• No results found

Spectral Estimation by Geometric, Topological and Optimization Methods

N/A
N/A
Protected

Academic year: 2022

Share "Spectral Estimation by Geometric, Topological and Optimization Methods"

Copied!
44
0
0

Loading.... (view fulltext now)

Full text

(1)

Geometric, Topological and

Optimization Methods

Per Enqvist

DoctoralThesis

Stockholm, 2001

Optimization andSystems Theory

Department of Mathematics

RoyalInstitute of Technology

(2)

TRITA-MAT-01-OS-03

ISSN1401-2294

ISRNKTH/OPTSYST/DA01/02{SE

(3)
(4)
(5)

Abstract

Thisthesisconsistsoffourpapersdealingwithvariousaspectsofspectral

estimationandthestochasticrealizationproblem.

In Paper A a robust algorithm for solvingthe Rational Covariance

Extension Problem with degree constraint (RCEP) is presented. This

algorithm improves onthe current stateof art that is basedon convex

optimization. The new algorithm is based on a continuation method,

and uses a change of variables to avoid spectral factorizations and the

numericalill-conditioning in the original formulationoccuring forsome

parametervalues.

InPaperBaparameterizationoftheRCEPisdescribedinthecontext

ofcepstralanalysisandhomomorphic ltering. Further,itisshownthat

thereisanaturalextensionoftheoptimizationproblemmentionedabove

to incorporate cepstral parametersasaparameterizationof zeros. The

extended optimization problem is also convexand, in fact, it is shown

thatawindowofcovariancesandcepstrallagsformlocalcoordinatesfor

ARMAmodelsofordern.

InPaperCthegeometryofshaping ltersisanalyzedbyconsidering

parameterizationsusing variouscombinationsofpoles, zeros,covariance

lags,cepstrallagsandMarkovparameters. Inparticular, thecovariance

andcepstralinterpolationproblemisstudiedusingdi erentialgeometry

anddualitytheory. Assumingthereisanunderlyingsystemthatisstable

and minimum phase, it is shown in this paper that there is a one-to-

onecorrespondencebetweenMarkovparametersandcepstralcoeÆcients.

An approach based on simultaneous Markov and covarianceparameter

interpolationhasbeenstudiedbySkeltonet.al. Inthispaperitisstudied

fromaglobalanalysispointofview.

Paper D deals with a regularization of two lter design methods,

namelythecovarianceandcepstralmatchingARMAdesignmethodand

covariance matching for MA lters. Both methods are posed as opti-

mizationproblems,andabarriertermisintroducedtoachieveastrictly

minimumphase solution. As aresultof the regularization,exactinter-

polationis tradedforagainin entropy, andthemapfromdata to lter

de nedbytheoptimizationproblemsisturnedintoadi eomorphism.

(6)

Cepstralanalysis,Markovparameters,Globalanalysis,Convexoptimiza-

tion,Continuationmethods,Entropymaximization.

MathematicsSubject Classi cation(1991): 93E12,60G10,42A70,

(7)

Acknowledgments



AlthoughmuchofmytimeasaPh.D.studenthasbeenalonewolfrace,

I could nothavemade it withoutthe help and support of anumber of

keypersons.

My rst and warmest thanks go to my advisor Professor Anders

Lindquist, who despiteaheavy workload hasmanaged to beavailable

fordiscussingmyspuriousideasandforallhishelpwithformalizingand

carryingout theseideas. Thesecond most importantresearcherI have

had the privilege to work with is Professor Chris Byrnes. During his

intensevisitsatKTHhehasmanagedtoboost myresearchwithhiscu-

riosityandgoodmathematicalintuition. Especially,ithasbeenverynice

tobeacoauthoroftwopaperstogetherwiththedynamicduo;Professor

AndersLindquistandProfessorChrisByrnes.

I am also grateful toProfessor Sergei Gusev and ProfessorTryphon

Georgiouforencouraging discussionsthat directlyor indirectlyinspired

toresultspresentedinPaperA ofthisthesis.

Further,IthankProfessorClydeF.Martinforsupervisingmydiploma

workatTexasTechandalltheteachersIhavecomeacross,tonameafew,

ProfessorTomas Bjork,DocentKristerSvanberg, andProfessor Anders

Lindquistforinspiringandinterestingmein graduatestudies.

MycolleaguesAndersDahlen,RyozoNagamune,JorgeMariandUlf

Jonssonhasformed avaluablediscussion panelalwaysready to bounce

any new ideas. The stimulating social environment at the Division of

OptimizationandSystemsTheoryhasbeenanimportantfactormaking

itajoytogettowork. Especially,attimeswhenyouneedsomediversion

fromtheresearch,suchasdoingsports(thankyouHenrikandPetter)or

justhaveachat. InparticularIwouldliketothankmytworoom-mates

during these years: Camilla Landen and Torvald Ersson. Camilla and

I sharedtheinitial confusionasbeginnerPh.D. studentsand wehelped

eachotherthroughthe rstcourses. Ihavealsoappreciatedthecompany

ofTorvaldwhosharemyinterestinsports.

Finally,Iwouldliketothankmyfamily. Withtheirsolidsupportand

encouragementin theback,nothingseemstoodiÆcult.



(8)
(9)

1 Introduction 1

1 LinearSystemModels . . . . . . . . . . . . . . . . . . . . 1

2 RealizationTheory . . . . . . . . . . . . . . . . . . . . . . 2

2.1 DeterministicRealization Theory . . . . . . . . . . 3

2.2 StochasticRealizationTheory. . . . . . . . . . . . 4

2.3 ConnectionsbetweenStochasticandDeterministic Realization . . . . . . . . . . . . . . . . . . . . . . 6

3 TheRationalCovarianceExtensionProblem . . . . . . . 9

3.1 TheMaximumEntropyModel . . . . . . . . . . . 10

3.2 ParameterizationsofRelaxedVersionsof theRCEP 13 4 ClassicalSpeechModeling . . . . . . . . . . . . . . . . . . 15

4.1 Acoustic TubeModeling . . . . . . . . . . . . . . . 18

4.2 LosslessTubeEquations . . . . . . . . . . . . . . . 19

4.3 TheE ectsofNasalCoupling. . . . . . . . . . . . 21

5 Foliations,TransversalityandLocal Coordinates . . . . . 22

6 SummaryofthePapers . . . . . . . . . . . . . . . . . . . 27

6.1 PaperA . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 PaperB . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 PaperC . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 PaperD . . . . . . . . . . . . . . . . . . . . . . . . 29

A AHomotopyApproachtoRationalCovariance Extension with Degree Constraint 35 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 TheOriginal OptimizationProblem . . . . . . . . . . . . 39

3 ANewFormulationoftheOptimizationProblem . . . . . 43

4 Homotopyapproach . . . . . . . . . . . . . . . . . . . . . 55

(10)

4.2 Predictor-Correctormethod . . . . . . . . . . . . . 58

5 TheAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Adaptivesteplengthprocedure . . . . . . . . . . . 59

5.2 HowtochoosetheinitialstepsizeÆ. . . . . . . . 62

5.3 Apracticalalgorithm . . . . . . . . . . . . . . . . 64

6 Convergenceoftheproposedalgorithm. . . . . . . . . . . 64

7 Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . 67

B CepstralcoeÆcients, covariance lags and pole-zero mod- elsfor nite datastrings 73 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 75

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.1 Analysisbasedonin nitedata . . . . . . . . . . . 78

2.2 LPC lters . . . . . . . . . . . . . . . . . . . . . . 80

2.3 CepstralmaximizationandLPC lters. . . . . . . 81

3 Homomorphic lteringandgeneralizationsofLPC ltering 83 3.1 Cepstral and covariancewindows as local coordi- natesforpole-zeromodels . . . . . . . . . . . . . . 83

3.2 CepstralmaximizationandageneralizationofLPC design . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Realizationalgorithmsforlattice-laddernotch (LLN) lters100 4.1 Selectingthepositivepseudo-polynomial. . . . . . 103

4.2 Thealgorithm . . . . . . . . . . . . . . . . . . . . 105

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . 107

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C Identi abilityandwell-posednessofshaping- lterparam- eterizations: Aglobal analysisapproach 119 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 121

2 Somegeometricrepresentationsof classesofmodels . . . 126

3 MainResults . . . . . . . . . . . . . . . . . . . . . . . . . 129

4 GlobalanalysisonP n . . . . . . . . . . . . . . . . . . . . 132

5 Identi abilityofshaping lters . . . . . . . . . . . . . . . 140

6 Thesimultaneouspartialrealizationproblem . . . . . . . 147

7 Zeroassignabilityvs. cepstralassignability . . . . . . . . 158

A Divisorsandpolynomials . . . . . . . . . . . . . . . . . . 162

B CalculationofcepstralcoeÆcients . . . . . . . . . . . . . 163

C ConnectivityofP (c) . . . . . . . . . . . . . . . . . . . . 164

(11)

D A convex optimization approach to ARMA(n,m) model

design from covariance and cepstrumdata 173

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 175

2 LocalcoordinatesforARMAmodels . . . . . . . . . . . . 179

3 Optimizationproblemsforcepstrumandcovarianceinter- polation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4 RegularizationofProblem (P). . . . . . . . . . . . . . . . 188

5 RegularizationofProblem (M) . . . . . . . . . . . . . . . 196

6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.1 MAFilter Design. . . . . . . . . . . . . . . . . . . 200

6.2 ARMA FilterDesign . . . . . . . . . . . . . . . . . 203

(12)
(13)

This introduction is intended to provide some backround material for

understanding the four paperson stochastic realization theory forming

themainbodyofthisthesis. Evenforthereaderswhoarefamiliar with

stochastic realization theory, the introduction will be useful for setting

notationandforintroducingconceptstobeusedlaterfromrelated elds,

such asspeechprocessing,informationtheoryanddi erentialgeometry.

1 Linear System Models

Before stochastic realization theory can be studied, some basic linear

systemtheoryis presented. Throughoutthis thesisthemodelsarecon-

sidered to be linear, and this class of models are described next. A

linearmodel canbe seenasalinear mappingw:U!Y from aninput

space U to an output space Y, bothof which are real vector spaces of

scalar sequences. If f:::;u

1

;u

0

;u

1

;:::g 2 U is a sequence of inputs,

and f:::;y

1

;y

0

;y

1

;:::g2 Y is the corresponding sequence of outputs,

andthesystemisassumedtobecausalandtime-invariant,

y

m

= 1

X

k =0 w

k u

m k

= 1

X

k =0 w

k z

k

u

m

=w(z)u

m

; (1)

forsomeparametersw

k

,where z denotesaforwardshiftoperator. The

parametersw

k

arecalledtheMarkovparametersofthesystemandw(z)

thetransferfunction. Theinput-outputmapcanbedescribedbyablack

boxrepresentationasdepictedin Figure1.

Inthisthesisitisassumedthatthetransferfunctionw(z)belongsto

(14)

u

m

-

w(z)

-

y

m

Figure1: Blackboxmodel

asaratioofpolynomials:

w(z)=

(z)

a(z)

= 1

X

k =0 w

k z

k

; (2)

where(z)anda(z)arepolynomialsof niteorderngivenby

(z) 4

= 

0 z

n

+

1 z

n 1

+:::+

n

; 

j

2R; j=0;1;:::;n; (3)

a(z) 4

= a

0 z

n

+a

1 z

n 1

+:::+a

n

; a

j

2R; j =0;1;:::;n: (4)

Forthemainpartofthis thesis,wewill furtherassumethatw(z)is

 proper i.e., the order of (z) is less than orequal to the order of

a(z),

 stable i.e., the polynomial a(z) has all its roots in the open unit

disc,

andforthemostpartalsothatw(z)is

 minimum phase i.e., the polynomial (z) has all its roots in the

openunitdisc.

2 Realization Theory

Thetheoretical frameworks usedformodelbuilding, basedonparame-

tersobtainedbyobservingasystem,iscalledrealizationtheory. Givena

(linear) system,a number ofdi erentcharacterizing parameterscanbe

determined from the system, such asthe Markovparameters. Realiza-

tiontheorydealwiththeinverseproblem,namelythesynthesisofsystems

basedon aset ofcharacterizing parameters. There are twobranchesof

realization theory, namely deterministic and stochastic realization the-

(15)

sincethisdetermineswhichtypeofcharacterizingparametersthatcanbe

estimatedfrom observingthesystem, thecharacterizingparametersare

di erentinthetwotheories. Roughlyspeaking,deterministicrealization

theoryisbasedonMarkovparametersandstochasticrealization theory

isbasedoncovariancelags.

Next, themain ideasof thetwotheoriesare explainedand thecon-

nectionbetweenthemisdiscussed.

2.1 Deterministic Realization Theory

Indeterministicrealization theory, theinput isassumed tobeaknown

control signal and the output signal is observed as the system evolves

overtime. Althoughtherealizationtheoryisindependentoftheparticu-

larapplication,itisoftenusefultoconsiderexamplestoguidethestudies

at thehigher abstraction level. Realization of systemsis used in many

di erent elds of applications, e.g. mechanicalengineering,biology and

physics. Tonameafew,ineconomics,itisoftenassumedthatthein a-

tionratecanbemodeledasasystemcontrolledbytheinterestrate,and

inchemicalengineering,concentrationlevelsarecontrolledbydilutingor

addingsubstances.

Onewayofbuilding amodel forasystemisto rstestimate awin-

dowof Markovparametersw

0

;:::;w

N

from observedinputand output

sequences, and then to determine a realization w(z) based on this pa-

rameterset. Forastable linearsystemtheMarkovparametersform an

exponentiallydecreasingsequence,andifthesequenceistruncatedafter

w

N

therelation(1) appliedform=0;1;:::;N givesthesystem

2

6

6

6

4 y

0

y

1

.

.

.

y

N 3

7

7

7

5

= 2

6

6

6

6

4 u

0 u

1

::: u

N

u

1 u

0 .

.

. .

.

.

.

.

. .

.

. .

.

.

u

1

u

N

::: u

1 u

0 3

7

7

7

7

5 2

6

6

6

4 w

0

w

1

.

.

.

w

N 3

7

7

7

5

: (5)

Assumingthe input provides afull rank systemthe Markovparameter

estimatesfw

j g

N

j=0

canbedetermined.

TherealizationstepdescribednextisbasedontheMarkovparameters

w

0

;:::;w

2n

and theassumption that (2)holds for asystemof order n.

As described in e.g. [20, 6, 1] the coeÆcients of  and a are uniquely

determinedbythissetofMarkovparameters. Fromhereandon,wewill

without loss of generality consider the normalizedMarkov parameters,

wherew :=w =w ,sothatinparticularw =1. Thenitcanbeassumed

(16)

thatbotha(z)and(z)aremonic,i.e. a

0

=1and

0

=1. Multiplication

of both sides of (2) by a(z), and identi cation of the coeÆcients for

z 1

;:::;z n

leadtotheequationsystem

2

6

6

6

4 w

n+1

w

n+2

.

.

.

w

2n 3

7

7

7

5

= 2

6

6

6

6

4 w

1 w

2

::: w

n

w

2 w

3 .

. .

.

.

.

.

.

. .

. .

. .

.

w

2n 2

w

n

::: w

2n 2 w

2n 1 3

7

7

7

7

5 2

6

6

6

4 a

n

a

n 1

.

.

.

a

1 3

7

7

7

5

(6)

andidenti cationofthecoeÆcientsforz n

;:::;z;1give

2

6

6

6

4



1



2

.

.

.



n 3

7

7

7

5

= 2

6

6

6

4 w

1

w

2

.

.

.

w

n 3

7

7

7

5 +

2

6

6

6

6

4

1 0 ::: 0

w

1 1

.

.

. .

.

.

.

.

. .

.

. .

.

.

0

w

n 1

::: w

1 1

3

7

7

7

7

5 2

6

6

6

4 a

1

a

2

.

.

.

a

n 3

7

7

7

5

: (7)

IftheHankelmatrixin (6)isnonsingularthecoeÆcientsofthepolyno-

mial a(z)can be determined. In general, it cannot be guaranteed that

a(z) is a Schur polynomial, i.e. a polynomial with all roots inside the

unit circle. Since this is related to stability of the system, this is an

importantissuein manyapplications. Assuminga(z)isaSchurpolyno-

mialobtainedfrom(6),then(7)determinesapolynomial(z)suchthat

w(z)=(z)=a(z)interpolatestheMarkovparameters1;w

1

;:::;w

2n .

Further, for an arbitrary Schur polynomial a(z), (7) determines a

polynomial (z) such that w(z) = (z)=a(z) interpolates the Markov

parameters 1;w

1

;:::;w

n

. Actually, if we consider all rational transfer

functions w(z)=(z)=a(z)ofordern that interpolatestheMarkovpa-

rameters 1;w

1

;:::;w

n

, it follows from (7) that there is such a unique

transferfunction forevery choice of theSchurpolynomiala(z),and all

interpolating transferfunctions of order n canbeobtained in this way.

ThustheSchurpolynomialsa(z)parameterizeallsolutions. Thistypeof

parameterizationswillbeusedfrequentlyinthisthesis,andthereforethe

conceptofparameterizationisformalizedandexempli ed inSection5.

2.2 Stochastic Realization Theory

Instochasticrealization theory, theinputisassumedto beanunknown

sequence of (white) noise f:::;u

1

;u

0

;u

1

;:::g 2 U, and the only data

References

Related documents

Prolonged UV-exposure of skin induces stronger skin damage and leads to a higher PpIX production rate after application of ALA-methyl ester in UV-exposed skin than in normal

Dempster engage these issues in relation to contemporary American theory in “The Scientific Image of Music Theory,” Journal of Music Theory 33/1 (1989), 65–99—as do the

Andrea de Bejczy*, MD, Elin Löf*, PhD, Lisa Walther, MD, Joar Guterstam, MD, Anders Hammarberg, PhD, Gulber Asanovska, MD, Johan Franck, prof., Anders Isaksson, associate prof.,

The results also show that the two algorithms performance were inconsistent over time and that the static model has better risk adjusted excess return than index for the first

Plantinga´s criticism of Hick is different to many others as it is dealing with a defence for being an exclusivist and does not argue against Hick´s pluralist hypothesis. The

Need: set theory, induction Useful: linear algebra.. Elementary Number

This stands in contrast to our experience from differential geometry, where the topology has to do with the base space manifold alone, not the whole fiber bundle which consists

Term Structure Estimation Based on a Generalized Optimization