges………...49     11.  POPULÄRVETENSKAPLIG  SAMMANFATTNING………...50   12.  ACKNOWLEDGEMENTS………...53   13.  REFERENCES………...57    

14.  REPRINTS  OF  ORIGINAL  PAPERS  AND  MANUSCRIPT     14.1  Paper  I     14.2  Paper  II     14.3  Paper  III     14.4  Paper  IV  

 

 

 

(14)

Introduction  

1  

1.  INTRODUCTION  

 

In   1981   a   new   syndrome   appeared   in   the   United   States.   The   patients   had   an   acquired   immune   deficiency   with   a   marked   depletion   of   the   CD4+   T   cell   count.   Two   years   later   HIV-­‐1   was   identified   by   Luc   Montagnier   and   Françoise   Barré-­‐Sinoussi   as   the   causative   agent   of   acquired   immune   deficiency   syndrome   (AIDS)   (1).   Currently   more   than   30   million  people  are  infected  with  HIV-­‐1  and  an  estimated   2.6  million  are  newly  infected   every  year  in  the  world  and  millions  have  died  from  AIDS  (2).  This  makes  this  infection   one   of   the   worst   epidemics   of   this   century.   Moreover,   the   HIV/AIDS   epidemic   is   accompanied   by   many   tragic   and   difficult   social   challenges   like   discrimination,   stigma,   denial   and   a   growing   number   of   children   who   have   lost   parents   to   AIDS   (3).   In   2005,   thirteen   million   children   younger   than   15   years   of   age   had   already   lost   one   or   both   of   their  parents  to  AIDS  (4).  

The   natural   history   of   HIV-­‐1   infection   involves   a   long   period   of   clinical   latency   with   a   gradual  loss  of  CD4+  T  cells  before  the  infection  progresses  to  AIDS.  AIDS  are  defined  by  a   CD4+   T   cell   count   below   400cells/µl   blood   and   without   treatment   this   will   lead   to   opportunistic  infections,  the  appearance  of  rare  malignancies  and  ultimately  death.   The  most  prevalent  route  of  sexual  transmission  is  by  heterosexual  intercourse.  Women   are  particularly  at  high  risk  to  acquire  HIV-­‐1  infection  due  to  social  and  biological  factors   and   therefore   bear   the   greatest   burden   (5).   However,   much   is   still   unknown   about   the   biological   factors   in   the   female   genital   tract   contributing   to   resistance   against   HIV-­‐1   infection.      

HIV-­‐1  is  a  retrovirus  that  belongs  to  the  genus  Lentiviridae.  Lentivirus  is  characterized  by   a   long   incubation   period,   however   it   is   now   clear   from   studies   in   Macaques   that   local   events  important  to  establish  an  systemic  infection  take  place  quickly  in  the  early  stages   of  simian  immunodeficiency  virus  (SIV)  infection  (6).  Following  entry  of  HIV-­‐1  through   the   mucosa   epithelium   founder   populations   are   established   in   the   submucosa   and   the   dendritic   cells   (DCs)   will   transfer   the   virus   to   CD4+   T   cells   in   the   mucosal   stroma   and   lymph  nodes  (7).  In  the  lymph  nodes  the  DCs  will  efficiently  present  HIV-­‐1  antigens  to  T   cells  via  MHC  class  I  and  II  restricted  pathways  and  mount  a  specific  immune  response   against  HIV-­‐1.  MHC  class  I  and  II  presentation  and  activation  of  CD4+  and  CD8+  T  cells   are  important  events  that  will  determine  the  outcome  of  the  infection.  Most  individuals   control   the   viremia   poorly   in   the   absence   of   antiretroviral   therapy.   Today   the   only

(15)

Introduction  

    2  

 effective  approach  against  HIV-­‐1  infection  is  antiretroviral  therapy  but  many  limitations   exist   such   as   toxicity,   costs,   distribution   in   developing   countries,   and   resistance.   Unfortunately  strategies  to  prevent  HIV-­‐1  transmission  have  had  limited  success  over  the   past  three  decades  (6).  Vaccines  or  microbicides  have  not  proven  efficient  and  have  even   in  some  cases  enhanced  HIV-­‐1  infection  (8,  9).  An  effective  HIV-­‐1  vaccine  will  probably   require   activation   of   CD4+   and   CD8+   T   cell   responses   directed   against   crucial   HIV-­‐1   epitopes  (10).    

There  exists  an  urgent  need  today  for  an  HIV-­‐1  vaccine  or  microbicides  to  prevent  HIV-­‐1   transmission  and  constrain  the  ongoing  pandemic.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16)

HIV-­‐1  

3  

2.  HIV-­‐1  

 

HIV-­‐1  belongs  to  the  genus  Lentivirus  and  is  further  divided  into  the  family  Retroviridae.   HIV-­‐1  has  a  spherical  morphology  with  a  diameter  of  100-­‐120  nm  and  is  surrounded  by  a   lipid  bilayer,  an  envelope.  This  envelope  is  acquired  from  the  host  cell  during  the  process   of  viral  budding  and  contains  approximately  72  spikes  of  the  viral  receptor  gp120  bound   together   with   the   transmembrane   spanning   glycoprotein   gp41(11).   The   envelope   may   also  express  many  other  receptors  like  ICAM-­‐1  and  HLA  class  I  and  II  molecules,  acquired   from   the   infected   cell   during   the   budding   process   (12).   The   nucleocapsid,   which   has   a   conical  shape,  contains  a  viral  protease  (PR),  reverse  transcriptase  (RT),  integrase  (IN),   and  two  copies  of  a  single  stranded  RNA  (ssRNA)  molecule  (13)  (Fig.  1).  

 

   

Figure  1.    Structure  of  the  HIV-­‐1  particle.  

The HIV-1 is composed of two copies of positive ssRNA encoding the 9 viral genes. The viral genome is enclosed by a conical nucleocapsid composed of 2000 copies of the viral protein gag p24 (14). In the nucleocapsid are the pol encoded enzymes, integrase (IN), reverse transcriptase (RT), and protease (PR), all needed by the virus for infection. Surrounding the nucleocapsid is a matrix composed of the p17 gag protein and the matrix is in turn surrounded by a viral envelope. The HIV protein Env protrudes from the viral envelope and is composed of gp120 and gp41 proteins. gp41 is an anchor protein, attaching gp120 to the viral envelope and HIV-1 uses this glycoprotein complex to attach and fuse with target cells (15).

(17)

HIV-­‐1  

4  

2.1  HIV-­‐1  life  cycle  

The   infection   begins   with   the   binding   of   HIV-­‐1   to   the   target   cells   by   the   viral   receptor   gp120   to   a   58kDa   glycoprotein,   the   CD4   receptor.   The   CD4   receptor   is   expressed   on   T   cells,  monocytes,  macrophages,  DCs,  eosinophils,  and  microglia  cells  (16).  Upon  binding   to  CD4,  gp120  undergoes  a  conformational  change  and  is  able  to  bind  the  coreceptor  CC-­‐ chemokine   receptor   5   (CCR5)   or   CXC-­‐chemokine   receptor   4   (CXCR4).   The   binding   of   gp120   to   both   CD4   and   coreceptor   leads   to   further   conformational   changes   that   allow   gp41   to   penetrate   the   cell   membrane   (17,   18).   Following   membrane   fusion   the   virus   capsid   is   uncoated   in   the   cytoplasm   of   the   host   cell   and   the   viral   RNA   is   released.   The   capsid  undergoes  a  progressive  destabilization  during  its  transport  towards  the  nucleus   to  ensure  productive  infection  as  uncoating  should  not  occur  too  early  or  too  late  in  the   process  (19)  (Fig.  2).  The  viral  RNA  is  transcribed  into  a  double  stranded  DNA  (dsDNA)   by  RT,  but  this  transcription  is  negatively  affected  by  the  presence  of  the  host  cell  protein   APOBEC3G.  However,  the  HIV-­‐1  protein  Vif  counteracts  the  cell’s  antiviral  effect  by  down   regulation  of  APOBEC3G  and  prevents  incorporation  of  this  protein  into  progeny  virions   (20).   The   pre-­‐integration   complex   navigates   through   the   pores   of   the   nucleolus.   In   the   nucleus  the  viral  DNA  can  be  found  in  three  different  forms,  linear,  a  circular  form  of  2-­‐   long  terminal  repeats  (LTR),  or  a  circle  of  1-­‐LTR  (21).  None  of  the  circular  forms  lead  to   the  production  of  infectious  virus  but  the  viral  genes  Tat  and  Nef  can  be  transcribed  from   them  (22).  The  linear  dsDNA  of  the  pre-­‐integration  complex  is  integrated  in  the  host  cell   genome  and  this  is  mediated  by  IN  (23).  The  integration  might  lead  to  a  latent  infection,   i.e.  nonproductive  (24),  but  if  cellular  proteins  bind  to  the  viral  LTR,  transcription  of  Nef,   Tat,   and   Rev   can   occur   and   these   HIV-­‐1   proteins   are   normally   expressed   very   shortly   after   infection.   When   sufficient   amount   of   Tat   protein   has   been   produced,   Tat   proteins   start   to   control   further   transcription   of   HIV-­‐1   genes   by   binding   to   the   TAR   site   (Transactivation   response   element).   In   the   early   phase   of   replication   only   multiply   spliced  mRNA  are  produced,  but  when  sufficient  amounts  of  Rev  proteins  are  produced,   non-­‐spliced  or  single  spliced  mRNA  can  be  generated  as  well  (25)  (Fig.  2).  The  core  of  the   maturing   HIV   particle   is   formed   by   the   gene   products   pol   and   gag.   The   gene   products   coded  by  the  env  gene  form  the  glycoprotein  120/41  spikes  in  the  viral  envelope  (Fig.  3).   The   proteins   Gag   and   Pol   are   also   derived   from   a   big   precursor   polyprotein.   The   formation  of  a  new  viral  particle  occurs  in  several  steps;  two  copies  of  ssRNA  associate   together   with   the   RT   enzymes,   while   core   proteins   assemble   around   them   forming   the   viral   capsid.   The   immature   particles   migrate   toward   the   cell   surface   and   assemble,   the

(18)

HIV-­‐1  

5  

large  precursor  polyproteins  are  then  cleaved  resulting  in  the  viral  budding  from  the  cell   plasma  membrane  and  thereby  the  acquiring  of  a  lipid  envelope.  The  budding  of  HIV-­‐1   virions  is  believed  to  occur  through  areas  in  the  host  cell  membrane  rich  in  cholesterol   (26).   During   the   budding   it   is   essential   that   the   expression   of   CD4   receptors   are   downregulated  in  the  host  cell  membrane  to  avoid  the  interaction  with  gp120  (27).  Nef   (negative  factor)  is  important  for  replication  and  the  pathogenesis  of  HIV.  Many  functions   have   been   described   for   Nef,   including   the   down   regulation   of   CD4,   coreceptors,   MHC   class   I   and   II   molecules   by   inducing   endocytosis   of   these   molecules,   consequently   affecting   antigen   presentation   and   recognition   by   the   HIV-­‐1   specific   immune   response   (28-­‐30).  Later  in  the  replication  cycle  the  env  gene  product  trap  CD4  in  the  endoplasmic   reticulum  (ER)  (31).                  

(19)

HIV-­‐1  

6    

 

 

Figure  2.  Life  cycle  of  HIV-­‐1  

The  life  cycle  of  HIV-­‐1  begins  when  the  virus  binds  to  CD4  and  coreceptor  on  a  target  cell.   When   HIV-­‐1   have   bound   to   the   infection   receptors   the   envelope   complex   undergoes   a   structural   change   resulting   in   fusion   with   the   cell   membrane   and   the   virus   inject   its   contents  into  the  cytosol  (17,  18).  The  viral  genetic  material  is  transcribed  from  ssRNA  into   dsDNA  by  the  use  of  the  HIV-­‐1  enzyme  RT.  The  viral  dsDNA  is  then  integrated  into  the  host   genome  by  the  help  of  IN.  From  the  integrated  DNA  the  cell  produces  RNA  and  viral  proteins   (32).  The  HIV-­‐1  protease  cleaves  the  newly  synthesized  proteins,  enabling  them  to  join  the   RNA  and  assemble  by  the  cell  membrane.  Finally,  new  viral  particles  bud  off  from  the  cell   membrane  and  can  infect  new  target  cells  (32).  

(20)

HIV-­‐1  

7  

 

 

 

Figure  3.  Organization  of  the  HIV-­‐1  genome.  

HIV-­‐1  has  nine  genes  coding  for  15  viral  proteins.  The  structural  genes  gag,  pol  and  env  are   the   same   in   all   retroviruses   and   these   genes   contain   information   necessary   to   make   new   viral   particles.   The   other   six   genes,   tat,  rev,  nef,   vif,   vpr,   and   vpu,  are   regulatory   genes   for   proteins  that  control  the  ability  of  HIV-­‐1  to  infect  and  replicate  in  a  host  cell.  Long  terminal   repeats  (LTR)  are  regions  controlling  the  production  of  new  virions  and  is  triggered  by  HIV-­‐ 1  proteins  or  host  cell  proteins  (16).  

   

2.2  Relevant  aspects  of  HIV-­‐1  innate  and  adaptive  immunity  

It   is   well   established   that   HIV-­‐1   infection   results   in   strong   activation   of   the   immune   system   (6).   The   innate   immunity   conducts   the   first   line   of   defense   followed   by   the   adaptive   immunity.   The   innate   and   adaptive   responses   are   closely   interlinked   and   a   strong   initial   innate   response   is   likely   to   lead   to   potent   adaptive   immunity.   Several   components  of  the  innate  defense  are  activated  by  HIV-­‐1,  e.g.  the  complement  cascade,   type  I  IFNs,  and  inflammatory  cytokines  (33).  HIV-­‐1  is  transmitted  through  the  mucosa   and  targets  specific  immune  cells,  i.e.  CD4+CCR5+  T  cells  and  DCs  (34,  35).  The  adaptive   immune  response  is  incapable  to  mount  a  defense  sufficient  to  clear  the  infection  and  the   onset   is   too   late   to   stop   the   massive   destruction   of   the   CD4+CCR5+   T   cells   that   occurs   within  two  weeks  after  onset  of  infection  (34,  35).    

       The  first  line  of  defense  does  not  require  previous  antigen  encounter  and  may  if  strong   enough   limit   replication   of   the   microbe   giving   the   adaptive   immunity   enough   time   to   mount  a  potent  and  efficient  immune  response  (36).  The  innate  immune  response  can  be   divided   in   to   three   groups;   cellular,   intracellular,   and   extracellular   (37).   The   cellular

(21)

HIV-­‐1  

8  

 components   of   the   innate   immunity   are   for   instance   Langerhans   cells   (LCs),   DCs,   monocytes,   γδ   T   cells,   and   natural   killer   cells   (NK   cells)   (38).   To   begin   with   these   cells   have  innate  effector  functions  but  later  they  may  play  a  part  in  the  induction  of  adaptive   immunity  (36).  For  instance,  DCs  produce  factors  important  for  the  initial  innate  defense   but   they   also   prime   the   naïve   T   cells   in   the   lymph   nodes   and   activate   the   adaptive   immune   response   (39).   In   the   initial   immune   response   two   families   of   transcription   factors   play   a   major   role   in   the   innate   anti-­‐viral   defense,   the   NFkB   family   and   the   interferon   regulatory   factors   (IRFs).   The   IRFs   play   a   central   role   in   the   induction   and   regulation   of   proteins,   type   I   IFNs,   and   chemokines   mediating   antiviral   responses.   The   production   of   type   I   IFNs   has   an   important   role   in   the   innate   antiviral   response,   they   attract  immune  cells  to  the  site  of  infection,  increase  the  function  of  macrophages,  T  cells,   NK   cells,   and   B   cells   and   induce   maturation   of   plasmacytoid   DCs   (PDCs)   (40-­‐42).   IRF-­‐3   plays   a   central   role   in   the   induction   of   antiviral   response.   The   viral   activation   of   this   factor   leads   to   production   of   IFNβ,   which   stimulates   the   transcription   of   IRF-­‐7   that   further   augments   the   synthesis   of   IFNβ.   The   antiviral   effect   of   IFN   is   mediated   by   the   induction  of  a  large  amount  of  cellular  genes,  i.e.  IFN-­‐stimulatory  genes  (ISG),  ISG15  was   one  of  the  first  ISG  identified  and  has  been  shown  to  have  antiviral  effects  (43).  

   Toll   like   receptors   (TLRs)   is   a   family   of   receptors   important   in   the   innate   immune   response.   TLRs   detect   microbes   and   induce   antimicrobial   host   defense   responses   by   recognizing  conserved  regions  on  pathogens,  denoted  as  pathogen-­‐associated  molecular   patterns  (PAMPS)  (44).  TLRs  are  involved  in  the  destruction  of  pathogens,  coordinating   the   immune   response,   and   regulating   the   functionality   of   DCs   (42).   The   presence   of   ssRNA   activates   TLR7/8   while   dsRNA   activates   TLR3   (45).   HIV-­‐1   is   recognized   mainly   through  TLR7  on  PDCs  and  TLR8  on  blood  myeloid  DCs  (MDCs)  and  monocyte  derived   DCs   (MDDCs).   PDCs   are   an   important   component   of   the   innate   immune   defense   and   a   main   producer   of   type   I   IFNs   (46).   Another   part   of   the   innate   immune   defense   is   the   restriction  factors  including,  tripartite  motif-­‐containing  protein  (TRIM),  5α,  1,  19  and  22,   tetherin,   SAM   domain   and   HD   domain-­‐containing   protein   1   (SAMHD-­‐1),   and   apoplipoprotein   B   mRNA-­‐editing,   enzyme-­‐catalytic,   polypeptide-­‐like   3G   (APOBEC3G)   (47-­‐50).   APOBEC3G   is   found   in   T   cells,   monocytes,   macrophages,   and   DCs.   The   incorporation  of  APOBEC3G  into  the  HIV-­‐1  genomes  leads  to  extensive  mutations  in  the   viral  DNA,  rendering  them  nonfunctional  and  inhibiting  viral  replication  (51).  However,   HIV-­‐1  counteracts  this  defense  mechanism  by  the  production  of  the  viral  protein  Vif.  Vif   decrease   the   synthesis   of   APOBEC3G   and   enhances   the   26S   proteasome   mediated

(22)

HIV-­‐1  

9  

 degradation  making  APOBEC3G  unavailable  for  budding  virions  (47).  Innate  factors  that   exert  their  effects  in  an  extracellular  manner  are  produced  as  a  part  of  the  innate  defense   and  include  large  amounts  of  type  I  interferons  (IFNs),  i.e.  IFN-­‐α  and  IFN-­‐β.  Type  I  IFNs   are   produced   by   mainly   by   PDCs   but   also   by   MDCs,   and   macrophages   during   the   early   phase   of   a   viral   infection   and   they   promote   TH1   cell   development   by   activating   the   transcription   factor   STAT4.   In   addition   IFNs   also   prevent   activated   T   cells   from   undergoing  apoptosis  (52,  53).  The  CC  chemokines  CCL5  (RANTES),  CCL3  (MIP-­‐1α)  and   CCL4  (MIP-­‐1β)  are  secreted  by  activated  DCs,  macrophages,  NK  cells,  and  γδ  T  cells  and   these  factors  can  block  the  CCR5  coreceptors  and  prevent  HIV-­‐1  infection  (54).  However,   some  cellular  proteins  downregulate  the  antiviral  response,  among  them  are  the  cellular   DNAse  TREX1,  which  degrades  unintegrated  proviral  DNA  and  thereby  helping  the  virus   to  be  undetected  by  TLR9  or  cytoplasmic  DNA  sensors  (55).  Defensins  are  extracellular   innate  peptides  that  can  contribute  to  protection  against  HIV-­‐1  infection  in  the  mucosa.   Another  essential  component  of  the  innate  immune  response  is  the  complement  system   (56)  and  this  part  of  the  innate  immunity  is  described  and  discussed  in  depth  below.    

 

     

Figure  4.  Approaches  by  HIV-­‐I  to  circumvent  the  cell  mediated  antiviral  responses.  

Complement  factors,  type  I  IFNs  and  the  intrinsic  cellular  proteins  TRIM,  tetherin,  APOBEC3G,  and  SAMHD-­‐ 1  contribute  to  the  inhibition  of  viral  replication  inside  the  host  cells.  On  the  other  hand,  some  of  host  cell   proteins,  e.g.  TREX1,  contribute  to  the  down  regulation  of  the  antiviral  response.  In  addition,  the  virus  has   genes  encoding  for  proteins  that  can  impair  the  antiviral  defense.  

APOBEC3G SAMHD1 TRIM 5α, 1, 19, 22 Tetherin ISG15 Type I interferons Vif Vpx Vpu, Nef IRF-3 Vpr, Vif TREX1 Complement

(23)

The  complement  system  

10  

3.  THE  COMPLEMENT  SYSTEM  

 

3.1  Overview  

The   complement   system   is   composed   of   more   than   30   cell   surface   and   serum   components  (57)  and  around  90%  of  them  are  produced  by  hepatocytes  but  complement   proteins   can   also   be   produced   by   monocytes,   macrophages,   endothelial,   and   epithelial   cells   (58,   59).   The   human   complement   system   is   the   first   line   of   the   defense   against   pathogens  by  inducing  complement  mediated  lysis  and  tagging  targets  for  phagocytosis.   However,   lately   it   has   been   shown   that   complement   also   plays   an   important   role   in   induction  and  maintenance  of  the  adaptive  immune  responses,  i.e.  antigen  presentation,   and   T   cell   activation   (60).   In   addition,   the   complement   system   is   involved   in   the   enhancement  of  the  antibody  induced  responses  via  complement  receptors  (CRs)  and  Fc   receptors  (FcRs)  (60).  

 

The   complement   system   can   be   activated   in   three   different   ways   dependent   on   the   trigger.   All   pathways;   the   classical   pathway,   the   lectin   pathway,   and   the   alternative   pathway  converge  at  the  activation  and  triggering  of  complement  component  3  (C3).   The  classical  pathway  is  sometimes  also  referred  to  as  the  antibody  dependent  classical   pathway   and   is   activated   by   the   binding   of   complement   component   1q   (C1q),   a   subcomponent  of  the  C1  complex,  to  IgG/IgM  clusters  bound  to  cell  walls  of  pathogens  or   apoptotic  cells,  or  by  the  pentraxin  family  members.  Alternatively,  direct  interaction  by   C1q  with  some  types  of  pathogens  can  also  trigger  this  pathway.  The  C1  complex  attracts   C2  and  C4  and  generates  the  C2C4  convertase,  which  is  able  to  cleave  the  C3  protein  and   results  in  C3a  and  C3b  (61,  62).  

The   lectin   binding   pathway   or   the   mannose   binding   pathway   (MBP)   is   initiated   by   the   recognition   of   characteristic   carbohydrate   patterns   expressed   on   the   surface   of   microorganisms.  Binding  occurs  via  the  mannose-­‐binding  lectin  (MBL)  protein  family  and   ficolins  and  activates  MBP  associated  serine  proteases  (MASPs)  (62).  The  different  MASPs   are   similar   to   C1r   and   C1q,   therefore   the   following   cascade   resembles   the   classical   pathway  and  will  converge  at  the  activation  and  cleavage  of  C3  (63,  64).  

The  alternative  pathway  of  the  complement  cascade  represents  a  process  that  needs  no   exogenous   trigger.   By   spontaneous   C3   hydrolysis,   new   binding   sites   are   exposed   and   factor  B  binds  to  hydrolyzed  C3  and  is  cleaved  by  factor  D  and  results  in  formation  of  C3

(24)

The  complement  system  

11  

convertase,  which  is  cleaved  into  C3a  and  C3b.  C3b  interacts  with  factor  B  and  this  factor   in  turn  is  cleaved  by  factor  D,  creating  a  full  C3  convertase  (C3bBb)  that  is  stabilized  by   the   binding   of   properdin   (65,   66).   Subsequently,   more   and   more   C3b   is   drawn   to   this   multiprotein   complex   attached   to   the   surface   of   the   microbe   leading   to   an   effective   opsonization  (60).  

After   opsonization   of   the   pathogen,   the   terminal   complement   pathway   is   triggered   resulting  in  formation  of  a  terminal  membrane  attack  complex  (MAC).  The  MAC  is  a  pore   like   structure   created   in   the   membrane   of   the   pathogen   leading   to   its   lysis   and   destruction  (60).  The  complement  system  is  strictly  controlled  to  protect  the  host  from   complement  mediated  damage.  This  is  mediated  by  soluble  and  cell  bound  complement   regulators.  

Among  the  regulators  is  C1  esterase  inhibitor  (C1-­‐INH).  This  inhibitor  have  an  effect  on   several  proteases  in  the  classical  and  lectin  binding  pathway.  The  abundantly  expressed   factor  H  (fH)  acts  on  the  C3  convertase  or  serve  as  a  cofactor  for  degradation  of  C3b,  but   can  also  prevent  self  attack.  The  C3  convertase  is  also  regulated  by  factor  I  (fI),  factor  H   like  protein,  and  C4  binding  protein.  In  addition,  most  cells  in  the  body  express  receptors   that  function  as  convertase  regulators,  e.g.  complement  receptor  1  (CR1)  and  CD55,  but   they   also   express   receptors   working   as   cofactors   for   fI,   e.g.   CR1   and   CD49.   The   plasma   membrane   bound   protein   protectin   (CD59),   a   complement   regulatory   protein,   inhibits   the  formation  of  the  MAC  complex  (67,  68).  The  inactivation  and  degradation  of  C3b  leads   to   the   production   of   inactivated   C3   fragments   iC3b,   iC3dg,   and   iC3d   and   these   complement   fragments   do   not   have   any   further   function   in   the   lytic   cascade   but   are   ligands  to  complement  receptors.  

Complement   receptor   1   (CR1:   CD35)   is   a   cell   membrane   receptor   expressed   on   leucocytes,  erythrocytes,  and  podocytes.  CR1  binds  C3b  and  C4b  and  plays  an  important   role  in  the  regulation  of  the  complement  cascade  but  CR1  also  binds  immune  complexes   coated  with  C3b  and  remove  them  from  circulation  by  transporting  them  to  the  liver  or   spleen  (69).  Complement  receptor  2  (CR2:  CD21)  is  predominantly  expressed  on  B  cells,   T  cells,  and  follicular  dendritic  cells  (FDCs)  and  interacts  mainly  with  C3dg  and  C3d.            Complement  receptor  3  (CR3:  MAC-­‐1)  and  complement  receptor  4  (CR4:  pl  150,95)  are   both  members  of  the  β2-­‐integrin  family.  CR3  consists  of  two  chains,  an  165  kDa  αM-­‐chain   (CD11b)  and  an  95  kDa  β-­‐chain  (CD18)  and  is  expressed  primarily  on  myeloid  cells  but   also  on  NK  cells  ,  microglia,  osteoblasts,  and  some  epithelial  cells  (70).  CR4  has  the  same   β2-­‐chain  but  instead  this  chain  is  linked  to  a  150  kDa  αX-­‐chain  (CD11c)  and  the  CR4  is

(25)

The  complement  system  

12  

basically   found   on   the   same   cell   types   as   CR3.   CR3   has   been   shown   to   be   involved   in   many   coordinating   and   adhesion   functions   in   the   immune   system,   e.g.   adhesion   and   migration   of   leucocytes   during   homing,   and   the   binding   and   phagocytosis   of   opsonized   particles  (70-­‐72).  CR3  can  bind  to  several  ligands  with  high  affinity  including  iC3b,  ICAM-­‐ 1,   fibrinogen,   and   clotting   factor   X   and   with   low   affinity   to   C3b   and   C3bg  (70,  73).   The   binding  site  for  iC3b,  C3b,  and  C3bg  are  located  on  the  α-­‐chain  (CD11b)  and  the  binding  is   Ca2+   dependent   (73).   Several   studies   have   reported   that   cells   expressing   CR3   and   CR4  

have  an  enhanced  HIV-­‐1  replication.  The  CR3  and  CR4  expressed  by  DCs  are  involved  in   trans  infection  of  HIV-­‐1  (74).  In  addition,  an  increasing  amount  of  evidence  indicates  that   CR3  and  CR4  also  play  a  role  in  antigen  presentation  and  CD8+  T  cell  activation  (75).      

3.2  Complement  opsonization  of  HIV-­‐1  

Several  viruses  including  HIV-­‐1,  Vaccinia  virus,  Herpes  simplex  virus  (HSV),  and  Epstein-­‐ Barr   virus   have   been   shown   to   directly   activate   the   complement   system   (76).   HIV-­‐1   is   able  to  activate  all  three  pathways  of  the  complement  system  already  in  the  initial  phase   of  infection  (76).  The  lectin  pathway  is  activated  by  the  binding  of  MBL  to  high  mannose   carbohydrates  on  HIV-­‐1  gp120  (77)  and  the  classical  pathway  is  activated  by  the  binding   of   viral   gp41   to   the   A-­‐chain   of   C1q   (78).   The   activation   occurs   in   the   absence   of   antibodies.   However,   after   seroconversion   the   presence   of   HIV-­‐1   specific   antibodies   further   enhances   the   activation   of   the   classical   complement   pathway   (79,  80).   Of   note,   due   to   mechanisms   developed   by   HIV-­‐1,   virions   resist   complement   mediated   lysis   and   the  activation  of  the  complement  cascade  result  in  deposition  of  inactivated  C3  fragments   on  the  viral  surface,  i.e.  opsonization  (81,  82)  (Fig.  5  and  6).  HIV-­‐1  acquires  complement   lysis   resistance   factors   during   the   budding   from   the   host   cell   plasma   membrane   and   these   receptors   are   incorporated   in   the   viral   envelope.   These   factors   that   inhibit   the   complement  cascade  are  the  membrane  cofactor  protein  (MCP:  CD46),  decay  accelerating   factor  (DAF:  CD55),  and  CD59  (83).  In  addition,  HIV-­‐1  can  bind  soluble  fH,  which  further   protects  virions  from  destruction  (64,  84).  There  are  many  other  pathogens  besides  HIV-­‐ 1  that  have  developed  different  methods  to  escape  the  complement  system  (81,  82,  85).     However,  HIV-­‐1  is  not  only  spared  from  lysis  it  also  uses  the  deposition  of  complement   fragments  on  the  surface  to  its  own  advantage  (86).    

The   interaction   of   HIV-­‐1   with   cells   is   mediated   by   the   viral   receptor   gp120   binding   to   multiple  receptors  including  CD4  and  coreceptors  (87).  However  when  HIV-­‐1  is  covered   with  C3  fragments  the  carbohydrates  expressed  on  gp120  may  be  partly  or  completely

(26)

The  complement  system  

13  

covered   by   complement   fragments   and   thereby   poorly   accessible   for   receptor   binding.   Experiments  in  macaques  and  in  vitro  T  cell  experiments  have  shown  that  opsonization  of   virions   by   C3   fragments   masks   epitopes   on   the   viral   envelope   leading   to   reduced   infection   of   T   cells,   which   are   CR3   negative   (88-­‐90).   Moreover,   virions   also   use   the   complement   fragments   to   increase   their   infectivity   by   interacting   with   cells   expressing   CRs.  The  complement  fragment  iC3b  is  the  major  ligand  for  CR3,  but  this  receptor  also   binds  to  other  ligands  like  ICAM-­‐1,  which  is  an  adhesion  molecule  acquired  by  the  virions   from  the  host  cell  plasma  membrane  during  the  process  of  budding.  In  addition  the  gp41   part  of  the  HIV-­‐1  envelope  receptor  can  also  interact  with  CR3  (91).  Finally,  complement   opsonized  HIV-­‐1  have  been  found  throughout  the  body,  e.g.  in  blood,  breast  milk,  mucosa,   seminal   fluid,   and   lymph   nodes   (64),   and   should   be   taken   in   consideration   when     studying  HIV-­‐1.    

 

   

Figure  5.  Free  and  opsonized  HIV-­‐1.  

HIV-­‐1  immediately  activates  the  complement  cascade  but  is  protected  from  complement  mediated  lysis   leading  to  deposition  of  C3  fragments  on  the  surface  of  HIV-­‐1  (C-­‐HIV)  (92).  After  seroconversion,  HIV-­‐1  can   be  covered  with  HIV-­‐1  specific  antibodies  (IgG-­‐HIV)  and  HIV-­‐1  specific  antibodies  in  combination  with   complement  fragments  (C-­‐IgG-­‐HIV)  (93).  Seroconversion  enhances  the  activation  of  the  classical  pathway   and  increases  the  amount  of  C3  cleavage  products  deposited  on  the  surface  of  HIV-­‐1  (64,  94).  

(27)

The  complement  system  

14    

Figure   6.   Complement   activation   on   the   viral  surface  of  HIV-­‐1.  

HIV-­‐1  can  activate  all  three  pathways  of  the   complement   system,   classical,   mannose-­‐ binding-­‐lectin   (MBL)   and   alternative   pathway.   The   initiation   of   the   classical   pathway   can   occur   in   the   absence   of   HIV-­‐ specific   antibodies   but   they   enhance   the   activation   of   the   classical   pathway   after   seroconversion   (95,   96).   The   classical   pathway  is  initiated  by  the  binding  of  C1q  to   gp41   (97).   However,   activation   by   the   mannose-­‐binding-­‐lectin   (MBL)   pathway   is   triggered   by   the   binding   of   MBL   to   carbohydrate   side   chains   expressed   on   gp120  (98).  

The   alternative   pathway   is   independent   of   antibodies  and  starts  by  the  hydrolyzation  of   C3  to  C3(H2O).  All  three  pathways  result  in   the   formation   of   C3   convertase,   which   cleaves  C3  into  C3b  and  C3a.  However,  HIV-­‐ 1  escape  compliment  mediated  lysis  by  MAC   (C5b6789),  owing  to  factors  acquired  during   the  budding  from  the  host  cell.  These  factors   are   incorporated   in   the   viral   envelope   and   include   CD55,   CD59,   and   CD46   (99).   CD55   dissociates   the   C3   convertase   and   CD59   blocks  the  formation  of  the  MAC  complex  by   the   polymerization   of   C9.   CD46   interacts   with   factor   I   (fI),   which   cleaves   C3b   to   inactive  C3b  (iC3b)  and  subsequently  to  C3c   and   C3d.   Factor   H   (fH),   incorporated   in   the   viral   envelope,   interacts   with   gp120   and   gp41   and   this   protects   the   virions   from   complement   mediated   lysis   (86,   100-­‐102).   However,   fH   also   plays   role   in   the   inactivation   of   C3b   by   working   as   an   additional  cofactor  for  fI  (73,  103).  

(28)

The  complement  system  

15  

3.3  Outcomes  after  complement  activation  by  HIV-­‐1  

A  fraction  of  the  HIV-­‐1  particles  trigger  the  terminal  activation  pathway  and  are  lysed  by   the  MAC,  but  a  substantial  amount  of  the  virions  remains  opsonized  and  mediates  their   effects   on   the   immune   system   by   interacting   with   CRs   and   FcRs   (60).   The   complement   opsonized  virions  affect  the  immune  system  in  many  ways  (60).  For  instance,  interaction   of  complement  opsonized  HIV-­‐1  with  CR1  on  erythrocytes  might  facilitate  the  spread  of   opsonized   HIV-­‐1   to   the   liver   and   spleen   where   HIV-­‐1   can   be   transferred   to   target   cells   (104).  CR2  is  involved  in  trapping  HIV-­‐1  in  the  centers  in  the  lymphoid  organs  by  binding   complement  and  immune  complex  opsonized  HIV-­‐1  to  FDCs.  In  fact,  CR2  is  the  main  HIV-­‐ 1  binding  receptor  on  FDCs  in  vivo,  no  involvement  of  CR1  or  CR4  (105).  HIV-­‐1  opsonized   with  complement  and/or  immune  complex  binds  to  the  surface  of  the  FDCs  and  can  stay   trapped  there  for  months  without  infecting  the  FDCs  (106).  During  this  time  the  trapped   virions   are   highly   infectious   for   CD4+   T   cells   even   in   the   presence   of   neutralizing   antibodies  (107).    

       Virions   opsonized   by   complement   fragments   and   immune   complexes   mark   them   for   uptake   by   phagocytosis   and   destruction.   Phagocytes   like   DCs   and   macrophages   internalize  the  opsonized  virus  mainly  via  FcRs  or  CRs.  The  presence  of  iC3b  on  the  viral   surface   leads   to   the   interaction   with   CR3   and   CR4   and   several   studies   have   shown   a   highly   increased   HIV-­‐1   infection   in   cells   expressing   these   CRs   (73).   For   instance,   DCs   infected  with  HIV  opsonized  with  complement  and  anti  HIV-­‐IgG  had  a  10-­‐fold  increased   infection   compared   to   cells   infected   with   free   virions   (108).   Of   note,   viral   replication   increased   in   latently   infected   monocytes   following   stimulation   of   CR3   (109).   A   twofold   increase  in  HIV-­‐1  infection  was  seen  in  an  epithelial  cells  line  when  infected  with  seminal   fluid  opsonized  virions  compared  to  free  virions  and  this  enhanced  infection  was  due  to   CR3   engagement   (110).   We   have   previously   shown   in   our   group   that   complement   opsonized   virions   are   more   efficiently   internalized   via   receptor   mediated   endocytosis   than  free  viral  particles  (111).    

           

References

Related documents

As microbial translocation and the associated immune activation have been shown to correlate with T cell depletion, we evaluated, in Paper II, the

The general aim of this thesis was to describe HIV infection in the elderly, focusing on drug levels, side effects, drug-drug interactions, comorbidities and

H4miRNA was expressed at detectable level in both infected and uninfected cells and no significant change of expression was observed upon HIV-1

The contribution of CD70 and BAFF in the activation of B cells was studied using CD70 neutralizing antibodies (CD70) and soluble BAFFR respectively in the presence of IL-7 treated

The overall aim of this thesis was to study the potential impact of human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells on CD1d expression and

Finally, this method was applied to investigate intra-host phylodynamic patterns and the emergence and population dynamics of archival viral strains in HLA-B*5701

HIV is one of the fastest evolving organisms known. Due to the fast evolutionary rate, the virus evades the host immune system and has the capacity to develop

regulatory proteins. It has been reported to have several functions among which are down-regulation of CD4 and major histocompatibility complex I and II from the plasma membrane,