• No results found

ONSHORE WINDMILL FOUNDATIONS - Evaluation of new proposals Report TVSM-1029WAEL MOHAMED

N/A
N/A
Protected

Academic year: 2022

Share "ONSHORE WINDMILL FOUNDATIONS - Evaluation of new proposals Report TVSM-1029WAEL MOHAMED"

Copied!
72
0
0

Loading.... (view fulltext now)

Full text

(1)

Doctoral Thesis Structural

Mechanics

Report TVSM-1029WAEL MOHAMED ONSHORE WINDMILL FOUNDATIONS - Evaluation of new proposals

WAEL MOHAMED

ONSHORE WINDMILL FOUNDATIONS

Evaluation of new proposals

1029HO.indd 1

1029HO.indd 1 2017-12-17 17:12:082017-12-17 17:12:08

(2)
(3)

DEPARTMENT OF CONSTRUCTION SCIENCES

DIVISION OF STRUCTURAL MECHANICS

Copyright © Wael Mohamed 2017.

Printed by V-husets tryckeri LTH, Lund, Sweden, December 2017 (Pl).

For information, address:

Division of Structural Mechanics, Faculty of Engineering LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.

Homepage: www.byggmek.lth.se

ISRN LUTVDG/TVSM--17/1029--SE (1-192) | ISSN 0281-6679 ISBN 978-91-7753-525-6 (print) | ISBN 978-91-7753-526-3 (pdf) DOCTORAL THESIS

WAEL MOHAMED

ONSHORE WINDMILL FOUNDATIONS

Evaluation of new proposals

(4)
(5)

i

(6)
(7)

iii

(8)

iv

(9)

v

(10)

vi

(11)

1

(12)
(13)

3

(14)

4

b) c)

a)

(15)

5

D

dfco θ Edge beam

t

(16)

6

(17)

7

(18)

8

(19)

9 H

h

M

(20)

10

𝑀 =12𝜌𝑎𝑣2𝜋𝑅𝑟2ℎ𝐶𝑀𝐷𝐺𝐷

ρ h

𝐶𝑀𝐷 = 𝜀𝑇𝐶𝐷𝑇(3+3𝛼1 +16) + 𝜀𝑁𝐶𝐷𝑁+ 𝐶𝑇

ε

ε α

α

𝐺𝐷 = 1 + 2𝐼𝑟𝑒𝑓(0.75 +5.6𝑣

)𝑔𝐷√𝐾√1 + 𝑅𝐷 𝑔𝐷

(21)

11 𝑔𝐷

𝑔𝐷

˃ 𝑔𝐷 −0.3 sin (𝜋 𝑣− 𝑣𝑟

𝑣𝑜𝑢𝑡 − 𝑣𝑟) + 3 sin (7𝜋

8 ( 𝑣− 𝑣𝑟

𝑣𝑜𝑢𝑡− 𝑣𝑟)) + 3 0.15sin (𝜋 𝑣− 𝑣𝑟

𝑣𝑖𝑛− 𝑣𝑟) + 0.15 0.45 𝑣− 𝑣𝑟

𝑣𝑜𝑢𝑡 − 𝑣𝑟+ 0.15 2.6 𝑣− 𝑣𝑟

𝑣𝑜𝑢𝑡 − 𝑣𝑟+ 0.2

𝑀 = ∫012𝜌𝑎𝑣2𝐶𝑓𝐾𝑑𝐾𝑧𝐺𝐷𝐷(𝑧)𝑧𝑑𝑧

(22)

12 0

5 10 15 20 25 30 35 40

5 7 9 11 13 15 17 19 21 23 25

Maximum moment on the foundation (MNm)

Wind Speed at hub height (m/s)

0 5 10 15 20 25 30 35 40

27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Maximum moment on the foundation (MNm)

Wind Speed at hub height (m/s)

(23)

13

(24)
(25)

15

(26)

16

𝑀𝑡= 𝑀 + 𝐻(𝑑𝑓) 𝑉 = 𝑁 + 𝑊𝑓+ 𝑊𝑠 − 𝐹

N H

R y

h

Wf

σ N

y

H M

R be

VH e

Foundation base level Natural ground level

a) b)

c)

d)

df

df

Wind pressure

a)

N H

R y

h

Wf

σ N

y

H M

R be

VH e

Foundation base level Natural ground level

a) b)

c)

d)

df

df

Wind pressure

a)

N H

R y

h

Wf

σ N

y

H M

R be

VH e

Foundation base level Natural ground level

a) b)

c)

d)

df

df

Wind pressure

a)

b)

c) Aeff

e

leff le

beff

be

(27)

17 𝜎 =𝑏 𝑉

𝑒𝑓𝑓𝑙𝑒𝑓𝑓+ 𝑏 6𝑀𝑡

𝑒𝑓𝑓𝑙𝑒𝑓𝑓2

( ) 𝐴𝑒𝑓𝑓 = 2 [𝑅2cos−1(𝑅𝑒) − 𝑒√𝑅2− 𝑒2]

𝑙𝑒𝑓𝑓 = √𝐴𝑒𝑓𝑓𝑅√1−(1−

(𝑅−𝑒) 𝑅 )2 (𝑅−𝑒)

𝑏𝑒𝑓𝑓 = 𝑙𝑒𝑓𝑓

𝑅√1−(1−(𝑅−𝑒)𝑅 )2

(𝑅 − 𝑒)

𝑞𝑎𝑙𝑙 =𝑐𝑁𝑐𝜉𝑐+𝑞𝑁𝑞𝜉𝑞+0.5𝛾𝑓 𝑏𝑒𝑓𝑓𝑁𝛾𝜉𝛾

𝑠

γ

γ

𝜉𝑐, 𝜉𝑞, 𝜉𝛾

(28)

18

γ

𝑞𝑎𝑙𝑙 =𝑐𝑢𝑁𝑐𝑠𝑓𝑐𝑑𝑐+𝑞

𝑠

𝑞𝑎𝑙𝑙− 𝜎 = 0

Mz

M H

N

Natural Ground level (NGL)

Wf

e V R

(29)

19

𝐴𝑒𝑓𝑓 𝑐 + 𝑉 𝑡𝑎𝑛 Ø 2𝑀𝑧𝑙𝑒𝑓𝑓+√𝐻2+(2𝑀𝑧𝑙𝑒𝑓𝑓)2

> 1

(30)

20

2𝑀𝑧𝑙𝑒𝑓𝑓+√𝐻2+(2𝑀𝑧𝑙𝑒𝑓𝑓)2

𝑉 < 0.4

Ø

(31)

21

D2

t D

(32)

22 a)

D

dfco θ Edge beam

Foundation base level t

b)

(33)

23

(34)

24

Soil Steel Cage

Movable load

a)

b)

c)

d)

(35)

25

(36)

26 Electric Valve M

M Electric Motor

(37)

27

The lower pipe system Motors rooms

Electric valve Electric pumps

(38)

28 a)

Wind direction

Soil

Steel Cage

Movable load

b)

(39)

29

a) b)

c) d)

(40)

30

0 5 10 15 20 25 30 35

14 16 18 20

Stabilising moment from the active system (MNm)

Raft Diameter (m)

0 5 10 15 20 25 30 35

14 16 18 20

Stabilising moment from the active system (MNm)

Raft Diameter (m)

0 5 10 15 20 25 30 35

14 16 18 20

Stabilising moment from the active system (MNm)

Raft Diameter (m)

Waggons filled with rock (30 kN/m3) Waggons filled with soil (22 kN/m3) Waggons filled with soil (19 kN/m3) Waggons filled with soil (16 kN/m3)

(41)

31

(42)
(43)

33

ϕ

ψ

Solid particles

Voids

Solid particles

Water

Solid particles

Air

Solid particles

Water Air

Saturated soil

Dry soil Partially saturated

soil Solid

particles Voids

Element separated into phases Soil

skeleton

(44)

34

No dilatancy,

dilatancy angle ψ = 0

ψ

Dilatancy during shear dilatancy angle ψ ≠ 0

(45)

35 e

log p’

Cc

Cs

1

1 Swelling line Consolidation Line

p

p

p

Time = 0 p = u p’ = 0

Time < ∞ p = u + p’

Time = ∞ p = p’

u = 0

a) b) c)

(46)

36

(47)

37

+ z

=E

Es so 1 0.06

𝐸 = 𝐸𝑠1−𝑣−2𝑣1−𝑣 2 b)

z a)

(48)

38

a) b)

(49)

39 γ γ

∅ˋ

a) b)

(50)

40

(51)

41 ϕ

ψ

𝜎1,−𝜎3,

2 = 𝑐,cos 𝜙,+𝜎1,+𝜎2 3, sin 𝜙,

𝜎1, 𝜎3, 𝜎1, > 𝜎3,) ̓

𝜙,

𝜎1,−𝜎3, 2

σ’

σ3 τ

c'

c’ / tan ϕ 1’+σ3’) / 2

ϕ'

1’ - σ3’) / 2 Failure envelope

σ1

(52)
(53)

43

ν γ

ν γ

(54)

44

(55)
(56)

46 a)

Wind direction

22.5˚ 45˚

22.5˚ 45˚

(57)

47

θ

θ

(58)

48

(59)

49

(60)

50

(61)

51

(62)

52

(63)

53 θ

(64)

54

(65)

55

(66)
(67)

57

(68)

58

(69)

59

(70)

60

(71)

61

(72)

62

References

Related documents

Figure D.2: Settlements from varying the modulus of elasticity, cohesive soil, point 2 on strip foundation... Figure D.3: Settlements from varying the modulus of

The packaging laminate used in this report shows the same mechanical behavior as the folded strip sealing does, as shown in Figure 3.11.. This indicates that it is the properties of

Detta är en

The main focus of this thesis was on the vertical and horizontal forces that pedestrians impart to a footbridge and how these loads can be modelled to be used in the dynamic design

From the simulations in LS-DYNA the displacements in the middle and lower part of the sternum were measured at the end of the simulations and are collected in Table

Finite Element Model Updating of the New Svinesund Bridge Manual Model Refinement with Non-Linear Optimization.. Master’s Thesis in the International Master’s Program

Scientific Computation, Polymer Physics and Thermodynamics, Multi-Scale Modeling of Materials, Computer Simulation, Artificial Intelligence and Soft-Computing, Computer

Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the