• No results found

Studies of the axon initial segment of motor neurons

N/A
N/A
Protected

Academic year: 2022

Share "Studies of the axon initial segment of motor neurons"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

                                 

Studies  of  the  axon  initial  segment  of  motor  neurons  

      Tor  Halle  

   

   

(2)

Termin  6  

   

Abstract  

  The  axon  initial  segment  has  characteristics  that  make  it  well  suited  to  be  a  key   regulator  of  the  excitability.   In  a    knock  out  of  the  transporter  protein  VIAAT   required  for  functional  Renshaw  cell  synapses,  Enjin  and  co-­‐-­‐-­‐workers  found  that   the  alpha  motor  neuron  excitability  was  reduced.  We  therefore  wanted  to   investigate  if  this  reduced  excitability  is  due  to  alterations  in  the  axon  initial   segment  length,  distance  to  soma  or  ion  channel  density.  

   

Background  

   

 Motor  neurons  

  The  process  by  which  you  generate  a  movement  is  complex;  it  involves  a  wide   variety  of  cells.  The  cells  that  

ultimately  trigger  the  movement  are   the  motor  neurons,  the  link  between   CNS  and  the  muscles.  Thereby  the   definition;  a  motor  neuron  is  a  neuron   with  the  cell  body  in  the  central  

nervous  system  that  projects  its  axon   to  skeletal  muscles  (1).  Motor  neurons   (MNs)  were  first  described  in  the  late   nineteenth  century  (4).  When  first   described  the  motor  neurons  were   dived  in  two  subtypes,  alpha  and   gamma,  based  on  which  muscle  fibres  

  they  innervate  (3,  5).  Alpha  motor  

Figure  1  Sketch  showing  the  motor  pool   principle  (Kanning  et  al  2010)  (3)  

 

neurons  (α-­‐-­‐-­‐MNs)  innervate  extrafusal  muscle  fibres  (commonly  referred  as   muscle  fibres)  that  generate  force  and  thereby  a  movement,  this  gives  α-­‐-­‐-­‐MNs  a   skeletomotor  function.  Gamma  motor  neurons  (γ-­‐-­‐-­‐MNs)  innervate  intrafusal   muscle  fibres  that  modulate  muscle  spindles,  the  sensory  organ  of  muscle   stretch,  thus  giving  γ-­‐-­‐-­‐MNs  a  fusimotor  function  (3,  6).  In  the  first  half  of  the   twentieth  century  another  motor  neuron  subtype  was  discovered.  This  subtype  

(3)

Termin  6  

  innervated  both  extrafusal  and  intrafusal  muscle  fibres,  and  thereby  have  the   combined  function  of  α-­‐-­‐-­‐MNs  and  γ-­‐-­‐-­‐MNs  (skeletofusimotor  function),  this   subtype  was  called  beta  motor  neurons  (β-­‐-­‐-­‐MNs)  (3,  6).  All  three  of  the  motor   neuron  subtypes  are  located  along  the  entire  spinal  cord,  and  in  separate  nuclei   in  the  brain  stem,  organized  in  columns  that  is  divided  into  motor  pools  based  on   the  muscle  the  MN  innervate  (7).  Henceforth,  this  report  will  focus  on  α-­‐-­‐-­‐MNs.  

   

The  alpha  motor  neurons,  the  archetypal  motor  neuron,  can  further  be  divided   into  three  groups  (fast  fatigable,  fatigue  resistant  and  slow)  based  upon  the   electrophysiology  of  the  motor  neuron  (3).  α-­‐-­‐-­‐MNs  have  the  largest  cell  body   among  the  motor  neurons  (almost  twice  the  size  as  the  other  MNs).  The  cell  body   of  α-­‐-­‐-­‐MNs  is  also  more  irregular  and  has  a  more  branched  dendritic  tree  than  the   other  motor  neurons  (3,  6).  All  these  differences  make  it  easier  to  identify  α-­‐-­‐-­‐MNs   under  a  microscope.  As  

mentioned  before,  in  

 

response  to  efferent  input   α-­‐-­‐-­‐MNs  stimulate  extrafusal   skeletal  muscle  fibres,  and   thereby  generate  a  muscle   contraction.  It  was  long   believed  that  the  α-­‐-­‐-­‐MNs  

  axon  only  innervated  

Figure  2  Motor   neuron  -­‐-­‐-­‐    Renshaw  cell  circuitry  

 

muscle  fibres,  but  in  the  mid-­‐-­‐-­‐twentieth  century  intraspinal  collaterals  were   discovered  on  the  α-­‐-­‐-­‐MN  axon  (8).  These  collaterals  were  almost  exclusively   found  on  α-­‐-­‐-­‐MN  and  they  all  innervated  the  same  interneuron  type.  This  

interneuron  was  named  after  its  discoverer,  Birdsey  Renshaw,  to  Renshaw  cell   (3,  8,  9).  

   

  Renshaw  cells  

  Renshaw  cells  (RS  cells)  are  located  in  the  ventral  horn,  close  to  the  α-­‐-­‐-­‐MNs,  and   are  derived  from  engrailed-­‐-­‐-­‐1-­‐-­‐-­‐expressing  V1-­‐-­‐-­‐embryonic  interneurons  (8).  The   discovery  of  the  RS  cell  was  based  on  the  observation  of  reduced  excitation  by   the  Ia  afferents  of  motor  neurons  upon  antidromic  stimulation  of  the  ventral  root   (8,  10).  They  subsequently  showed  that  this  effect  was  caused  by  cholinergic  

(4)

Termin  6  

  activation  of  RS  cells  by  the  α-­‐-­‐-­‐MNs.  α-­‐-­‐-­‐MNs  activate  RS  cells  with  the  

neurotransmitter  acetylcholine  (Ach)  that  interacts  with  ACh-­‐-­‐-­‐receptors  on  the   surface  of  the  RS  cell.  The  RS  cells  responds  with  a  high  frequency  signalling  with   the  inhibitory  neurotransmitters  glycine  and  GABA  to  the  motor  neurons,  and   consequently  inhibit  the  MNs.  Thus,  RS  cells  are  activated  each  time  the  α-­‐-­‐-­‐MNs   releases  ACh  to  generate  a  movement,  and  the  RS  cells  in  turn  inhibit  the  α-­‐-­‐-­‐MNs   (8-­‐-­‐-­‐10).  This  describes  phenomena  called  recurrent  inhibition,  a  phenomena  that   occurs  in  various  parts  of  the  CNS.  The  recurrent  inhibition  is  more  intense  over   motor  pools  involved  with  more  stereotyped  motor  output,  i.e.  proximal  muscles   (8).  One  RS  cell  receives  input  from  several  motor  neurons  and  conversely  the  RS   cells  output  is  distributed  to  several  motor  neurons.  The  characteristics  of  the   inhibitory  synapses  develop  after  the  first  week  postnatal  and  are  firmly   established  after  three  weeks  postnatal  (8,  11).  

   

Even  though  the  activity  of  RS  cells  is  well  established,  little  is  known  about  the   function  of  RS  cells.  It  has  been  suggested  that  RS  cells  have  an  important  role   during  the  development  and  maturation  of  spinal  circuits,  but  no  reliable  data   have  been  obtained  (8).  RS  cell  dysfunction  has  been  predicted  to  cause  

alterations  in  force  generation/maintenance,  rigidity,  spasticity  or  tremor.  These   hypotheses  have  been  difficult  to  test  due  to  lack  of  experimental  tools  to  

selectively  knockout  RS  cells  (8).  RS  cells  are  characterized  by  high  expression  of   calbindin  Dk28,  a  calcium-­‐-­‐-­‐buffering  protein.  Even  though  RS  cells  are  not  the   only  spinal  cord  cells  expressing  calbindin  Dk28,  there  are  very  few  other   neurons  in  the  ventral  horn  expressing  calbindin  Dk28  (8).  Studies  of  the  ACh-­‐-­‐-­‐  

receptors,  mediating  the  α-­‐-­‐-­‐MN  cholinergic  signals,  expressed  on  RS  cell  surface   revealed  that  there  were  two  different  subtypes  expressed,  α4  and  α2.  Whereas   the  α4  subunit  also  was  expressed  by  other  spinal  interneurons  it  seemed  that   the  α2  subunit  was  restricted  to  RS  cells  (Henrik  Gezelius,  unpublished  data).  

 

Axon  Initial  Segment   Axon  potential  initiation  is   the  culmination  of  the   synaptic  stimulation  of   neurons.  Whether  the   axon  potential  origin  was  

                       

Figure  3  Ion  channel  expressed  in  the  AIS  (Bender  &  

Trussell  2012)  (2)  

(5)

Termin  6  

  somatic  or  axonal  was  a  controversy  during  the  first  part  of  the  twentieth   century.  It  was  not  until  1950  before  they  received  experimental  data  that   yielded  a  solution  to  the  issue,  and  these  data  favored  an  axonal  origin  (2).  The   expermintel  data  sugsted  that  axon  potential  intiating  begins  somewhere  in  the   region  between  the  axon  hillock,  the  part  of  the  soma  that  is  connected  to  the   mainbody  of  the  axon,  and  the  first  segment  of  myelination.  This  region  was   termed  the  axon  initial  segment  (AIS)  (2,  12).  Features  that  influence  the  spiking   capability  of  the  AIS  are  distance  from  the  soma,  segment  length  and  ion  channel   density  &  compostion(2,  13-­‐-­‐-­‐15).  The  AIS  region  on  the  axon  often  starts  tens  of   micrometer  away  from  the  soma  (14).  Although  there  are  a  significant  variation,   both  across  and  within  different  cell  types,  of  the  precise  position  of  the  AIS   within  the  axon.  This  variation  may  give  rise  to  differences  in  neuronal   excitability  (14).  Deprivation  of  presynaptic  activity  can  directly  regulate  the   length  and  position  (both  distal  and  proximal)  of  the  AIS.  This  change  of  the  AIS   length  and  position  can  in  turn  influence  the  excitability  of  the  neuron,  for   example  cells  were  the  AIS  lies  more  distal  in  the  axon  have  a  higher  current   threshold  for  action  potential  (thus  a  decreased  excitability)  (13-­‐-­‐-­‐15).  The  fact   that  the  myelin  sheath  starts  immediately  after  the  AIS  may  affect  the  AISs  

capability  to  increase  either  its  length  or  distance  from  the  soma  (12).  In  addition   to  AIS  length  and  location  can  AIS  ion  channel  density,  composition  and  

gradients  influence  the  neuron  excitability  (2,  12,  15).  The  ion  channels  in  the  AIS   that  have  greatest  influence  on  spiking  properties  of  the  AIS  are  sodium  (Nav)   and  potassium  (Kv)  channels,  in  addition  to  these  ion  channels  there  is  also   calcium  channel  present  at  the  AIS  (2,  12).  The  Nav  channel  density  in  the  AIS  is   very  high,  about  50-­‐-­‐-­‐fold  higher  than  density  at  the  soma  and  proximal  dendrites,   which  lowers  the  threshold  for  axon  potential  initiation,  thus  increasing  the   neuron  excitability(16,  17).  Three  subtypes  of  Nav  channels  are  present  at  the   AIS,  Nav1.1,  Nav1.2  and  Nav1.6.  These  Nav  channels  (especially  Nav1.6)  are   anchored  and  clustered  to  the  AIS  by  the  cytoskeletal  protein  Ankyrin  G  (Ank  G).  

This  anchoring  protein  is  specific  for  the  AIS  and  can  therefore  be  used  to   specific  stain  the  AIS  through  immunohistochemistry  (14,  17,  18).  It  has  been   shown  that  Ank  G-­‐-­‐-­‐  deficient  Purkinje  cells  can’t  concentrate  Nav  channels  at  the   AIS;  these  cells  show  reduced  action  potential  firing  responses  to  excitatory   stimulation  (18).  The  Kv  channels  are  important  for  the  modulation  of  action  

(6)

Termin  6  

  potential  repolarisation,  firing  rate  and  pattern  (17).  Two  Kv  channel  subtypes,   Kv7.2/KCNQ2  &  Kv7.3/KCNQ3,  are  thought  to  be  well  suited  for  controlling  the   excitability  of  the  axon.  These  two  Kv  channels  are  anchored  to  the  AIS  by  the   cytoskeletal  protein  Ank  G,  the  same  protein  that  anchors  Nav  channels  to  the   AIS.  In  addition  to  these  two  Kv  channels  two  other  Kv  subtypes,  Kv1.1  and   Kv1.2,  are  expressed  at  the  AIS  (2,  12).  AIS  can  be  heterogeneous  within  a  single   neuronal  population,  both  in  terms  of  ion  channel  composition,  density  and   localisation,  and  thus  confer  different  excitability  properties  (12,  17).  This  AIS   plasticity  is  much  more  significant  in  excitatory  neurons,  for  example  motor   neurons  (13).  These  AIS  characteristics  generally  apply  for  the  alpha  motor   neuron,  but  there  are  some  specific  features  of  the  α-­‐-­‐-­‐MN  AIS  that  are  described   by  Duflocq  and  his  colleagues  (12).  The  AIS  of  α-­‐-­‐-­‐MN  can  be  either  soma  or   dendritic  derived,  where  the  dendritic  derived  AIS  logically  have  a  longer  

distance  to  the  soma,  but  in  most  cases  the  AIS  is  soma  derived.  The  length  of  the   AIS  in  α-­‐-­‐-­‐MN  differs  between  25  and  35  µm,  which  can  affect  the  spiking  

properties.  In  spinal  alpha  motor  neurons  the  major  axonal  ion  channel  is  the   sodium  channel  subtype  Nav1.1.  The  same  also  applies  in  the  AIS,  where  the   Nav1.6  subtype  also  is  expressed.  However,  there  is  no  expression  of  the  sodium   channel  subtype  Nav1.2  in  the  α-­‐-­‐-­‐MN  AIS.  When  an  immunohistochemical  

staining  of  Nav1.1  and  Nav1.6  was  made  it  was  found  that  the  intensity  of  the   Nav1.1  staining  decreased  when  the  intensity  of  the  Nav1.6  staining  increased,   accordingly  there  is  no  expression  of  Nav1.1  and  Nav1.6  simultaniosly.  The   potasium  channel  subtyoe  KCNQ2/Kv7.2  is  expressed  uniformly  throughout  the   Ank  G  positive  parts  of  the  AIS  in  α-­‐-­‐-­‐MN.  In  addition  to  the  Kv7.2  subtype  there  is   also  an  expression  of  Kv1.1,  Kv1.2  and  Kvβ2  at  the  α-­‐-­‐-­‐MN  AIS.  

  Knockout  of  VIAAT  in  Chrna2cre  mice  

  In  the  beginning  of  the  twenty-­‐-­‐-­‐first  century  Anders  Enjin  and  colleagues  (1)  did  a   successful  conditional  knockout  of  the  vesicular  inhibitory  amino  acid  

transporter  (VIAAT),  that  is  the  protein  responsible  for  filling  synaptic  vesicles   with  the  inhibitory  neurotransmitters  glycine  and  GABA  .  Thereby,  removing   VIAAT  from  synapses  between  Renshaw  cells  and  motor  neurons  will  block  RS   cells  from  releasing  glycine  and  GABA  at  the  synapse.  To  make  this  conditional   knockout  specific  to  the  RS  population,  the  Cre/lox  system  was  taken  advantage   of.  A  Cre-­‐-­‐-­‐expressing  cassette  was  inserted  at  the  initiating  ATG  codon  of  the  first  

(7)

Termin  6  

  coding   exon   of   the   Chrna2   gene,  this   gene   express   the  α2  subunit  which   is   selectively   expressed   in   cholinergic   receptors   on   RS   cell   surface,   that   in   the   ventral  horn  of  the  spinal  cord  can  be  used  as  a  specific  marker  for  RS  cells  (19).  

To  construct  the  viaat-­‐-­‐-­‐lox  mice  line  exon  2  of  the  Slc32a1  gene  (expressing  Viaat)   was  flanked  with  loxP  sites.  Thereby,  by  crossing  the  Chrna2-­‐-­‐-­‐cre  mice  with  Viaat-­‐-­‐-­‐  

lox   animals      a   conditional   knockout   of   VIAAT   in   Chrna2::Cre   expressing   cells   (RS   cells)   was   obtained   (20).   The   cre   expressing   mice   was   further   crossed   with   a   commercial  line  carrying  the  tdTomato  protein  (constructed  using  a  CAG-­‐-­‐-­‐lox-­‐-­‐-­‐  

stop-­‐-­‐-­‐lox-­‐-­‐-­‐tdTomato-­‐-­‐-­‐WPRE-­‐-­‐-­‐pA   plasmid   inserted   into   the   Gt(Rosa26sor   locus)).  

Thereby   Chrna2-­‐-­‐-­‐cre/tdTomato   mice   expressed   the   fluorescent   protein   tdTomato   when   the   stop   codon   was   removed   by   Cre,   thus   in   Chrna2::Cre   expressing   cells   (RS   cells).   This   expression   of   fluorescent   protein   enabled   the   identification   of   RS   cell   under   a   fluorescent   microscope   without   having   to   perform   any  

immunohistochemistry.  As  a  small  fraction  of     α-­‐-­‐-­‐MNs  also  express  the  Chrna2   gene,   these   mice   could   also   be   used   readily   identify   large   MNs   expressing   tdTomato.   These   rare   labellings   of   MNs   could   therefore   be   taken   advantage   of,   when   wanting   to   investigate   single,   well   separated   MNs.  

   

The  conditional  knockout  of  VIAAT  has  not  been  shown  to  result  in  alterations  in   motor  coordination,  nor  any  alterations  in  the  cholinergic  input  to  the  RS  cells.  

But  there  were  an  increased  number  of  synapses  from  RS  cells  to  the  α-­‐-­‐-­‐MNs,   however  there  were  no  alterations  in  the  monosynaptic  response  in  the  motor   neurons.  Enjin  and  colleagues  also  found  that  the  action  potential  threshold  was   more  depolarized  and  the  action  potential  amplitude  lower  in  α-­‐-­‐-­‐MNs  in  knockout   mice.  In  addition  to  that  the  α-­‐-­‐-­‐MNs  in  the  knockout  mice  had  an  impaired  

capacity  to  increase  spike  frequency  in  response  to  increased  input.  This     suggests  α-­‐-­‐-­‐MNs  to  be  hypoexcitable  when  developing  without  RS  cell  input.  

   

This  hypoexcitability  is  the  subject  for  my  study.  My  hypothesis  is  that  the   hypoexcitability  may  be  caused  by  changes  in  α-­‐-­‐-­‐MN  AIS  location,  ion  channel   density  or  composition.  

(8)

Termin  6  

Methods  

 Mice  

  In    this    study    two    mice    line    were    used,    Viaatlx/lx      (a    conditional    knockout)    and   Chrna2::Cre     (control).     For     the     conditional     knockout     mice     a     Cre-­‐-­‐-­‐expressing   cassette    has    been    inserted    at    the    initiating    ATG    codon    of    the    first    coding    exon    of   the    Chrna2    gene    (expressed    in    the    spinal    cord    in    Renshaw    cells    and    motor   neurons(8,    19,    21,    22))    and    exon    2    of    the    Slc32a1    gene    (expressing    Viaat)    was   flanked    with    loxP    sites.    This    leads    to    a    knockout    of    Viaat    in    Chrna2::Cre  

expressing    cells(Renshaw    cells).    In    the    control    mice    has    only    a    Cre-­‐-­‐-­‐expressing   cassette    been    inserted,    the    cassettes    position    is    the    same    as    in    the    conditional   knockout    mice    (the    initiating    ATG    codon    of    the    first    coding    exon    of    the    Chrna2   gene)  (19).  In  both  mice  lines  a  CAG-­‐-­‐-­‐lox-­‐-­‐-­‐stop-­‐-­‐-­‐lox-­‐-­‐-­‐tdTomato-­‐-­‐-­‐WPRE-­‐-­‐-­‐pA  plasmid   has     been     inserted     into     the     Gt(ROSA)26sor     locus.     To     generate     the     conditional   knockout    mice    the    two    different    mice    lines    (Chrna2::Cre    and    Viaatlx/lx)    had    been   mated    with    each    other.    The    offspring    expresses    Cre    resulting    in    a    knockout    of   exon    2    of    the    Slc32a1    and    thereby    a    conditional    knockout    of    Viaat.    The       expression   of   Cre   also   results   in   a   removal   of   the   Stop   cassette   in   the   CAG-­‐-­‐-­‐lox-­‐-­‐-­‐  

stop-­‐-­‐-­‐lox-­‐-­‐-­‐tdTomato-­‐-­‐-­‐WPRE-­‐-­‐-­‐pA   plasmid,   and   thereby   expression   of   tdTomato.   The   control    mice    had    been    generated    by    mating    Chrna2::Cre    mice    with    each    other,   thereby    creating    offspring         that    express    Viaat    and    Tomato.    Cre    positive    mice    are   identified    by    PCR    genotyping.    Due    to    the    fact    that    Chrna2    also    is    expressed    in   nasal    cells    of    the    mouse    (21)    tdTomato    will    also    be    expressed    there.    This   tdTomato     expression     can     be     visualized     by     illuminating     the     mouse’s     nose     with   laser,    and    it    is    with    this    method    tdTomato    mice    were    identified.    Other    lab  

members     have     done     the     tdTomato     identification     previously.     The     same     mice     lines   were    initially    used    by    Anders    Enjin    in    his    thesis    Neural    Control    of    Movement;  

Motor      Neuron      Subtypes,      Proprioception      and      Recurrent      Inhibition,      not      published   yet     (1).     The     VIAATlx/lx        and     Gt(ROSA)26sor::tdTomato     mice     lines     are     described     in   Tong    et    al    2008    (20)    and    Madisen    et    al    2010    (23).  

  Dissection  

  Mice  were  anaesthetized  with  isoflurane  and  decapitated  and  the  spinal  cord   was  dissected  out  in  cold  1x  PBS.  The  spinal  cord  was  placed  in  4  %  

paraformaldehyde  and  fixed  for  2  hours.  Spinal  cords  samples  were  

(9)

Termin  6  

  cryoprotected  by  immersion  in  30  %  sucrose  and  PBS  over  night.  Finally  the   samples  were  frozen  slowly  in  OCT  medium.  The  frozen  samples  were  stored  at  -­‐-­‐-­‐  

20  degrees.  

  Cryostat  

  Spinal   cord   samples   were   cut    into   20   µm   or   35    um   slices   on   a   cryostat    at   a   temperature   of   -­‐-­‐-­‐19°C.   The   slices   were   collected   on   glass   slides,   3-­‐-­‐-­‐4   sections   on   each    slide.    For    each    spinal    cord    sample    30-­‐-­‐-­‐35    glass    slides    were    collected,    each   was    marked    with    date,    genotype,    thickness,    postnatal    stage,    and    area    of    spinal   cord,    angle    and    slide    number.    Collected    slides    were    kept    dark    and    dried    for    an   hour   and   then   placed   in   a   cover   box.   The   slides   were   stored   at   -­‐-­‐-­‐20   degrees.  

  Immunohistochemistry  

   

  Antibody     Binding  site     Visualized  structure  

Calbindin  D-­‐-­‐-­‐28K:  mouse   monoclonal  

  Calcium-­‐-­‐-­‐binding  proteins   In  Spinal  cord  ventral   horn:  Renshaw  cells  

  Ankyrin  G:  Rabbit   polyclonal  

  Anchoring  protein   (Ankyrin  G)  for  sodium   and  potassium  channels   in  the  AIS  

  Axon  Initial  Segment  

PanNav:  Rabbit   Polyclonal  

Voltage-­‐-­‐-­‐gated     sodium   channels  

Voltage-­‐-­‐-­‐gated     sodium   channels  

  DAPI   Adenine  and  Tyrosine  

rich  regions  in  the  DNA  

  Cell  Nucleus  

   

Following  primary  antibody  solutions  were  used:  

Solution  1  

• Anti  Calbindin-­‐-­‐-­‐32  monoclonal  mouse  (1:1000)  

• Anti  PanNav  polyclonal  rabbit  (1:500)   Solution  2  

• Anti  Calbindin-­‐-­‐-­‐32  monoclonal  mouse  (1:1000)  

• Anti  AnkG  polyclonal  rabbit  (1:500)  

  Alexa  488  and  Alexa  647  conjugated  secondary  antibodies  were  used  to  detect   mouse   and   rabbit   antibodies.   Dapi   was   also   added   as   a   marker   for   DNA   (cell  

(10)

Termin  6  

  nucleus).   The   same   secondary   antibody   solution   was   used   for   both   primary   antibody  solutions.  

   

During   the   immunohistochemistry   the   slides   were   kept   in   a   humidifying   chamber.  The  spinal  cord  sections  on  each  slide  were  circled  with  a  hydrophobic   barrier  marker.  Each  slide  was  first  incubated  in  antibody  blocking  solution  for  1   hour  (10  ml  0,1M  PB,  1  ml  4  %  goat  serum  and  30  µl  Triton-­‐-­‐-­‐X-­‐-­‐-­‐100),  to  minimize   the   background   fluorescence.   The   blocking   solution   was   removed   and   the   primary   antibody   solution   was   applied.   The   slides   were   incubated   in   room   temperature   overnight   (occasionally   in   a   fridge   over   the   weekend).   After   incubation   the   slides   were   washed   in   PBS   for   3x10   min.   Then   the   secondary   antibody  solution  was  applied,  and  the  slides  were  incubated  for  1  hour  at  room   temperature.   When   the   incubation   was   finished   the   slides   were   washed   as   earlier   in   PBS.   Finally   the   slides   were   dried   and   sealed   with   cover   slips   and   Mowiol.  The  stained  slides  were  stored  in  a  cover  box  in  a  freezer.  

  Confocal  microscopy  

  Images   were   obtained   with   a   confocal   laser-­‐-­‐-­‐scanning   microscope,   using   the   software   LSM5.   Overview   images   were   taken   with   a   20x   objective   and   zoomed   images  were  taken  with  a  63x  objective.  The  overview  images  were  taken  with   only   the   genetically   expressed   fluorescent   protein   tdTomato   visible.     Two   zoomed   images   were   taken   of   each   motor   neuron   of   interest.   One   image   with   only   the   tdTomato   protein   visible   and   one   image   with   tdTomato   protein,   Calbindin  and  Ankyrin  G/PanNav  stainings  visible,  both  images  were  taken  with   a   Z-­‐-­‐-­‐stack    mode.    Distance   from    the    soma   and    the    length    of   the    Axon    Initial   Segment  (AIS)  where  measured  in  the  software  LSM  Images,  that  is  used  to  view   the   images.   To   quantify   the   density   of   Nav   channels   the   intensity   of   the   immunofluorescence  intensity  of  the  PanNav  staining  where  measured  with  the   same  software.  

                           

(11)

Termin  6  

 

Result  

   

The  aim  with  this  study  was  to  measure  the  AIS  length,  distance  from  soma  and   sodium  channel  density  in  VIAATlx/lx  (conditional  knockout)  and  control  mice   (Chrna2::Cre).  First  overview  pictures  were  taken  with  using  a  10x  objective,   these  pictures  were  taken  with  a  regular  fluorescence  microscope  (see  figure   4).  

 

   

The  overview  pictures  were  used  to  identify  MNs  in  the  spinal  cord  samples.  

This  was  done  using  the  tomato  staining.  Red  cells,  with  irregular  form,  twice   the  size  of  other  tomato  labelled  cells  located  in  the  ventral  part  of  the  spinal   cord  were  identified  as  MNs  (se  figure  4  &  5).  

         

(12)

Termin  6      

     

To  identify  MN  axons  pictures  were  taken  with  a  20x  objective  in  a  confocal   microscope  (see  figure  5).  Axons  can  be  identified  by  that  they  are  much  thinner   than  dendrites.  In  order  to  distinguish  between  motor  neuron  axons  and  

Renshaw  cell  axons  terminating  on  the  MN  soma,  the  calbindin  staining  was   used.  Thereby,  thin  tomato  positive  neuritis  can  be  distinguished  as  either  axons   (only  positive  for  tomato)  or  if  calbindin  positive,  labelling  RS  cells,  it  shows  the   tomato  stain  (RS  cell  origin)  however  overlayed  with  calbindin.  

(13)

Termin  6  

   

Zoomed  pictures  on  selected  motor  neurons  were  taken  to  make  measurements   on  (see  figure  6).  

 

   

  Due  to  technical  difficulties  no  images  with  clearly  visible  MN  axons  was  

obtained  that  could  be  used  for  subsequent  measurements.  

   

Discussion  

  This  conditional  knockout  with  the  synapses  from  the  Renshaw  cells  to  the  alpha   motor  neurons  deleted  is  used  in  several  other  studies  in  the  Kullander  lab.  The   fluorescent   protein   tdTomato   is   one   of   the   strongest   fluorescent   proteins   available  today,  and  the  selective  expression  in  only  a  few  α-­‐-­‐-­‐MNs  in  each  spinal   cord  section  has  intrigued  members  of  this  lab.  However,  the  calbindin  staining,   was   shown   to   not   work   well   (personal   communication   with   PhD   student   S.  

Perry).   The   stainings   of   Ankyrin   G   and   sodium   ion   channels   could   not   be   evaluated  due  to  the  fact  that  no  motor  neuron  axons  were  found  in  the  pictures.  

   

Despite  the  fact  that  fluorescent  protein  tdTomato  labels  a  few  α-­‐-­‐-­‐MNs  it  may  be   better  to  use  another  marker  that  label  more  α-­‐-­‐-­‐MNs.  Duflocq  2011  (12)  used  an   anti-­‐-­‐-­‐Peripherin  antibody  in  his  study.  This  antibody  specifically  labels  somatic   MNs  in  the  ventral  horns  of  the  spinal  cord.  Thus,  this  antibody  can  be  used  as  a  

(14)

Termin  6  

  complement   to   Tomato   in   identifying   α-­‐-­‐-­‐MNs.   Another   factor   that   may   have   affected   the   occurrence   of   α-­‐-­‐-­‐MN   axons   is   the   thickness   of   the   obtained   sections.  

All   sections   used   in   study   were   20   µm   thick,   which   reduces   the   chance   to   find   a   motor   neuron   with   a   visible   axon.   This   is   due   to   the   fact   that   α-­‐-­‐-­‐MNs   have   diameter   of   about   50   µm   (5),   consequently   in   20   µm   section   only   a   small   part   of   the   motor   neuron   be   included.  Thicker   sections,   about   30  –   40   µm,   may   increase   the   chance   of   finding   a   α-­‐-­‐-­‐MN   with   a   visible   axon,   and   still   allowing   for   good   penetrance   of   antibodies.   All   mice   used   in   my   study   were   between   5   and   15   days   old,   this   might   be   a   cause   to   lack   of   result.   Alvarerz   and   Fyffe   2007   (8)   write   in   their   article   that   “the   characteristics   of   inhibitory   synapses   develop   after   the   firs   week   postnatal   and   are   firmly   established   by   P20”,   accordingly   the   hypothetical   changes   in   the   AIS   might   not   occur   until   the   postnatal   day   20   when   the   inhibitory   synapses   are   firmly   developed.   However,   all   the   results   showing   hypoexcitability   in   MNs   of   Chrna2-­‐-­‐-­‐cre/viaat-­‐-­‐-­‐lox   was   obtained   from   mice   of   age   P0-­‐-­‐-­‐P6  (K.  Leao,  unpublished  data).  In  a  study  by  Pan  et  al  2006  (18)  they  noticed   that   Purkinje   cells   in   mice   lacking   Ankyrin   G   expression   failed   to   concentrate   sodium   ion   channels   at   the   AIS,   these   cells   showed   reduced   action     potential   firing   responses   to   excitatory   stimulation.   If   the   conditional   knockout   of   the   Renshaw   cells   synapses   somehow   caused   an   alteration   in   the   Ankyrin   G   expression  in  the  α-­‐-­‐-­‐MNs,  it  may  give  rise  to  the  changes  in  α-­‐-­‐-­‐MN  found  by  Enjin   et   al   (1).   The   lack   of   Ankyrin   G   expression   would   also   have   made   the   staining   for   this    protein    useless.  

   

Even  though  I  did  not  get  any  result  proving  my  hypothesis,  there  are  many  facts   about  AIS  plasticity  in  favour  of  the  hypotheses.  Long-­‐-­‐-­‐term  changes  in  electrical   activity,   such    as    chronic    depolarization    or    chronic    stimulation,    are    known    to   cause  significant  changes  in  the  AIS  location  (14,  15).  Consequently,  neurons  can   respond   to   both   increases   and   decreases   of   the   activity   with   changes   in   AIS   position.   It   has   been   shown   that   AISs   with   a   more   distal   position   have   higher   current   thresholds   for   action   potential   initiation,   and   thus   a   lower   excitability   (14).   Consequently,   the   AIS   in   the   motor   neurons   in   the   conditional   knockout   mice  may  have  a  more  distal  position.  Alterations  in  the  sodium  channel  density   and  composition  at  the  AIS  have  been  shown  to  cause  reduced  action  potential   firing  in  response  to  excitatory  stimulation  (18).  These  alterations  can  be  caused  

(15)

  by  chronic  stimulation  or  chronic  depolarization  (15),  and  thus  might  be  a  cause   to   the   reduced   motor   neuron   excitability   in   the   conditional   knockout   mice.  

Bender  and  Trussell  2012  (2)  suggested  that  the  potassium  ion  channel  subtypes   Kv7.2   &   7.3   (KCNQ2   and   KCNQ3),   clustered   to   the   AIS   through   the   anchoring   protein  Ankyrin  G,  are  well  suited  for  controlling  the  excitability  of  the  axon.  If   this  two  potassium  ion  channels  subtypes  in  fact  controls  the  excitability  of  the   axon,  might  alterations  in  the  density  or  composition  of  these  two  subtypes  be   the  cause  of  the  reduced  motor  neuron  excitability  in  the  conditional  knockout   mice.  

   

It  may  be  one  or  several  of  these  factors  that  causes  the  reduced  excitability  in   the  conditional  knockout  mice.  However  in  order  to  answer  this  question,  more   studies  are  needed.  

       

  References  

 1. A.   Enjin   et   al.,   Development   of   spinal   motor   circuits   in   the   absence   of   VIAAT-­‐-­‐-­‐mediated   Renshaw   cell   signaling.   (2011-­‐-­‐-­‐03-­‐-­‐-­‐28T17:44:34+0200,   Not   published   yet).  

2. K.   J.   Bender,   L.   O.   Trussell,   The   Physiology   of   the   Axon   Initial   Segment.  

Annu  Rev  Neurosci,   (Mar  20,  2012).  

3. K.    C.    Kanning,    A.    Kaplan,    C.    E.    Henderson,    Motor    neuron    diversity    in   development  and  disease.  Annu  Rev  Neurosci  33,  409  (2010).  

4. M.  Manuel,  D.  Zytnicki,  Alpha,  beta  and  gamma  motoneurons:  functional   diversity   in   the   motor   system's   final   pathway.   J  Integr  Neurosci   10,   243   (Sep,  2011).  

5. R.  N.  Bryan,  D.  L.  Trevino,  W.  D.  Willis,  Evidence  for  a  common  location  of   alpha  and  gamma  motoneurons.  Brain  Res  38,  193  (Mar  10,  1972).  

6. D.   R.   Westbury,   A   comparison   of   the   structures   of   alpha   and   gamma-­‐-­‐-­‐  

spinal  motoneurones  of  the  cat.  J  Physiol  325,  79  (Apr,  1982).  

7. S.  McHanwell,  T.  J.  Biscoe,  The  localization  of  motoneurons  supplying  the   hindlimb   muscles   of   the   mouse.   Philos  Trans   R   Soc   Lond   B  Biol   Sci   293,   477  (Aug  12,  1981).  

8. F.  J.  Alvarez,  R.  E.  Fyffe,  The  continuing  case  for  the  Renshaw  cell.  J  Physiol   584,  31  (Oct  1,  2007).  

9. J.   C.   Eccles,   P.   Fatt,   K.   Koketsu,   Cholinergic   and   inhibitory   synapses   in   a   pathway  from  motor-­‐-­‐-­‐axon  collaterals  to  motoneurones.  J  Physiol  126,  524   (Dec  10,  1954).  

(16)

10. B.  Lamotte  d'Incamps,  P.  Ascher,  Four  excitatory  postsynaptic  ionotropic   receptors   coactivated   at   the   motoneuron-­‐-­‐-­‐Renshaw   cell   synapse.   J   Neurosci  28,  14121  (Dec  24,  2008).  

11. U.    Windhorst,    On    the    role    of    recurrent    inhibitory    feedback    in    motor   control.  Prog  Neurobiol  49,  517  (Aug,  1996).  

12. F.   C.   Amandine   Duflocq,   Marco   Giovannini,   François   Couraud,   Marc   Davenne,   Characterization   of   the   axon   initial   segment   (AIS)   of   motor   neurons  and  identification  of  a  para-­‐-­‐-­‐AIS  and  a  juxtapara-­‐-­‐-­‐AIS,  organized   by  protein  4.1B.  BMC  Biology  9,  66  (2011,  2012).  

13. M.   S.   Grubb,   J.   Burrone,   Activity-­‐-­‐-­‐dependent   relocation    of   the   axon   initial   segment    fine-­‐-­‐-­‐tunes    neuronal    excitability.    Nature    465,    1070    (Jun    24,   2010).  

14. M.  S.  Grubb,  J.  Burrone,  Building  and  maintaining  the  axon  initial  segment.  

Curr  Opin  Neurobiol  20,  481  (Aug,  2010).  

15. M.  N.  Rasband,  The  axon  initial  segment  and  the  maintenance  of  neuronal   polarity.  Nat  Rev  Neurosci  11,  552  (Aug,  2010).  

16. M.    H.    Kole    et    al.,    Action    potential    generation    requires    a    high    sodium   channel   density   in   the   axon   initial   segment.   Nat   Neurosci   11,   178   (Feb,   2008).  

17. A.  Lorincz,  Z.  Nusser,  Cell-­‐-­‐-­‐type-­‐-­‐-­‐dependent  molecular  composition  of  the   axon  initial  segment.  J  Neurosci  28,  14329  (Dec  31,  2008).  

18. Z.   Pan   et   al.,   A   common   ankyrin-­‐-­‐-­‐G-­‐-­‐-­‐based   mechanism   retains   KCNQ   and  NaV   channels   at   electrically   active   domains   of   the   axon.   J   Neurosci   26,  2599  (Mar  8,  2006).  

19. H.    Gezelius,    dissertation;    Studies    of    Spinal    Motor    Control    Networks    in   Genetically  Modified  Mouse  Models,  Uppsala  universitet  (2009).  

20. Q.  Tong,  C.  P.  Ye,  J.  E.  Jones,  J.  K.  Elmquist,  B.  B.  Lowell,  Synaptic  release  of   GABA   by   AgRP   neurons   is   required   for   normal   regulation   of   energy   balance.  Nat  Neurosci  11,  998  (Sep,  2008).  

21. K.     Ishii,     J.     K.     Wong,     K.     Sumikawa,     Comparison     of     alpha2     nicotinic   acetylcholine   receptor   subunit   mRNA   expression   in   the   central   nervous   system  of  rats  and  mice.  J  Comp  Neurol  493,  241  (Dec  12,  2005).  

22. M.   Dourado,   P.   B.   Sargent,   Properties   of   nicotinic   receptors   underlying   Renshaw  cell  excitation  by  alpha-­‐-­‐-­‐motor  neurons  in  neonatal  rat  spinal   cord.  J  Neurophysiol  87,  3117  (Jun,  2002).  

23. L.    Madisen    et    al.,    A    robust    and    high-­‐-­‐-­‐throughput    Cre    reporting    and   characterization  system  for  the  whole  mouse  brain.  Nat  Neurosci  13,  133   (Jan,  2010).  

References

Related documents

The activation energy for delignification was higher than for degradation of hemicelluloses indicating that a higher temperature favors lignin removal in both spruce

For example, a surface recording electrode (Figure 13 a, b) must be able to detect nerve electrical activity through the mass of tissue that separates the signal source from

[r]

The goal of this study is to provide a working, stable and high order accurate numerical method for the Soliton model and for some boundary conditions.. In section 3 a set of

Generating functional neurons with DA specific phenotype in vitro via direct reprogramming of human adult skin fibroblasts from healthy and PD donors (Paper II).. Next,

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton & al. -Species synonymy- Schwarz & al. scotica while