• No results found

Molecular Biotechnology Programme Uppsala University School of Engineering

N/A
N/A
Protected

Academic year: 2022

Share "Molecular Biotechnology Programme Uppsala University School of Engineering"

Copied!
2
0
0

Loading.... (view fulltext now)

Full text

(1)

Molecular Biotechnology Programme

Uppsala University School of Engineering

UPTEC X11 048 Date of issue 2012-01

Author

Mikael Nissbeck

Title (English)

The oligomeric structure of Poly(A)-specific ribonuclease (PARN)

Title (Swedish)

Abstract

Poly(A)-specific ribonuclease (PARN) is a deadenylase that degrades the poly(A) tail of eukaryotic mRNA. PARN also interacts with the 5’-cap structure of the mRNA. The binding of the cap structure enhances the deadenylation rate. PARN has previously been described as a dimer. We have studied PARN with size exclusion chromatography to investigate the oligomeric composition and revealed oligomeric compositions of PARN that are larger than dimeric PARN. Deadenylation assays have been used to measure the cap stimulated activity of PARN. The deadenylation assays showed that the cap stimulated activity of PARN correlated with the abundance of oligomers corresponding in size to tetrameric PARN. We present a model for tetrameric PARN and propose a mechanistic model for how the cap stimulates PARN mediated deadenylation.

Keywords

Poly(A)-specific ribonuclease (PARN), deadenylation, mRNA metabolism, cap stimulation, oligomerization.

Supervisors

Anders Virtanen

ICM, Uppsala University

Scientific reviewer

Torsten Unge

ICM, Uppsala University

Project name Sponsors

Language

English

Security

ISSN 1401-2138 Classification

Pages

31

Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687

(2)

References

Related documents

It showed large dynamic range, no measureable non-specific binding and high sensitivity (with linear range around 0.1 – 10 µg/ml depending on the proteins). The method

Escherichia coli, 23S rRNA, Post-transcriptional modification, In vitro, Peptidyl transferase centre, domain V, Methylation, Pseudouridine, Reverse

The fibrinolytic enzyme tissue type plasminogen activator (t-PA) is released by the vascular endothelium to limit the growth of blood clots and ultimately prevent the occurrence of

investigate the presence of P4 in the brain, in neuromuscular junctions and in adrenal glands, the colocation between P4 and VAChT respectively P4 and VMAT and the possibility that P4

The information obtained by using these algorithms could contribute to the development of new drugs by generating new ligands that target specific high-energy , unfavorable

Results from the project shows that when multiplexing there are differences in measured IgE- levels between an existing singleplex method and the multiplex prototype. The project also

A method for measuring cell concentration and identity based on flow cytometry (FCM) and fluorescent marking is developed and subsequently compared with traditional plating based

Here we have attempted to produce the serine proteases rat mast cell protease 2 and mouse mast cell protease 5 in a culture of HEK 293 cells; and mouse mast cell protease 4,