• No results found

Rice yields under water-saving irrigation management

N/A
N/A
Protected

Academic year: 2021

Share "Rice yields under water-saving irrigation management"

Copied!
46
0
0

Loading.... (view fulltext now)

Full text

(1)

Bachelor’s thesis

Geography, 15 Credits

Rice yields under water-saving irrigation management

A meta-analysis

Amanda Åberg

GG 198 2017

Department of Physical Geography

(2)
(3)

Preface

This Bachelor’s thesis is Amanda Åberg’s degree project in Geography at the Department of Physical Geography, Stockholm University. The Bachelor’s thesis comprises 15 credits (a half term of full-time studies).

Supervisor has been Stefano Manzoni at the Department of Physical Geography, Stockholm University. Examiner has been Steve Lyon at the Department of Physical Geography, Stockholm University.

The author is responsible for the contents of this thesis.

Stockholm, 16 June 2017

Steffen Holzkämper

Director of studies

(4)
(5)

Abstract  

Water  scarcity  combined  with  an  increasing  world  population  is  creating  pressure  to   develop  new  methods  for  producing  food  using  less  water.  Rice  is  a  staple  crop  with  a  very   high  water  demand.  This  study  examined  the  success  in  maintaining  yields  under  water-­‐

saving  irrigation  management,  including  alternate  wetting  and  drying  (AWD).  A  meta-­‐

analysis  was  conducted  examining  yields  under  various  types  of  water-­‐saving  irrigation   compared  to  control  plots  kept  under  continuous  flooding.  The  results  indicated  that  yields   can  indeed  be  maintained  under  AWD  as  long  as  the  field  water  level  during  the  dry  cycles  is   not  allowed  to  drop  below  -­‐15  cm,  or  the  soil  water  potential  is  not  allowed  to  drop  below  -­‐

10  kPa.  Yields  can  likewise  be  maintained  using  irrigation  intervals  of  2  days,  but  the   variability  increases.  Midseason  drainage  was  not  found  to  affect  yield,  though  non-­‐flooded   conditions  when  maintained  throughout  most  of  the  crop  season  appeared  to  be  detrimental   to  yields.  Increasingly  negative  effects  on  yields  were  found  when  increasing  the  severity  of   AWD  or  the  length  of  the  drainage  periods.  Potential  benefits  and  drawbacks  of  water-­‐saving   irrigation  management  with  regards  to  greenhouse  gas  emissions,  soil  quality  and  nutrient   losses  were  discussed  to  highlight  the  complexity  of  the  challenges  of  saving  water  in  rice   production.    

 

Keywords:  rice,  yield,  water  scarcity,  water-­‐saving  irrigation,  WSI,  alternate  wetting  and   drying,  AWD,  soil  organic  matter,  soil  organic  carbon.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6)
(7)

Table  of  contents  

 

Abbreviations  ...  4

 

1.  Introduction  ...  5  

2.  Research  questions  and  problem  formulation  ...  6  

3.  Water  management  in  rice  farming  ...  7  

3.1  Field  level  water  flows  ...  7

 

3.2  Field  level  irrigation  management  approaches  ...  7

 

3.2.1  Alternate  wetting  and  drying,  submergance-­‐nonsubmergance  and  intermittent  irrigation  ...  8

 

3.2.2.  Saturated  soil  culture  ...  9

 

3.2.3.  Controlled  irrigation  ...  9

 

3.2.4.  Midseason  drainage  ...  9

 

3.3  Influence  of  water-­‐saving  irrigation  management  on  rice  yields  and  water  savings  ...  9

 

4.  Methodology  ...  10  

4.1.  Data  collection  ...  10

 

4.2.  Data  compilation  and  evaluation  ...  11

 

4.3.  Data  analysis  ...  13

 

5.  Results  ...  17  

5.1.  Yields  under  WSI  management  ...  17

 

5.2.  Regional  differences  in  WSI  yield  ...  18

 

5.3.  Influence  of  severity  of  WSI  management  on  yield  ...  19

 

5.4.  Nitrogen  fertilization  effect  on  yields  ...  21

 

6.  Discussion  ...  22  

6.1.  Rice  yields  under  varying  irrigation  managements  ...  22

 

6.2.  Environmental  implications  of  water-­‐saving  irrigation  ...  24

 

6.2.1.  Greenhouse  gas  emissions  and  soil  quality  ...  24

 

6.2.2.  Nutrient  and  herbicide  losses  ...  26

 

6.3.  Implementation  of  water-­‐saving  irrigation  management  ...  27

 

6.4.  Methodological  and  data  weaknesses  ...  27

 

6.5.  Future  research  ...  28

 

7.  Conclusions  ...  29  

Acknowledgements  ...  29  

References  ...  29  

Appendix  A  ...  34    

 

 

 

 

 

(8)

Abbreviations  

ASNS   alternate  submergance-­‐nonsubmergance   AWD   alternate  wetting  and  drying  

CF   continuous  flooding   FWL   field  water  level   SOC   soil  organic  carbon   SOM   soil  organic  matter   SWP   soil  water  potential   WSI   water-­‐saving  irrigation   WUE   water  use  effiency    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9)

1.  Introduction  

Rice  is  a  staple  food  for  a  large  number  of  the  human  population  and  constitutes  the  largest   food  source  as  well  as  a  significant  income  for  inhabitants  of  developing  countries  (GRiSP,   2013).  Worldwide  rice-­‐farming  environments  are  oftentimes  divided  into  four  types:  

lowland  irrigated  rice,  lowland  rainfed  rice,  flood-­‐prone  rice  and  upland  rice.    Of  these   environments,  the  irrigated  lowlands,  covering  approximately  93  million  hectares  of  land,   produce  75%  of  the  total  world  rice  production  (Bouman  et  al.,  2007;  GRiSP,  2013).  Rice   receives  about  two  to  three  times  more  water  at  the  field  level  than  most  other  crops,  and   these  irrigated  rice  environments  consume  approximately  24-­‐30%  of  the  world's  freshwater   withdrawals.  Meanwhile,  decreases  in  water  resources  and  declines  in  water  quality  are   resulting  in  water  scarcity.  Combined  with  increased  competition  from  urban  and  industrial   sectors,  this  water  scarcity  poses  a  threat  to  the  sustainability  of  rice  production.  New   methods  are  thus  required  to  deal  with  the  challenges  posed  by  water  scarcity  (Bouman  et   al.,  2007).  

 

Saving  water  is  rarely  a  voluntary  decision  made  by  farmers.  It  is  more  often  either  an   imposed  decision  made  at  a  higher  level  or  a  necessity  dictated  by  physical  water  scarcity   (Bouman  et  al.,  2007).  Due  to  the  pivotal  role  of  rice  as  a  staple  food  for  a  large  part  of  the   world's  population,  many  studies  have  examined  the  effect  of  different  irrigation  regimes  on   rice  yields  (Carrijo  et  al.,  2017).  Many  of  these  studies  have  found  a  small  decrease  in  yield   accompanied  by  a  significant  increase  in  water  productivity  when  water-­‐saving  irrigation   (WSI)  methods  were  used  (see  e.g.  Bouman  and  Tuong,  2001  for  a  summary).  Other  studies   found  an  insignificant  difference  in  yield  between  continuous  flooding  and  water-­‐saving   methods  (e.g.  Cabangon  et  al.,  2001;  Belder  et  al.,  2004).    

 

The  purpose  of  this  study  is  to  examine  patterns  in  the  relationship  between  rice  yield  and   water  management  by  systematically  collating  data  from  a  number  of  studies.  Bouman  and   Tuong  published  a  meta-­‐analysis  in  2001,  examining  water-­‐saving  irrigation  at  the  field  level   and  its  impact  on  yields.  Their  study  provides  an  excellent  opportunity  to  examine  whether   yield  improvements  under  WSI  management,  relative  to  continuous  flooding,  have  been   documented  in  the  16  years  that  have  passed  since.  A  recently  published  meta-­‐analysis   conducted  by  Carrijo  et  al.  (2017)  will  serve  as  a  contemporary  comparison.    

 

As  has  been  stated  by  Linquist  et  al.  (2015),  though  many  studies  have  examined  potential   benefits  of  water-­‐saving  irrigation,  the  consequences  are  rarely  evaluated  concomitantly.  

Water  management  in  rice  farming  has  several  environmental  implications,  aside  from  the   challenge  of  water  scarcity.  Rice  farming  emits  approximately  four  times  as  much  

greenhouse  gas  as  wheat  or  maize  and  therefore  has  significant  potential  in  terms  of  

mitigating  agricultural  greenhouse  gas  contributions  (Linquist  et  al.,  2012).  Reducing  the  

amount  of  time  the  soil  is  kept  under  flooded  anaerobic  conditions  has  been  found  to  

decrease  emissions  of  the  strong  greenhouse  gas  methane.  However,  the  conversion  to  

aerobic  conditions  instead  leads  to  increased  microbial  activity  and  increased  soil  organic  

matter  (SOM)  decomposition  and  CO

2

 emissions  (Sahrawat,  2005;  Haque  et  al.,  2016a).    SOM  

has  great  importance  for  soil  health  and  agricultural  sustainability.  The  conversion  to  more  

aerobic  conditions  may  therefore  have  significant  implications  for  long-­‐term  soil  fertility  and  

rice  farming  sustainability.  Furthermore,  the  implementation  of  water-­‐saving  irrigation  has  

(10)

also  been  found  to  affect  nutrient  availability  in  the  soil,  as  well  as  losses  of  fertilizers   through  surface  runoff  and  seepage  (Sahrawat,  2005;  Yang  et  al.,  2015).  Hence,  the  

implementation  of  water-­‐saving  irrigation  has  many  implications  that  should  be  considered   in  addition  to  the  challenges  of  water  scarcity.    

2.  Research  questions  and  problem  formulation  

The  aim  of  this  project  is  to  examine  the  relationship  between  yields  and  water-­‐saving   irrigation  in  rice  farming  systems  using  a  meta-­‐analysis  approach.  This  study  will  attempt  to   collate  information  from  multiple  studies  to  examine  said  relationship.  Specifically,  this   project  will  attempt  to  answer  the  following  questions:  

 

• Is  rice  yield  consistently  higher  under  continuous  flooding  compared  to  alternate  wetting   and  drying  and  other  water-­‐saving  forms  of  irrigation  management?  

• Can  a  spatial  pattern  be  discerned,  in  which  water-­‐saving  irrigation  has  been  more   successful  in  any  certain  region  of  Asia?  

 

Through  literature  studies,  some  of  the  environmental  implications  of  employing  water-­‐

saving  irrigation  management  will  also  be  qualitatively  examined  and  discussed.  This  study   wishes  to  place  water-­‐saving  irrigation  in  a  larger  context  by  providing  a  summary  of  both   benefits  and  drawbacks  of  its  implementation.  Whether  or  not  different  levels  of  nitrogen   fertilizer  input  affect  the  success  of  water-­‐saving  irrigation  will  also  be  briefly  examined.    

 

There  are  many  ways  to  save  water  aside  from  changing  irrigation  practices,  such  as  proper   land  preparation  and  bund  construction  (Bouman  et  al.,  2007),  but  these  measures  are   largely  outside  the  scope  of  this  paper.  No  attempt  will  be  made  to  quantitatively  assess   actual  water  savings,  though  potential  water  savings  will  be  briefly  discussed.  The  study  will   be  limited  to  rice  systems  in  East,  South,  and  Southeast  Asia.  The  relatively  large  spatial   extent  of  field  experiments  included  in  this  analysis  is  partly  the  result  of  the  need  to  keep   the  collection  of  data  objective  and  systematic.  Limiting  the  spatial  extent  by  using  search   words  such  as  "Southeast  Asia"  resulted  in  a  very  limited  results  list.  Furthermore,  this   approach  enables  an  examination  of  whether  the  effects  of  WSI  are  the  same  over  a  range  of   different  environmental  conditions.    

 

Due  to  the  necessity  of  being  able  to  control  the  water  input  to  implement  WSI  management,   the  focus  is  inevitably  placed  primarily  on  irrigated  lowlands.  In  these  environments  farmers   may,  depending  on  the  structure  of  the  irrigation  system,  have  the  opportunity  to  influence   not  only  drainage  of  water  from  the  fields,  but  also  the  input  of  water  (Bouman  et  al.,  2007).  

Farmers  can  therefore  to  a  certain  degree  influence  the  amount  of  water-­‐stress  experienced   by  plants  during  the  growth  period.  A  focus  on  these  rice  systems  is  deemed  suitable  for  this   study  since  irrigated  lowlands  are  responsible  for  such  a  large  part  of  the  global  rice  

production.    

(11)

3.  Water  management  in  rice  farming  

3.1  Field  level  water  flows  

There  are  various  ways  in  which  water  can  enter  and  leave  a  rice  field.  Inflow  occurs  through   rainfall,  irrigation,  and  capillary  rise,  and  outflow  through  percolation,  seepage  underneath   bunds,  overbund  flow,  evaporation  and  transpiration.  Transpiration  is  the  only  type  of   outflow  that  contributes  to  crop  growth  and  is  therefore  termed  'productive  water  use'.  

Capillary  rise  is  generally  negated  by  the  constant  downward  flow  of  percolation  in  flooded   rice  fields.  In  a  series  of  fields,  both  seepage  and  overbund  flow  can  contribute  to  adjoining   farmers'  fields  before  draining  into  ditches  or  the  groundwater.  Even  after  entering  the   groundwater,  this  water  may  remain  reusable  through  pumping  (Bouman  et  al.,  2007).    

 

The  high  water  demand  for  rice  differs  from  dryland  crops  and  is  the  result  of  the  daily   percolation  and  seepage  of  water  that  occurs  in  flooded  rice  fields,  along  with  evaporation   from  exposed  water  surfaces.  The  profuse  percolation  rates  over  long  periods  of  time  have  in   many  places  served  to  locally  raise  the  groundwater  surface.  In  some  locations,  the  

groundwater  table  is  found  within  20  cm  from  the  soil  surface,  and  the  water  is  therefore   available  for  direct  uptake  by  the  rice  roots  (Bouman  et  al.,  2007).  When  the  field  water  level   (FWL)  is  at  or  above  the  soil  surface  and  the  soil  is  saturated,  such  as  in  flooded  paddies,  the   soil  water  potential  (SWP)  near  the  surface  will  equal  0  kPa.  When  the  soil  is  saturated,  most   of  the  water  is  held  in  large  pores  where  the  molecules  are  not  strongly  bound  by  the  soil   solids  and  are  therefore  able  to  easily  move  around.  As  the  soil  dries,  the  remaining  water  is   increasingly  held  in  smaller  pores  closer  to  the  soil  solids,  where  they  are  more  tightly  bound   and  harder  for  plant  roots  to  extract,  This  change  is  measured  as  an  increasingly  negative   SWP  (Brady  and  Weil,  2008).  If  there  is  not  enough  water  available,  the  rice  plant  will   experience  drought  stress,  expressed,  for  example,  in  the  closing  of  stomata  and  ceasing  of   transpiration,  which  can  in  turn  result  in  yield  declines  (Bouman  et  al.,  2007).      

3.2  Field  level  irrigation  management  approaches  

Before  rice  is  transplanted  or  seeded,  the  field  is  normally  ploughed  and  puddled  under  wet   conditions  (Bouman  et  al.,  2007).  Puddling  is  a  type  of  harrowing  or  rotavating  that  helps  in   controlling  weeds,  but  also  reduces  soil  permeability  by  destroying  soil  aggregates  and   creating  a  plough  pan,  usually  at  a  depth  of  approximately  10  to  20  cm.  The  hydraulic  

conductivity  decreases,  and  therefore  also  the  loss  of  water  through  percolation  (Arora  et  al.,   2006;  Bouman  et  al.,  2007).  Following  puddling,  fields  are  usually  kept  flooded  before  

transplanting  for  a  period  ranging  from  a  few  days  to  four  weeks,  though  it  has  been  known   to  stretch  as  long  as  two  months  in  large-­‐scale  systems.  Once  transplanted  or  seeded,  the   crop  is  traditionally  kept  flooded  at  a  depth  of  5  to  10  cm  until  one  or  two  weeks  before   harvesting.  Flooding  following  crop  establishment  helps  to  control  weeds  and  pests  

(Bouman  et  al.,  2007).  Figure  1  provides  an  overview  of  the  different  growth  stages  of  rice.    

 

(12)

Figure  1.  Schematic  overview  of  the  different  growth  stages  of  the  rice  plant.  Adapted  from  CGIAR,  n.d.    

 

 

For  water-­‐saving  irrigation  to  be  a  feasible  alternative,  losses  of  water  through  seepage,   percolation  and  evaporation  must  be  addressed.  Efforts  can  be  made  during  land  

preparation  by  constructing  appropriate  field  channels  that  enable  the  control  of  water   levels  in  individual  fields,  maintaining  good  bunds,  levelling  the  field,  implementing  tillage   and  minimising  the  time  passing  between  land  preparation  and  crop  establishment  (Bouman   et  al.,  2007).    

 

Bouman  et  al.  (2007)  describe  three  types  of  water-­‐saving  irrigation;  alternate  wetting  and   drying  (AWD),  saturated  soil  culture  (SSC),  and  aerobic  rice  (not  covered  here,  

predominantly  used  in  upland  environments).  Which  form  is  implemented  depends  on  the   type  and  severity  of  water  scarcity,  socioeconomical  situation  and  how  much  control   individual  farmers  can  exercise  over  their  irrigation.  The  implementation  of  AWD  requires   that  a  farmer  can  control  water  levels  in  their  own  field,  or  that  a  communal  effort  is  made.  

With  reduced  water  availability,  saturated  soil  culture  may  be  the  first  option,  followed  by   AWD  and  then  aerobic  rice  when  faced  with  severe  shortages  (Bouman  et  al.,  2007).  

3.2.1  Alternate  wetting  and  drying,  submergance-­‐nonsubmergance  and  intermittent  irrigation  

Alternate  wetting  and  drying,  sometimes  referred  to  as  alternate  submergence-­‐

nonsubmergance  (ASNS)  (Belder  et  al.,  2004)  or  intermittent  irrigation  (Lin  et  al.,  2012),   utilizes  cycles  of  alternating  flooded  conditions  and  dry  periods  when  the  water  is  allowed  to   drop  below  field  level.  The  length  of  the  dry  periods  can  vary  from  as  little  as  one  day  to   longer  than  10  days  (Bouman  et  al.,  2007).  Cabangon  et  al.  (2001)  state  that  AWD  normally   includes  a  midseason  drainage  of  10-­‐15  days  in  the  late  tillering  stage,  and  that  the  dry   cycles  between  irrigation  events  are  normally  kept  at  lengths  of  two  to  four  days.  In  practice,   however,  the  pre-­‐designed  timing  and  length  of  drainages  and  dry  cycles  can  be  difficult  to   achieve  due  to  the  variability  of  rainfall  events.  Carrijo  et  al.  (2017)  have,  in  their  meta-­‐

analysis,  chosen  to  define  AWD  as  any  irrigation  management  that  contains  a  minimum  of   one  single  dry  cycle  with  soil  conditions  below  saturation.  Their  definition  differs  from  those   found  in  most  other  sources.    

 

AWD  primarily  reduces  water  use  by  lessening  the  amount  lost  through  seepage  and   percolation.  In  terms  of  practical  implementation,  the  use  of  a  field  water  tube  to  monitor   water  levels  is  recommended  (Bouman  et  al.,  2007;  Yang  et  al.,  2017).  The  field  water  tube   also  allows  farmers  to  detect  'hidden'  groundwater  sources  (Lampayan  et  al.,  2015).  When   the  water  drops  to  a  depth  of  -­‐15  cm,  the  field  should  be  re-­‐irrigated  to  a  ponded  depth  of   approximately  5  cm.  The  AWD  cycles  can  be  implemented  starting  a  few  days  after  

transplanting,  after  two  to  three  weeks  if  weeds  are  prolific,  or  following  panicle  initiation  

(13)

which  occurs  around  50  days  after  sowing  (Bouman  et  al.,  2007;  Cabangon  et  al.,  2001;  

CGIAR,  n.d.).  Bouman  et  al.  (2001;  2007)  state  that  the  timing  of  dry  cycles  with  regards  to   growth  stages  generally  has  little  to  no  effect  on  yield,  with  the  exception  that  ponded  water   during  flowering  is  required  to  avoid  yield  loss.  According  to  Yang  et  al.  (2017),  however,   different  thresholds  should  be  used  at  different  growth  stages  due  to  the  variable  sensitivity   of  rice  at  different  points  in  the  crop  cycle.    

 

The  -­‐15  cm  field  water  depth  is  often  referred  to  as  'safe  AWD',  because  it  keeps  the  root   zone  saturated.  The  water  savings  are  generally  around  a  modest  15%,  but  yield  loss  is   avoided,  and  depending  on  local  conditions  farmers  can  experiment  with  longer  dry  cycles   (Bouman  et  al.,  2007).  Though  irrigation  in  AWD  treatments  is  often  scheduled  based  on   FWL,  other  indicators  are  also  in  use,  such  as  SWP  thresholds  or  simply  a  set  number  of  days   following  disappearance  of  previous  irrigation  from  the  soil  surface.    

3.2.2.  Saturated  soil  culture  

In  saturated  soil  culture  (SSC),  irrigation  is  applied  to  achieve  a  water  depth  of  

approximately  1  cm  following  disappearance  of  the  previous  irrigation.  The  goal  is  to  keep   the  soil  as  close  to  saturation  as  possible,  which  requires  very  frequent  irrigation.  The   practice  reduces  the  hydraulic  head,  resulting  in  decreased  seepage  and  percolation   (Bouman  et  al.,  2007).  Though  examples  of  similar  practices  can  be  found  in  the  academic   literature,  the  term  'SSC'  was  rarely  encountered  during  this  study.    

3.2.3.  Controlled  irrigation  

The  term  'controlled  irrigation'  is  sometimes  employed  in  the  literature  without  a  firm   definition.  When  Yang  et  al.  (2013,  2015)  and  Hou  et  al.  (2012)  employ  the  term,  the   management  regime  is  described  as  including  irrigation  to  keep  the  soil  moist.  However,   graphs  presented  in  their  articles  show  that  irrigation  has  been  applied  to  reach  a  FWL  of  1   to  4  cm  in  between  regular  dry  cycles,  in  practice  appearing  to  make  the  approach  very   similar  to  AWD.    

3.2.4.  Midseason  drainage  

'Midseason  drainage'  or  'intermittent  drainage'  are  concomitantly  used  to  describe  the   practice  of  draining  the  rice  paddy  midseason  for  an  extended  period,  often  lasting  for  about   30  days.  The  approach  is  mainly  used  as  a  means  to  achieve  decreased  methane  emissions   (Haque  et  al.,  2016a,  b),  but  has  also  been  used  as  a  water-­‐saving  measure  (Rahman  et  al.,   2013).    

3.3  Influence  of  water-­‐saving  irrigation  management  on  rice  yields  and  water  savings  

Based  on  a  number  of  studies,  Bouman  et  al.  (2007)  concluded  that  although  AWD  has  in  

some  instances  been  found  to  increase  yield,  it  more  often  decreases  yield.  Bouman  and  

Tuong  (2001)  conducted  a  meta-­‐analysis  based  on  31  field  experiments  using  AWD  or  SSC  

conducted  under  various  conditions.  They  found  that  average  water  savings  under  SSC  

amounted  to  23%  with  small  yield  reductions  of  approximately  6%.  When  SWPs  in  the  root  

zone  were  allowed  to  drop  to  -­‐10  to  -­‐30  kPa,  however,  yield  penalties  of  10-­‐40%  were  

recorded  (Bouman  and  Tuong,  2001).  The  variability  in  results  identified  in  the  study  is  

attributed  to  soil  and  hydrological  conditions  and  the  varying  length  of  dry  periods  in  

(14)

different  experiments  (Bouman  et  al.,  2007).  Carrijo  et  al.  (2017)  found  a  similar  water  use   reduction  of  23.4%  under  AWD  across  a  selection  of  56  studies,  but  with  SWPs  maintained   above  -­‐20  kPa  or  FWL  above  -­‐15  cm,  with  no  yield  penalty.    

 

Commenting  on  a  several  studies  conducted  in  areas  with  shallow  groundwater  tables  and   fine  textured  soils,  Bouman  et  al.  (2007)  concluded  that  the  nearness  of  groundwater  to  the   field  level  meant  that  the  root  zone  remained  saturated,  supplying  a  hidden  water  source.  A   15-­‐30%  lower  water  input  could  therefore  be  achieved  without  a  significant  penalty  to  rice   yield.  Where  the  groundwater  table  is  very  high  and  within  reach  of  the  roots,  potentially   negative  effects  of  water-­‐saving  irrigation  can  be  mitigated,  and  yields  in  relation  to  

irrigation  can  therefore  appear  superficially  high.  The  water  savings  in  these  environments   are  relatively  small  due  to  the  losses  already  being  low  when  using  continuous  flooding  (CF)   under  such  conditions.  A  number  of  studies  conducted  in  loamier  soils  with  deep  

groundwater  tables  presented  higher  water  savings,  exceeding  50%,  but  heavy  yield   penalties  in  excess  of  20%  (Bouman  et  al.,  2007).  

 

Ye  et  al.  (2013)  draws  on  a  number  of  studies  to  reason  that  modern  rice  varieties  have  been   adapted  to  semi-­‐aquatic  conditions  with  only  intermittent  flooding.  The  aerated  conditions   assist  in  SOM  mineralization  and  inhibition  of  N  immobilization,  promoting  nutrient  release   and  favouring  good  yields.  Furthermore,  based  on  recently  conducted  studies  Yang  et  al.  

(2017)  draw  the  conclusion  that  AWD  within  certain  limits  can  increase  yield  by  reducing   redundant  vegetative  growth,  elevating  hormonal  levels,  improving  canopy  structure  and   root  growth  and  enhancing  carbon  remobilization  from  vegetative  tissues  to  grains.    

 

Yields  have  been  found  to  increase  in  China  under  AWD,  and  decrease  in  tropical  locations   such  as  India  and  the  Philippines;  a  difference  that  Belder  et  al.  (2004)  and  Cabangon  et  al.  

(2004)  reason  may  be  the  result  of  variable  WSI  practices,  soil  properties,  groundwater   depths,  rice  variety  and  crop  management.  AWD  and  other  forms  of  WSI  have  been  widely   adopted  in  China  where  per  capita  fresh  water  availability  is  amongst  the  lowest  in  Asia,  and   is  being  recommended  in  parts  of  India  and  the  Philippines  (Cabangon  et  al.,  2001;  Bouman   et  al.,  2007;  Yang  et  al.,  2013).  

4.  Methodology  

4.1.  Data  collection  

Meta-­‐analyses  provide  a  tool  for  examining  the  results  of  studies  in  the  context  of  other   studies  (Borenstein  et  al.,  2009),  and  has  been  used  for  purposes  similar  to  those  presented   in  this  paper  by  e.g.  Bouman  and  Tuong  (2001)  and  Carrijo  et  al.  (2017).  In  this  study,  a   search  of  published  studies  was  conducted  to  obtain  raw  data  on  rice  yield,  water   management  method,  N  fertilizer  input,  water  input,  soil  organic  carbon  or  soil  organic   matter  (SOC/SOM),  crop  duration,  number  of  dry  cycles,  rice  variety,  soil  texture  and/or   classification,  some  climatic  variables,  and  whether  the  crop  was  transplanted  or  direct-­‐

seeded,  creating  a  varied  dataset  with  potential  for  many  applications.    

 

(15)

The  article  search  was  conducted  in  the  Web  of  Science  database,  using  the  search  term   combinations  "rice  yield"  AND  water  management  AND  irrigation,  and  "rice  yield"  AND   water  AND  flood*.  The  abstracts  of  all  results  produced  through  these  searches  were  

examined,  and  those  deemed  likely  to  contain  relevant  information  were  obtained  for  more   detailed  study.  Specific  criteria  considered  relevant  for  inclusion  into  this  study  included  the   studies  being  original  research  based  on  field  experiments  conducted  in  East,  Southeast  or   South  Asia,  and  containing  quantitative  data  on  rice  yields  and  information  about  water   management  methods,  of  which  at  least  one  had  to  be  continuous  flooding.  Various  WSI   types  have  been  included  in  the  study,  but  in  each  case  the  irrigation  approach  had  to  be   paired  with  a  control  in  the  form  of  aforementioned  continuous  flooding,  where  all  other   factors  but  water  management  were  the  same.  The  WSI  treatment  had  to  have  a  minimum  of   either  one  extended  dry  period,  which  should  be  more  significant  than  the  ~10-­‐day  drainage   during  tillering  that  is  recommended  in  some  locations  for  optimal  yields  under  CF  

management  (see  e.g.  Yang  et  al.,  2013;  2015),  or  multiple  shorter  cycles  where  FWL  was   allowed  to  drop  below  the  soil  surface.  The  work  process  for  the  searches  is  visualized  in   figure  2.    

 

Figure  2.  Flowchart  describing  the  stages  of  the  data  collection  process.    

 

 

The  terms  'AWD'  or  'alternate  wetting  and  drying'  could  not  be  used  during  the  data   collection  process,  as  many  other  terms  are  often  employed  for  similar  water-­‐saving   irrigation  techniques  that  are  likely  to  be  relevant  for  the  purpose  of  this  meta-­‐analysis.  

Examples  of  these  terms  include  'alternate  submergence-­‐nonsubmergence',  'intermittent   irrigation',  and  'controlled  irrigation'.    

 

The  environmental  implications  of  water-­‐saving  irrigation  management  were  qualitatively   assessed  based  on  a  literature  review,  and  the  findings  are  summarized  and  discussed  in   section  6.2.  The  review  is  mainly  based  on  articles  encountered  during  the  data  collection  for   the  meta-­‐analysis  and  is  not  intended  to  be  exhaustive.  Rather,  the  goal  is  to  highlight  the   complexity  of  the  interactions  that  are  affected  by  WSI  management.  

4.2.  Data  compilation  and  evaluation  

The  data  was  compiled  in  Microsoft  Excel,  wherein  all  the  analyses  were  conducted.  Many  of  

the  included  studies  placed  primary  focus  on  issues  such  as  greenhouse  gas  emissions  or  

(16)

identifying  optimal  fertilizer  regimes,  but  were  oftentimes  useful  for  providing  the   quantitative  data  needed  for  this  analysis.  Data  on  irrigation  management  and  yield  was   frequently  presented  despite  any  differences  having  been  deemed  to  be  statistically  

insignificant  by  the  author(s),  due  to  the  irrigation  data  simply  being  complementary  to  the   main  focus  of  the  study.    

 

Belder  et  al.  (2007)  promised  to  contain  valuable  data,  but  the  focus  was  placed  on  

simulation  using  the  ORYZA2000  model.  For  this  reason,  an  additional  search  was  made  to   acquire  the  original  field  data,  which  was  then  used  in  the  meta-­‐analysis  (i.e.  Belder  et  al.,   2004).  A  few  of  the  articles  generated  by  the  search  were  found  to  contain  data  based  on  the   same  set  of  experiments.  This  was  the  case  with  Hou  et  al.  (2012),  Xu  et  al.  (2013),  Yang  et  al.  

(2013)  and  Yang  et  al.  (2015).  Data  was  primarily  taken  from  Yang  et  al.  (2013,  2015),  and   these  are  therefore  the  articles  that  are  referred  to  in  the  henceforth.  A  summary  of  all   studies  included  in  the  analysis  is  displayed  in  table  1.  

 

In  some  instances,  only  part  of  the  data  came  from  plots  fulfilling  the  above  stated  criteria.  

Plots  that  used  relevant  water  management  methods  but  deviated  in  other  management  

aspects,  thereby  invalidating  any  comparison  with  a  continuous  flooding  control  plot,  were  

excluded.  Data  was  digitalized  in  those  few  cases  where  it  was  only  presented  in  graphical  

form.    A  total  of  21  articles,  equalling  19  original  studies,  were  included  in  the  analysis,  

covering  41  sets  of  comparative  field  trials,  and  179  side-­‐by-­‐side  comparisons  of  WSI  with  

CF,  in  a  wide  range  of  locations  (figure  3).    

(17)

Figure  3.  Approximate  locations  of  the  sites  used  for  field  experiments  in  all  studies  included  in  the  meta-­‐

 

analysis.    

4.3.  Data  analysis  

The  collected  data  was  analysed  using  simple  quantitative  methods.  Due  to  the  variability  in   field  conditions  between  different  experiments,  actual  yields  and  water  input  values  are   generally  not  directly  comparable  across  studies  (Bouman  and  Tuong,  2001).  For  this  reason,   the  relative  differences  between  WSI  treatments  and  corresponding  CF  treatments  have   been  used.  For  each  study,  yield  data  for  every  WSI-­‐plot  (Y

WSI

)  was  normalized  by  the   corresponding  CF  control  plot  (Y

CF

).    

 

Y

N

 =  Y

WSI

 /  Y

CF

   (eq.  1)    

Due  to  the  normalization,  Y

N

 values  >1  indicate  that  the  yield  was  higher  in  the  WSI  plot   compared  to  the  corresponding  CF  plot,  and  values  <1  indicate  that  WSI  treatment  resulted   in  a  decreased  yield.  The  mean  normalized  yield,  used  as  'effect  size'  or  alternately  

'treatment  effect',  was  calculated  for  each  study,  along  with  the  standard  deviation,  standard  

(18)

error  of  the  mean  and  95%  confidence  intervals.  The  mean  normalized  yield  is  a  simple   measure  of  the  effect  of  specific  WSI  treatments  on  yield.  The  method  has  weaknesses,  but   will  be  used  as  an  indicator  in  this  study.  The  treatment  effect  and  therefore  the  differences   in  yield  between  WSI  and  CF  were  considered  significant  if  the  95%  confidence  intervals  did   not  overlap  the  value  1.    

 

A  summary  effect  was  calculated  for  all  studies  included  in  the  meta-­‐analysis.  The  summary   effect  is  based  on  the  mean  normalized  yields  for  all  WSI/CF  pairs,  and  not  on  the  mean   effect  of  each  study.  This  approach  results  in  the  weight  of  each  study  in  the  summary  effect   being  proportional  to  the  sample  size.  Using  effect  sizes  has  some  significant  advantages   over  statistical  significance  testing.  Unlike  significance  testing,  which  can  only  tell  us   whether  the  effect  is  or  is  not  zero  and  which  is  also  affected  by  sample  size,  using  effect   sizes  allows  an  estimation  of  the  magnitude  of  that  effect  (Borenstein  et  al.,  2009).  In  this   study,  it  means  that  we  can  not  only  tell  if  WSI  management  affects  the  yield,  but  also  how   large  that  effect  is,  and  if  certain  types  of  WSI  have  a  greater  effect.    

 

Figure  4.  Distribution  of  all  normalized  yield  values  from  the  19  field  studies.    

 

 

Oftentimes  in  meta-­‐analyses,  the  log  of  the  normalized  yield  is  the  preferred  metric  (see  e.g.  

Vico  et  al.,  2016;  Carrijo  et  al.,  2017),  as  the  log  helps  make  a  skewed  distribution  of  values  

more  Gaussian,  and  therefore  more  suitable  for  calculating  confidence  intervals.  The  effect  

size  used  here  is  essentially  a  response  ratio,  as  described  by  Borenstein  et  al.  (2009),  who  

also  state  that  the  log  should  be  used  for  all  calculations.  Both  the  log  and  the  exponential  of  

the  normalized  yields  were  considered  for  use  in  this  meta-­‐analysis,  but  did  not  achieve  a  

more  Gaussian  distribution  of  values  than  the  normalized  yields  (figure  4)  and  were  

therefore  dismissed.

(19)

  Table  1.  Summary  of  the  19  experiments  included  in  the  meta-­‐analysis.  

 

 

(20)

  Table  1  continued.    

(21)

 

5.  Results  

5.1.  Yields  under  WSI  management  

Of  the  19  studies,  eight  (1,  5,  7,  9,  10,  15,  18,  19)  showed  a  significant  difference  in  yield   between  the  WSI  and  CF  treatments  (not  including  6  and  16  that  lacked  confidence   intervals)  (figure  5).  Of  these  eight  studies,  seven  displayed  a  significant  decline  in  yields   under  WSI  treatment,  and  only  one  (18)  showed  an  increase  in  yields  under  WSI  

management.  Of  the  remaining  11  studies,  where  the  differences  were  not  considered   significant  due  to  confidence  intervals  overlapping  with  1,  seven  had  a  treatment  effect   below  1,  potentially  indicating  a  tendency  toward  decreased  yields.  Three  lay  above  1,   and  one  had  a  treatment  effect  of  exactly  1.  The  summary  effect  lay  slightly  below  1,   indicating  a  trend  of  decreased  yields  under  WSI  management,  and  the  confidence   intervals  indicated  that  this  effect  was  significant.    

 

Figure  5.  Treatment  effects  with  95%  confidence  intervals  for  each  study,  along  with  the  summary  effect  

 

size.  Studies  6  and  16  only  had  one  side-­‐by-­‐side  comparison  of  WSI  and  CF  each,  and  therefore  do  not   have  any  confidence  intervals.    

 

(22)

5.2.  Regional  differences  in  WSI  yield  

The  scatter  plot  in  figure  6  displays  the  relationship  between  WSI  and  CF  yields  for  each   side-­‐by-­‐side  comparison  identified  in  the  19  field  studies.  The  overall  distribution   appears  to  align  well  with  the  1:1  line,  though  scattering  is  seen  both  above  and  below   the  line.  When  the  yields  deviate  from  the  1:1  line,  the  deviation  tends  to  be  more   pronounced  in  the  direction  of  higher  yields  under  CF.  The  chart  indicates  that  though   yields  were  oftentimes  maintained  under  WSI,  they  rarely  increased.  The  values  in   figure  6  have  also  been  categorized  depending  on  if  the  field  experiment  was  conducted   in  East  Asia  (China,  Taiwan,  Japan,  South  Korea),  Southeast  Asia  (Vietnam,  Philippines)   or  South  Asia  (India).  The  scattering  indicates  no  obvious  pattern  in  terms  of  the  ability   of  WSI  management  to  maintain  yields  in  different  regions.  The  highest  yields  appear  to   have  been  achieved  in  East  Asia,  but  since  the  various  studies'  yields  are  not  directly   comparable  due  to  varying  environmental  conditions  and  management  approaches,  the   actual  yields  are  not  reliable  values  for  analysis.  Some  yields  produced  in  experiments  in   South  Asia  appear  fictitiously  low,  with  yields  below  2  t  ha

-­‐1

.  These  low  yields  have  been   attributed  to  the  rice  variety  used  (Bhaduri,  2017,  personal  communication).    

 

Figure  6.  Relationship  between  WSI  yields  and  corresponding  CF  yields  in  three  major  

 

regions  in  Asia.    

 

Figure  7  is  based  on  the  same  data  as  figure  6,  but  provides  the  summary  effects  for  the   three  regions.  As  expected  based  on  figures  5  and  6,  the  overall  effect  of  WSI  treatment   was  a  decrease  in  yield,  though  this  effect  was  not  significant  for  the  experiments   conducted  in  South  Asia.  The  summary  effect  for  East  Asia  was  very  similar  to  South   Asia,  but  with  lower  variability.  Southeast  Asia  displayed  a  significant  decrease  in  yields   under  WSI  management.    

 

(23)

Figure  7.  Summary  effects  for  groupings  of  side-­‐by-­‐side  comparison  into  regions;  South,  East     and  Southeast  Asia.  Error  bars  correspond  to  a  95%  confidence  interval.  The  summary   effects  contain  72  side-­‐by-­‐side  comparisons  for  South  Asia,  48  for  Southeast  Asia,  and  59  for   East  Asia.      

5.3.  Influence  of  severity  of  WSI  management  on  yield  

The  different  WSI  treatments  have  been  classified  into  a  number  of  categories  (figure  8).  

The  mild,  moderate  and  severe  AWD  treatments  have  been  grouped  with  treatments   using  drainage  periods  of  a  maximum  of  2,  4,  and  7  days,  respectively.  Figure  8   demonstrates  a  very  close  alignment  between  the  regression  line  for  'mild  AWD/<=2-­‐

day  drainage'  and  the  1:1  line,  indicating  that  very  similar  yields  were  attained  in  these   WSI  treatments  as  compared  to  corresponding  CF  treatments.  As  the  severity  of  the   AWD  management  and  the  length  of  the  drainage  periods  increased,  the  scattering  and   corresponding  regression  lines  became  increasingly  displaced  from  the  1:1  line.  The   high  R

2

 values  for  all  three  categories  indicate  that  the  regression  lines  incorporate   much  of  the  variability.    

 

Figure  8.  Patterns  in  the  relationship  between  yield  and  WSI  method  used.  Mild  AWD  -­‐  SWP  

 

potential  >-­‐10kPa  or  FWL  >-­‐15  cm,  moderate  AWD  -­‐  SWP  between  -­‐10  and  -­‐30  kPa  or  FWL   between  -­‐15  and  -­‐30  cm,  severe  AWD  -­‐  SWP  <-­‐30  kPa.  Data  from  studies  7,  8,  11,  13,  16,  17,   19  and  parts  of  study  14  was  excluded  due  to  not  suiting  any  of  the  designated  categories.  

(24)

The  category  'mild  AWD'  corresponds  to  the  safe  AWD  defined  by  Bouman  et  al.  (2007),   whereby  the  field  water  level  should  stay  within  -­‐15  cm  from  the  surface  (figure  8).  The   -­‐15  cm  FWL  has  been  paired  with  a  SWP  limit  of  -­‐10  kPa,  as  the  SWP  normally  stays   above  -­‐10  kPa  (measured  at  15  cm  depth)  at  a  FWL  of  -­‐15  cm  (Lampayan  et  al.,  2015).  

Bouman  and  Tuong  (2001)  found  that  yield  decreases  often  became  noticeable  at  SWPs   between  -­‐10  and  -­‐30  kPa,  and  Brady  and  Weil  (2008)  have  stated  that  field  capacity   often  corresponds  to  SWPs  ranging  from  -­‐10  to  -­‐30  kPa.  As  rice  is  classified  as  a   semiaquatic  plant  (GRiSP,  2013)  and  in  the  examined  lowland  settings  is  most  

commonly  grown  under  submerged  conditions  (Lampayan  et  al.,  2015),  SWPs  at  field   capacity  have  been  classified  as  'moderate  AWD'.  

 

When  using  only  the  data  from  plots   that  were  specifically  stated  to  have  been  kept  under  'mild  AWD'  conditions,  the  yields   corresponded  almost  perfectly  to  those  achieved  under  CF  management  (figure  9).    

 

Figure  9.  AWD  treatments  specifically  stated  to  have  been  kept  above  a  SWP  of    

 

-­‐10kPa  and  field  water  level  depth  of  -­‐15  cm.  

 

When  all  categories  were  examined  individually,  some  additional  variability  was   discovered.  Mild  AWD  and  midseason  drainage  displayed  yields  on  par  with  CF  plots   with  relatively  high  precision  (figure  10).  It  is  worth  noting  that  the  midseason  drainage   category  was  based  on  a  small  sample  made  up  of  seven  side-­‐by-­‐side  comparisons.  

Yields  appeared  to  have  increased  under  the  <=2-­‐day  drainage  treatments,  and  have   been  maintained  almost  on  par  with  CF  yields  under  4-­‐day  drainage  treatments,  though   neither  of  these  treatment  effects  were  deemed  significant  at  the  95%  level.  Significant   yield  decreases  were  seen  for  moderate  and  severe  AWD,  as  well  as  for  7-­‐day  drainage   periods.  It  is  clear  that  the  yields  achieved  under  WSI  management  gradually  decreased   from  mild,  to  moderate,  to  severe  AWD,  as  well  as  when  drainage  periods  were  

increased  from  2,  to  4,  to  7-­‐day  intervals.  Likewise,  though  yields  were  maintained   under  midseason  drainage  treatment,  they  decreased  when  the  non-­‐flooded  conditions   were  maintained  throughout  the  growing  season.    

 

 

 

 

(25)

Figure  10.  Summary  effects  and  95%  confidence  intervals  for  various  WSI  categories.  Mild  

 

AWD  -­‐  SWP  potential  >-­‐10kPa  or  FWL  >-­‐15  cm,  moderate  AWD  -­‐  SWP  between  -­‐10  and  -­‐30   kPa  or  FWL  between  15  and  30  cm,  severe  AWD  -­‐  SWP  <-­‐30  kPa.  Data  from  studies  13  and   17  that  lacked  the  necessary  information  to  categorize  the  treatments  were  excluded.  

Number  of  side-­‐by-­‐side  comparisons:  mild  AWD  -­‐  53,  moderate  AWD  -­‐  12,  severe  AWD  -­‐  21,  

<=2-­‐day  drainage  -­‐  36,  3  to  4-­‐day  drainage  -­‐  25,  5  to  7-­‐day  drainage  -­‐  6,  midseason  drainage   -­‐  7,  non-­‐flooded  -­‐  7.    

5.4.  Nitrogen  fertilization  effect  on  yields  

Plotting  yield  against  nitrogen  (N)  input  showed  an  overall  increase  in  yield  with   increasing  N  inputs,  though  the  variability  was  large  (figure  11).  The  regression  lines   indicate  that  the  trend  does  not  differ  between  CF  and  WSI  management,  with  both   irrigation  treatments  showing  yields  increasing  at  similar  rates  under  increased  N  input.    

 

Figure  11.  Relationship  between  nitrogen  input  and  yield  in  all  CF  and  WSI  plots.  Studies  3,  

 

15  and  19  lacked  data  on  nitrogen  and  are  not  represented.  

(26)

6.  Discussion  

6.1.  Rice  yields  under  varying  irrigation  managements  

If  the  effect  sizes  for  the  studies  included  in  a  meta-­‐analysis  display  consistency  a   summary  effect  size  is  usually  calculated,  and  otherwise  the  focus  is  shifted  to  

estimating  the  dispersion  of  effect  sizes  (Borenstein  et  al.,  2009).  In  this  study  the  effect   sizes  are  relatively  consistent  with  58%  of  the  study  effect  sizes  in  the  interval  between   0.9  and  1.0,  and  89%  between  0.8  and  1.1  (figure  5).  Calculating  a  summary  effect  size   was  therefore  deemed  suitable.  The  summary  effect  size  for  the  19  studies  was  

established  as  0.970  with  the  upper  confidence  interval  limit  at  0.0996  and  the  lower   limit  at  0.944  (95%  confidence  level).  As  can  be  seen  in  figure  5  the  precision  of  the   summary  effect  was  considerably  higher  than  for  many  of  the  individual  studies.  The   summary  effect  indicated  that  there  was  an  overall  decrease  in  yields  for  plots  under   WSI  treatments  and  that  this  difference  was  small  though  significant.  However,  the  WSI   treatments  used  in  the  different  studies  are  highly  variable  making  it  more  suitable  to   divide  the  treatments  into  categories  and  looking  at  the  summary  effect  for  these,  which   was  done  in  figures  8,  9  and  10.    

 

Figures  8,  9  and  10  demonstrate  that  yield  was  not  necessarily  higher  under  continuous   flooding  compared  to  WSI  management  as  long  as  one  stayed  within  the  limits  of  mild  or   'safe'  AWD,  in  this  case  defined  as  a  minimum  field  water  level  of  -­‐15  cm  or  soil  water   potential  of  -­‐10  kPa.  The  precision  for  mild  AWD  was  high,  indicating  that  the  risk  of   yield  penalty  is  likely  to  be  low.  Since  the  category  included  data  from  various   experiments  the  precision  also  indicates  that  this  is  true  across  a  range  of  different   locations.  Carrijo  et  al.  (2017)  used  fewer  classes  and  classified  SWPs  of  -­‐20  kPa  as  mild   AWD,  but  when  plotting  data  from  treatments  using  SWP  between  -­‐10  and  -­‐20  kPa  in   this  study  a  decrease  in  yield  was  exhibited  (data  not  shown).  Carrijo  et  al.'s  study  did,   however,  contain  a  considerably  larger  number  of  side-­‐by-­‐side  comparisons,  indicating   that  the  negative  effect  on  yields  of  SWPs  at  -­‐20  kPa  may  be  non-­‐significant  over  a  larger   sample  size.  Dividing  the  WSI  types  into  the  number  of  categories  used  in  figure  10   resulted  in  several  categories  having  relatively  few  observations,  making  the  summary   effects  somewhat  weaker.  The  non-­‐flooded  treatment  exhibited  high  variability,  which  is   probably  a  result  of  it  being  a  broad  category  with  low  precision  in  terms  of  WSI  

approach.    

 

In  figure  10,  cycles  using  drainages  with  a  maximum  duration  of  2  days  appeared  to   actually  increase  yield  for  unknown  reasons  though  the  difference  compared  to  CF  was   non-­‐significant.  The  FWL  or  SWP  reached  during  these  treatments  was  difficult  to   estimate.  Drainage  rates  and  soil  water  retention  capacities  are  influenced  by  soil  

texture  and  structure  with  coarser  fractions  resulting  in  faster  drainage  (Brady  and  Weil,   2008).  The  actual  SWP  or  FWL  achieved  during  the  drainage  periods  can  therefore  differ   from  site  to  site  depending  on  soil  texture.  The  mild  AWD  and  <=2-­‐day  drainage  

categories  each  had  a  similar  number  of  observations.  The  higher  variability  found  in  

the  latter  likely  indicates  that  a  set  number  of  days  of  drainage  is  a  considerably  more  

References

Related documents

Testfixturen byggdes ihop med hjälp av en bottenplatta av aluminium och en pelare i mitten  för  att  få  höjden  och  kunna  lägga  de  testade 

This Master’s thesis is Luke Webber’s degree project in Physical Geography and Quaternary Geology at the Department of Physical Geography, Stockholm University.. The Master’s

• Although Africa is first posited as a continent, that continent is then reduced to IFPI’s South African national group. • The interests of this South African national group,

osäkerheter gällande företaget fortsatta drift, men formulerar inte tydliga tvivel gällande företagets förmåga att fortsätta sin verksamhet.. I kategorin tvetydiga

Även om inte frågorna i enkäten täcker alla aspekter av ITSM kan det konstate- ras att antalet ”Ja”-svar i undersökningen är en knapp majoritet, vilket kan tol- kas som att

Syftet med denna studie var att analysera vilka samband som existerar mellan europeiska fotbollsklubbars aktiepriser och inköp och försäljning av fotbollsspelare, publiksnitt och

In order to overcome this challenge two different types of news websites were investigated and through this process the approximately time to implement a single robot was

composing techniques and game composing techniques may inform the engineer how these tools could be used to implement and mix the music and soundtrack within the game, in a way