• No results found

Vågrörelselära och optik

N/A
N/A
Protected

Academic year: 2021

Share "Vågrörelselära och optik"

Copied!
27
0
0

Loading.... (view fulltext now)

Full text

(1)

Vincent Hedberg - Lunds Universitet 1

Vågrörelselära och optik

Kapitel 14 – Harmonisk oscillator

Vincent Hedberg - Lunds Universitet 2

Vågrörelselära och optik

(2)

Vincent Hedberg - Lunds Universitet 3

Vincent Hedberg - Lunds Universitet 3

Vågrörelselära och optik

Kurslitteratur: University Physics by Young & Friedman (13th edition)

Harmonisk oscillator: Kapitel 14.1 – 14.4

Mekaniska vågor: Kapitel 15.1 – 15.8

Ljud och hörande: Kapitel 16.1 – 16.9

Elektromagnetiska vågor: Kapitel 32.1 & 32.3 & 32.4

Ljusets natur: Kapitel 33.1 – 33.4 & 33.7

Stråloptik: Kapitel 34.1 – 34.8

Interferens: Kapitel 35.1 – 35.5

Diffraktion: Kapitel 36.1 - 36.5 & 36.7

Vincent Hedberg - Lunds Universitet 4

Vågrörelselära och optik

kap 14

kap 14+15 kap 15

kap 36

kap 15+16

kap 16 kap 16+32

kap 32+33 kap 33

kap 34

kap 34

kap 34+35

kap 35

kap 36

(3)

Vincent Hedberg - Lunds Universitet 55

Introduction

5

Theoretical model:

Velocity =

Distance / Time

Vincent Hedberg - Lunds Universitet 6

Introduction

Theoretical model:

Position =

r(x,y,z,t)

r(x,y,z,t)

Velocity =

the derivative of r

with respect to time

(4)

Vincent Hedberg - Lunds Universitet 7

Harmonic oscillation

What is harmonic oscillation and how can we

describe it mathematically ?

Vincent Hedberg - Lunds Universitet 8

Harmonic oscillation: Examples

(5)

Vincent Hedberg - Lunds Universitet 9

Vincent Hedberg - Lunds Universitet 9

Vincent Hedberg - Lunds Universitet 9

Experiment to find a mathematical

description of harmonic oscillation

Harmonic oscillation: Experiment

Vincent Hedberg - Lunds Universitet 10

Harmonic oscillation: Experiment

Conclusion: Harmonic oscillation can be described

by the function: x = a sin(bt + c) x

(6)

Vincent Hedberg - Lunds Universitet 11

Harmonic oscillation: Experiment

x

Period: The time it takes for the weight to go up and down

Frequency: The number of periods per second.

Amplitude: The maxium movement.

Vincent Hedberg - Lunds Universitet 12

Harmonic oscillation: Notation

(7)

Vincent Hedberg - Lunds Universitet 13

We now have a mathematical description of the

displacement.

What is the velocity and acceleration ?

Harmonic oscillation:

velocity & acceleration

Vincent Hedberg - Lunds Universitet 14

Harmonic oscillation:

velocity & acceleration

(8)

Vincent Hedberg - Lunds Universitet 15

Harmonic oscillation: Problem

Problem solving

Vincent Hedberg - Lunds Universitet 16

Harmonic oscillation: Problem

(9)

Vincent Hedberg - Lunds Universitet 17

Harmonic oscillation: The spring

Properties of a spring

Hookes law & Forces

Vincent Hedberg - Lunds Universitet 18

Harmonic oscillation: The spring

(10)

Vincent Hedberg - Lunds Universitet 19

Gravity will

stretch the

spring to a

new eqilibrium

position.

This is not the

case when the

spring is

horizonthal.

However, the oscillations will be the same.

Harmonic oscillation: The spring

Vincent Hedberg - Lunds Universitet 20

Harmonic oscillation: Forces

Forces on a mass

connected to a

horisonthal spring

(11)

Vincent Hedberg - Lunds Universitet 21

Harmonic oscillation: Forces

F = m a (Newton’s second law)

Vincent Hedberg - Lunds Universitet 22

Harmonic oscillation: Forces

a x = -ω 2 x

Old formulas:

New formula:

Combine: -ω 2 = -k/m The frequency

depends on the

spring constant and

the mass

(12)

Vincent Hedberg - Lunds Universitet 23

Harmonic oscillation:

Circular motion

Circular motion can be used to

describe harmonic oscillation

Vincent Hedberg - Lunds Universitet 24

Harmonic oscillation:

Circular motion

Since harmonic oscillation is described by a sinus

function it can also be compared to a circular

motion.

(13)

Vincent Hedberg - Lunds Universitet 25

Harmonic oscillation:

Circular motion

Vincent Hedberg - Lunds Universitet 26

Basic description

of circular motion

with constant

speed |v|

Harmonic oscillation:

Circular motion

(14)

Vincent Hedberg - Lunds Universitet 27

Harmonic oscillation:

Circular motion

What is x, v and a in the x-direction ?

radius

Vincent Hedberg - Lunds Universitet 28

Harmonic oscillation:

Circular motion

Combine

the acceleration from the discussion about

forces

with

the acceleration in circular motion .

(15)

Vincent Hedberg - Lunds Universitet 29

F = m a

F = -k x

a x = -k x / m

a x = -ω 2 x

Forces Circular

Motion

Harmonic oscillation: Frequency

Simple harmonic motion requires a restoring force

that is proportinal to the displacement.

Vincent Hedberg - Lunds Universitet 30

Harmonic oscillation: Frequency

Note: f and T depends only on k and m but not on the

amplitude !

m k A

(16)

Vincent Hedberg - Lunds Universitet 31

Harmonic oscillation:

Angular motion

Angular simple harmonic oscillation

Vincent Hedberg - Lunds Universitet 32

The spring in a watch is a harmonic oscillator.

Harmonic oscillation:

Angular motion

(17)

Vincent Hedberg - Lunds Universitet 33

Harmonic oscillation: Pendulum

The pendulum

Vincent Hedberg - Lunds Universitet 34

Harmonic oscillation: Pendulum

The pendulum is a harmonic oscillator.

(18)

Vincent Hedberg - Lunds Universitet 35

Harmonic oscillation:

Equations of motion

Vincent Hedberg - Lunds Universitet 36

Harmonic oscillation: Problem

Problem solving

(19)

Vincent Hedberg - Lunds Universitet 37

Harmonic oscillation: Problem

Vincent Hedberg - Lunds Universitet 38

Harmonic oscillation: Problem

t = 0

t = 0

(20)

Vincent Hedberg - Lunds Universitet 39

Harmonic oscillation: Problem

ω = 20 rad/s

φ = -0.93 rad

A = 0.025 m

Vincent Hedberg - Lunds Universitet 40

Harmonic oscillation: Energy

Energy in harmonic oscillation

(21)

Vincent Hedberg - Lunds Universitet 41

Harmonic oscillation: Energy

x

The total

mechanical energy is

constant

Vincent Hedberg - Lunds Universitet 42

What is the total mechanical energy ?

Harmonic oscillation: Energy

(22)

Vincent Hedberg - Lunds Universitet 43

Harmonic oscillation: Problem

Problem solving

Vincent Hedberg - Lunds Universitet 44

Harmonic oscillation: Problem

(23)

Vincent Hedberg - Lunds Universitet 45

Harmonic oscillation: Problem

t = 0

What is the phase angle ?

Vincent Hedberg - Lunds Universitet 46

Harmonic oscillation: Problem

φ = 0

(24)

Vincent Hedberg - Lunds Universitet 47

Harmonic oscillation: Problem

Vincent Hedberg - Lunds Universitet 48

Harmonic oscillation: Problem

(25)

Vincent Hedberg - Lunds Universitet 49

Drop at the end position:

Harmonic oscillation: Problem

Vincent Hedberg - Lunds Universitet 50

Harmonic oscillation: Problem

(26)

Vincent Hedberg - Lunds Universitet 51

Harmonic oscillation

Vibration of

molecules

Vincent Hedberg - Lunds Universitet 52

Harmonisk oscillation

Mathematics:

The Binomial Theorem

If u is small one can use the beginning of the series as an

approximation:

(27)

Vincent Hedberg - Lunds Universitet 53

Harmonisk oscillation

Potential energy (U) The Force of one atom on the other (F)

The equilibrium point is at r = R

0

The displacement from the equlibrium point is x = r – R

0

Vincent Hedberg - Lunds Universitet 54

Harmonisk oscillation

Assume that the vibrations are small so that x/R

0

is small !

We can then use the Binomial Theorem

References

Related documents

Vid ytan mellan luft och glas är vinkeln 90 grader och då reflekteras och bryts ljuset. också med

Bild avstånd (s’) – positiv om samma sida som utgående ljus..

Beräkna amplituden E max av det elektriska fältet efter överlagringen av två interfererande vågor genom att använda fasvektorer.

Beräkna den totala elektriska fältstyrkan E p av det elektriska fältet efter överlagringen av alla interfererande vågor genom att använda fasvektorer.

Wave intensity (I): The rate at which energy is transported by a wave through a surface perpendicular to the wave direction per unit surface area (average power per unit area).

BEAT: If two sound waves with slighty different frequencies are added up they give a sound that is going up and down in intensity. Two waves with different

The total energy density (energy per unit volume) due to an electric and magnetic field is. Conclusions: The electric and magnetic fields carry the same amount

At the surface between air and glass the angle is always 90 degrees and then the reflected and refracted light is also at