• No results found

Vågrörelselära och optik

N/A
N/A
Protected

Academic year: 2021

Share "Vågrörelselära och optik"

Copied!
21
0
0

Loading.... (view fulltext now)

Full text

(1)

Vincent Hedberg - Lunds Universitet 1

Vincent Hedberg - Lunds Universitet 1

Vågrörelselära och optik

Kapitel 32 – Elektromagnetiska vågor

Vincent Hedberg - Lunds Universitet 2

Vågrörelselära och optik

Kurslitteratur: University Physics by Young & Friedman

Harmonisk oscillator: Kapitel 14.1 – 14.4

Mekaniska vågor: Kapitel 15.1 – 15.8

Ljud och hörande: Kapitel 16.1 – 16.9

Elektromagnetiska vågor: Kapitel 32.1 & 32.3 & 32.4

Ljusets natur: Kapitel 33.1 – 33.4 & 33.7

Stråloptik: Kapitel 34.1 – 34.8

Interferens: Kapitel 35.1 – 35.5

Diffraktion: Kapitel 36.1 - 36.5 & 36.7

(2)

Vincent Hedberg - Lunds Universitet 3

kap 14

kap 14+15 kap 15

kap 36

kap 15+16

kap 16 kap 16+32

kap 32+33 kap 33

kap 34

kap 34

kap 34+35

kap 35

kap 36

Maxwell’s equations

Electromagnetic waves

Maxwell’s equations

(3)

Vincent Hedberg - Lunds Universitet 5

Maxwells equations

Electromagnetic waves

Maxwell’s equations

Vincent Hedberg - Lunds Universitet 6

The implications of Maxwell’s Equations for magnetic and electric fields:

1. A static electric field can exist in the absence of a magnetic field e.g. a

capacitor with a static charge has an electric field without a magnetic field.

2. A constant magnetic field can exist without an electric field e.g. a conductor

with constant current has a magnetic field without an electric field.

3. Where electric fields are time-variable, a non-zero magnetic field must exist.

4. Where magnetic fields are time-variable, a non-zero electric field must exist

5. Magnetic fields can be generated by permanent magnets, by an electric

current or by a changing electric field.

6. Magnetic monopoles cannot exist. All lines of magnetic flux are closed loops.

Electromagnetic waves

Maxwell’s equations

(4)

Vincent Hedberg - Lunds Universitet 7

Vincent Hedberg - Lunds Universitet 7

Maxwell’s equations

The speed of light from Maxwell’s equations

Permittivity: A mediums ability to form an electric field in itself .

Permeability: A mediums ability to form a magnetic field in itself.

= 8.85 x 10

-12

F/m

= 1.26 x 10

-6

N/A

2

Electromagnetic waves

Maxwell’s equations

The electromagnetic wave

(5)

Vincent Hedberg - Lunds Universitet 9

Electromagnetic waves are produced by the vibration of charged particles.

An electromagnetic wave is a wave that is capable of transmitting its energy

through a vacuum.

The propagation of an electromagnetic wave,

which has been generated by a discharging

capacitor or an oscillating molecular dipole.

As the current oscillates up and

down in the spark gap a magnetic

field is created that oscillates in a

horizontal plane.

The changing magnetic field, in

turn, induces an electric field so

that a series of electrical and

magnetic oscillations combine to

produce a formation that

propagates as an electromagnetic

wave.

The field is strongest at 90 degrees to the moving

charge and zero in the direction of the moving charge.

Electromagnetic waves

Maxwell’s equations

Vincent Hedberg - Lunds Universitet 10

Experiment that demonstrates how moving

charges creates an electromagnetic field

Electromagnetic waves

Maxwell’s equations

(6)

Vincent Hedberg - Lunds Universitet 11

Electromagnetic waves

Electromagnetic waves

The electromagnetic spectrum

λ = c / f

(7)

Vincent Hedberg - Lunds Universitet 13

Electromagnetic waves

Wavefronts: surfaces with constant phase

Vincent Hedberg - Lunds Universitet 14

Wavefronts depends on the distance to the

source

Electromagnetic waves

(8)

Vincent Hedberg - Lunds Universitet 15

A plane wave is a constant-frequency wave whose wavefronts are infinite parallel

planes of constant peak-to-peak amplitude normal to the phase velocity vector.

At a particular point and time all E and B vectors in the plane have the same magnitude.

No true plane waves since only a plane wave of infinite extent will propagate as a plane

wave. However, many waves are approximately plane waves in a localized region of

space.

In a plane electromagnetic wave the E and B fields are perpendicular to the direction

of propagation so it is a transverse wave.

B

Electromagnetic waves

The wave function

The wavefunction

(9)

Vincent Hedberg - Lunds Universitet 17

Wavenumber: k = 2 π / λ

Angular frequency: ω = 2 π /T

Amplitude: A ν = λ / T

f = 1 / T

Mechanical waves:

The wavefunction

ν = λ / T = (2 π/ k ) / ( 2 π/ω) = ω / k

not the same

The electromagnetic wavefunction

Electromagnetic waves

The wave function

(10)

Vincent Hedberg - Lunds Universitet 19

Wavenumber: k = 2 π / λ

Angular frequency: ω = 2 π /T

Amplitude: E max = c B max

c = λ / T = (2 π/ k ) / ( 2 π/ω) = ω / k

c = λ / T

f = 1 / T

The wave function

Electromagnetic waves in matter:

Electromagnetic waves

The wave function

In a dielectric medium the speed of light is

smaller than c !

Dielectric constant

(11)

Vincent Hedberg - Lunds Universitet 21

Refractive index Dielectric constant Relative permeability

Electromagnetic wave in vacuum

Electromagnetic wave in matter

Permettivity Permability

Electromagnetic waves

The wave function

K = ε / ε 0 K m = μ/μ 0

Vincent Hedberg - Lunds Universitet 22

Problem solving

Electromagnetic waves

problems

(12)

Vincent Hedberg - Lunds Universitet 23

E

max

= c B

max

k = 2π/λ

c = ω/k

problems

Electromagnetic waves

problems

(13)

Vincent Hedberg - Lunds Universitet 25

Electromagnetic waves

problems

Vincent Hedberg - Lunds Universitet 26

Electromagnetic waves

Power & Intensity

Power & Intensity

(14)

Vincent Hedberg - Lunds Universitet 27

The power in general:

Wave power (P):

The instantaneous rate at which energy is transfered along the wave.

Unit: W or J/s

Wave intensity (I):

Average power per unit area through a surface perpendicular to the wave

direction.

Unit: W/m

2

Power & Intensity

The power in general:

Wave power (P):

The instantaneous rate at which energy is transfered along the wave.

Unit: W or J/s

Sound – power & intensity

(15)

Vincent Hedberg - Lunds Universitet 29

Electromagnetic waves

Power & Intensity

Total energy density (u):

Energy per unit volume due to an electric and magnetic field.

Unit: J/m

3

Power (P):

The instantaneous rate at which energy is transfered along a wave.

Unit: W or J/s

The Poynting vector (S):

Energy transferred per unit time per unit area = Power per unit area.

Unit: W/m

2

Intensity (I):

Average power per unit area through a surface perpendicular to the

wave direction = the average value of S.

Unit: W/m

2

Vincent Hedberg - Lunds Universitet 30

The total energy density

(energy per unit volume)

due to an electric and

magnetic field is

Conclusions: The electric and magnetic fields carry the same amount of energy.

The energy density varies with position and time.

B

B

2

= ε

0

μ

0

E

2

+

where

Electromagnetic waves

Power & Intensity

Energy E-field Energy B-field

(16)

Vincent Hedberg - Lunds Universitet 31

Energy transfer = energy transferred per unit time per unit area.

S = Power per unit area = Energy transfer = Energy flow

Power & Intensity

Amplitude = maximum energy transfer

Intensity = the average value of S

The average of cos

2

(x) = 1/2

Electromagnetic waves

Power & Intensity

(17)

Vincent Hedberg - Lunds Universitet 33

Electromagnetic waves

problems

Problem solving

Vincent Hedberg - Lunds Universitet 34

Electromagnetic waves

problems

maximum

(18)

Vincent Hedberg - Lunds Universitet 35

problems

Electromagnetic waves

Momentum & forces

Momentum &

forces

(19)

Vincent Hedberg - Lunds Universitet 37

Impuls:

The Momentum-Impuls theorem:

Kinematics

A change of momentum is equal to the

impulse.

Electromagnetic waves

Momentum & forces

Vincent Hedberg - Lunds Universitet 38

Electromagnetic waves carry momentum ( p = E/c ).

If the wave is absorbed or reflected this momentum is

transferred to the surface.

The momentum transfer creates a force ( F ) on the surface.

Radiation pressure (p

rad

) = force per unit area ( p

rad

= F/A ).

Electromagnetic waves

Momentum & forces

(20)

Vincent Hedberg - Lunds Universitet 39

Radiation pressure or thermal effect ?

Momentum & forces

Crooke’s radiometer

Electromagnetic waves

problems

Problem solving

(21)

Vincent Hedberg - Lunds Universitet 41

Electromagnetic waves

Intensity = power per unit area:

p

rad

= 1.4 x 10

3

/ 3.0 x 10

8

= 4.7 x 10

-6

N/m

2

References

Related documents

The aim of the present study was to introduce a new methodology combining different patient-specific data to identify the optimal implant position of the chronic DBS lead:

Comparison of Lead Designs, Operating Modes and Tissue Conductivity. Linköping Studies in Science and Technology,

The investigated conditions are several; higher and lower water inflows to the hydro power reservoirs; different amounts of installed wind power production; different price levels

Thus, the Direct Current Internal Resistance (DCIR) is essential for the energy consumption analysis to calculate the battery loss during driving cycles and charging.. For a

The current level for each harmonic distortion was used to calculate two different loss factors, eddy current and stray losses, due to the harmonic currents in the transformer..

This paper proposed a reconstruction scheme for the recov- ery of a uniformly sampled sequence from the output of a TI-ADC with static time-skew errors and missing samples.. In order

Med utgångspunkt från syftet har jag försökt få svar på vilka olika definitioner som finns av begreppet hälsa, vad fysisk respektive psykisk hälsa innebär, hur hälsoarbetet

Rydén menar att Klara Johanson är en i hög grad läsvärd kritiker och att hennes betydelse kanske främst beror på att den egna stämman så tydligt