• No results found

Matrix-Less Methods forComputing Eigenvalues of LargeStructured Matrices

N/A
N/A
Protected

Academic year: 2022

Share "Matrix-Less Methods forComputing Eigenvalues of LargeStructured Matrices"

Copied!
84
0
0

Loading.... (view fulltext now)

Full text

(1)

UNIVERSITATISACTA UPSALIENSIS

UPPSALA 2018

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1652

Matrix-Less Methods for

Computing Eigenvalues of Large Structured Matrices

SVEN-ERIK EKSTRÖM

ISSN 1651-6214 ISBN 978-91-513-0288-1 urn:nbn:se:uu:diva-346735

(2)

Dissertation presented at Uppsala University to be publicly examined in 2446 ITC, Lägerhyddsvägen 2, hus 2, Uppsala, Friday, 18 May 2018 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Lothar Reichel (Department of Mathematical Sciences, Kent State University).

Abstract

Ekström, S.-E. 2018. Matrix-Less Methods for Computing Eigenvalues of Large Structured Matrices. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1652. 81 pp. Uppsala: Acta Universitatis Upsaliensis.

ISBN 978-91-513-0288-1.

When modeling natural phenomena with linear partial differential equations, the discretized system of equations is in general represented by a matrix. To solve or analyze these systems, we are often interested in the spectral behavior of these matrices. Whenever the matrices of interest are Toeplitz, or Toeplitz-like, we can use the theory of Generalized Locally Toeplitz (GLT) sequences to study the spectrum (eigenvalues). A central concept in the theory of GLT sequences is the so-called symbol, that is, a function associated with a sequence of matrices of increasing size. When sampling the symbol and when the related matrix sequence is Hermitian (or quasi-Hermitian), we obtain an approximation of the spectrum of a matrix of a fixed size and we can therefore see its general behavior. However, the so-computed approximations of the eigenvalues are often affected by errors having magnitude of the reciprocal of the matrix size.

In this thesis we develop novel methods, which we call "matrix-less" since they neither store the matrices of interest nor depend on matrix-vector products, to estimate these errors.

Moreover, we exploit the structures of the considered matrices to efficiently and accurately compute the spectrum.

We begin by considering the errors of the approximate eigenvalues computed by sampling the symbol on a uniform grid, and we conjecture the existence of an asymptotic expansion for these errors. We devise an algorithm to approximate the expansion by using a small number of moderately sized matrices, and we show through numerical experiments the effectiveness of the algorithm. We also show that the same algorithm works for preconditioned matrices, a result which is important in practical applications. Then, we explain how to use the approximated expansion on the whole spectrum for large matrices, whereas in earlier works its applicability was restricted only to certain matrix sizes and to a subset of the spectrum. Next, we demonstrate how to use the so-developed techniques to investigate, solve, and improve the accuracy in the eigenvalue computations for various differential problems discretized by the isogeometric analysis (IgA) method. Lastly, we discuss a class of non-monotone symbols for which we construct the sampling grid yielding exact eigenvalues and eigenvectors.

To summarize, we show, both theoretically and numerically, the applicability of the presented matrix-less methods for a wide variety of problems.

Keywords: Toeplitz matrices, eigenvalues, eigenvalue asymptotics, polynomial interpolation, extrapolation, generating function and spectral symbol

Sven-Erik Ekström, Department of Information Technology, Division of Scientific Computing, Box 337, Uppsala University, SE-751 05 Uppsala, Sweden.

© Sven-Erik Ekström 2018 ISSN 1651-6214

ISBN 978-91-513-0288-1

urn:nbn:se:uu:diva-346735 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-346735)

(3)
(4)
(5)

https://doi.org/10.1080/10586458.2017.1320241

https://doi.org/10.1007/s11075-017-0404-z

https://doi.org/10.1007/s11075-018-0508-0

−∆u = λu

http://www.it.uu.se/research/publications/reports/2017-016

https://doi.org/10.1002/nla.2137

(6)
(7)

http://www.it.uu.se/research/publications/reports/2018-005

(8)
(9)
(10)
(11)

A u = b,

A u b

u

Anun= bn,

An ∈ Cn×n A un ∈ Cn

bn ∈ Cn

n An

(12)

An

Anun = bn

An

An An An

An

An

An Ak

k n

n× n

[ai−j]ni,j=1=

a0 a−1 a−2 . . . a1−n a1

a2

a−2 a−1 an−1 . . . a2 a1 a0

.

f ∈ L1(−π, π)

{Tn(f)}n Tn(f) = [ ˆfi−j]ni,j=1 fˆω f

fˆω= 1

' π

−πf(θ)e−iωθdθ, i2 = −1, ω ∈ Z.

f

{Tn(f)}n {Tn(f)}n

f

(13)

Tn(f) T(f) = [ ˆfi−j]i,j=1= [ ˆfi−j]i,j=−∞

f Tn(f)

An = An n f f(θ) = f(−θ) ∈ R

Tn(f) n

Tn(f) 2p + 1

(Tn(f))i=(0, . . . , 0, ˆfp, . . . , ˆf1, ˆf0, ˆf−1, . . . , ˆf−p,0, . . . , 0),

f(θ) = *p

ω=−p

fˆωeiωθ.

fˆω = ˆf−ω ω = 1, . . . , p fˆω(eiωθ+ e−iωθ) = 2 ˆfωcos(ωθ)

f(θ) = ˆf0+ 2*p

ω=1

fˆωcos(ωθ).

fˆω ∈ R ω = 0, . . . p

n

fˆ−p fˆ0 fˆp p

f(θ) = 2 − 2 cos(θ).

f(θ) fˆ0 = 2 ˆf1 = ˆf−1 = −1 fˆω = 0 ω ̸= {−1, 0, 1} 2p + 1 = 3 f(θ)

p= 1

n= 5 f

T5(f) =

fˆ0 fˆ−1 0 0 0 fˆ1 fˆ0 fˆ−1 0 0 0 ˆf1 fˆ0 fˆ−1 0 0 0 fˆ1 fˆ0 fˆ−1 0 0 0 fˆ1 fˆ0

=

2 −1 0 0 0

−1 2 −1 0 0 0 −1 2 −1 0 0 0 −1 2 −1 0 0 0 −1 2

.

(14)

Tn(f)

−∆u = −2u

∂x2 1

h2Tn(f)un = 1 h2

2u1− u2

−u1+ 2u2− u3

−uj−1+ 2uj− uj+1

−un−2+ 2un−1− un

−un−1+ 2un

,

h= 1/(n + 1) un = [u1, . . . , un]T

A5=

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2

0 0 0 0 −1

=

fˆ0 fˆ−1 fˆ−2 0 0 0 fˆ0 fˆ−1 fˆ−2 0 0 0 fˆ0 fˆ−1 fˆ−2 0 0 0 fˆ0 fˆ−1 0 0 0 0 fˆ0

.

A5 = T5(f)

f(θ) = *p

ω=−p

fˆωeiωθ= −1 + 2e−iθ− e−i2θ,

p= 2 ˆf1 = ˆf2 = 0 ˆf0 = ˆf−2 = −1 fˆ−1 = 2

−∆u = −2u

∂x2 1

h2Tn(f)un = 1 h2

−u1+ 2u2− u3

−u2+ 2u3− u4

−uj+ 2uj+1− uj+2

−un−1+ 2un

−un

,

h = 1/(n + 1) un = [u1, . . . , un]T

(15)

f ∈ L(−π, π) Tn(f) λj(Tn(f)) j = 1, . . . , n

nlim→∞

1 n

*n j=1

Fj(Tn(f))) = 1

' π

−π

F(f(θ))dθ,

F : R → C

f ∈ L(−π, π) σj(Tn(f)), j = 1, . . . , n

n→∞lim 1 n

*n j=1

Fj(Tn(f))) = 1

' π

−π

F (|f(θ)|) dθ, F : R → C

f Tn(f)

f ∈ L1(−π, π) f ∈ L1(−π, π)

f f : [−π, π] → C

A B U0

C\E R(f) E R(f )

(16)

f (−π) f (θd) f (π)

A B

U0

f : [−π, π] → C f ∈ L(−π, π)

f θd Z = C\U0

Tn(f) Tn(f) n= 500

E R(f )

f Z= C\U0 = E R(f)∪A∪B

Tn(f)

ε > 0 Tn(f)

ε Z o(n) n → ∞

Tn(f) f

n= 500 Z

f E R(f )

f Tn(f)

(mf, Mf) mf Mf

f Mf > 0 f

Tn(f)

(17)

p ∈ [1, ∞]

∥ · ∥p p

p ∥ · ∥ = ∥ · ∥

A A

A

{An}n

An ∈ Cn×n n {An}n

An

{An}n σ f {An}n

f : D ⊂ Rk → C D 0 < µk(D) < ∞

nlim→∞

1 n

*n j=1

Fj(An)) = 1 µk(D)

'

D

F (|f(y1, . . . , yk)|) dy1. . .dyk,

F ∈ C0(C) µk Rk C0(C)

{An}n λf

{An}n f

nlim→∞

1 n

*n j=1

Fj(An)) = 1 µk(D)

'

D

F(f(y1, . . . , yk)) dy1. . .dyk,

F ∈ C0(C)

{Zn}n

{Zn} ∼σ 0 ∥Zn∥ → 0 {Zn}n σ 0

(18)

n ∈ N a : [0, 1] → C

Dn(a) a n× n

(Dn(a))i,i= a (i/n) , i= 1, . . . , n.

{An}n

{{Bn,m}n}m {{Bn,m}n}m

{An}n m {Bn,m}n

{An}n An Bn,m

{Bn,m}n −→ {An}n {{Bn,m}n}m {An}n

{An}n

f : [0, 1] × [0, π] → C {An}n f {An}n

f

f : [0, π] → C

{Tn(f)}nλ f λj(Tn(f)) Tn(f) f(θ) θj,n j= 1, . . . , n n

λj(Tn(f)) = f(θj,n) + Ej,n,

Ej,n O(h)

h n θj,n [0, π] Ej,n

n→ ∞ O(h)

n θj,n

n j j ∈ {1, . . . , n}

jS ⊆ {1, . . . , n} θjS,n θj,n

j ∈ jS h

τ τ

(19)

{An}n f {An}n σ f An {An}n λf

{An}n f {An}n

An= Xn+ Yn

∥Xn∥, ∥Yn∥ ≤ C C n

Xn

n→∞lim

∥Yn1

n = 0 {An}n λ f

{Tn(f)}n f(x, θ) = f(θ) f ∈ L1(−π, π) {Dn(a)}n f(x, θ) = a(x) a : [0, 1] → C {Zn}n f(x, θ) = 0 {Zn}n σ 0 {An}n f {An}n f¯ An

An

{An}n f {Bn}n g An Bn {αAn+ βBn}n αf+ βg α, β∈ C {AnBn}n f g

{An}n f f ̸= 0 {An}n f−1 {An}n f An

{F (An)}n F(f) F : C → C

{An}n f

{Bn,m}n fm {Bn,m}n −→ {An}n fm → f [0, 1] × [−π, π]

τn

j h

τn jπ/(n + 1) 1, . . . , n 1/(n + 1) τn(0, 0) τn−1 jπ/n 1, . . . , n − 1 1/n τn−1(0, 0) τn−2 jπ/(n − 1) 1, . . . , n − 2 1/(n − 1) τn−2(0, 0)

τn−10 (j − 1)π/n 1, . . . , n 1/n τn(1, 1) = 0 ∪ τn−1(0, 0) τnπ−1 jπ/n 1, . . . , n 1/n τn(−1, −1) = τn−1(0, 0) ∪ π τn0,π−2 (j − 1)π/(n − 1) 1, . . . , n 1/(n − 1) 0 ∪ τn−2(0, 0) ∪ π

τn−10,π (j − 1)π/n 1, . . . , n + 1 1/n 0 ∪ τn−1(0, 0) ∪ π

(20)

An τ A−1n

τ τ

τn

fˆ0, ˆf1, ˆf−1∈ C τ

f(θ) = ˆf0+ ˆf1e+ ˆf−1e−iθ. Tn(f) g Tn(f) ∼ Tn(g)

λj(Tn(f)) = g(θj,n) = ˆf0+ 2+fˆ1fˆ−1cos(θj,n), θj,n τn

λj(Tn(f))

xj,n=(x(j,n)1 , . . . , x(j,n)k , . . . , x(j,n)n )T,

x(j,n)k =,+fˆ1/ ˆf−1 -k

sin (kθj,n) .

+fˆ1fˆ−1 +fˆ1/ ˆf−1

fˆ1 =...fˆ1...e1 fˆ−1=...fˆ−1...e−1 φ1, φ−1∈ [0, 2π]

+fˆ1fˆ−1=+fˆ1

+fˆ−1=/...fˆ1

..

....fˆ−1...ei(φ1−1)/2, +fˆ1/ ˆf−1=+fˆ1/

+fˆ−1=/...fˆ1.../...fˆ−1...ei(φ1−φ−1)/2.

fˆ1 = ˆf−1= −1 = e +(−1)(−1) =

−1

−1 = i · i = −1, +(−1)/(−1) =

−1/

−1 = i/i = 1.

(21)

Tn(f) n = 5 f(θ) = 2 − 2 cos(θ) g(θ) = f(θ) τn θj,5 = jπ/6 j= 1, . . . , 5

T5(f) T5(f)xj,5= λj(T5(f))xj,5 j= 1, . . . , 5

T5(f) f(θ) = 2 − 2 cos(θ) j λj(T5(f)) xj,5

1 2 − 2 cos (πh) [sin (πh) , sin (2πh) , sin (3πh) , sin (4πh) , sin (5πh) ]T 2 2 − 2 cos (2πh) [sin (2πh) , sin (4πh) , sin (6πh) , sin (8πh) , sin (10πh)]T 3 2 − 2 cos (3πh) [sin (3πh) , sin (6πh) , sin (9πh) , sin (12πh) , sin (15πh)]T 4 2 − 2 cos (4πh) [sin (4πh) , sin (8πh) , sin (12πh) , sin (16πh) , sin (20πh)]T 5 2 − 2 cos (5πh) [sin (5πh) , sin (10πh) , sin (15πh) , sin (20πh) , sin (25πh)]T

f(θ) = 2 − 2 cos(θ) θ ∈ [0, π]

λj(T5(f)) f(θ)

τ5

Tn(f)

{Tn(f)}n f

{Tn(f)}n σ,λf Tn(f)

τ

T˜n(f) τn(1, 1)

τn(1, 1) = τn0−1 f

T˜n(f) = Tn(f) + Rn Tn(f)

f Rn Rn

(22)

(Rn)1,1 = ˆf1 = −1 (Rn)n,n = ˆf1 = −1 T˜n(f) τn(−1, −1)

τn(−1, −1) = τnπ−1 f

T˜n(f) = Tn(f) − Rn Rn

Tn(f)

{Tn(f)}n f, {Tn(f)}n σ f, {Tn(f)}n ̸∼λ f.

{Tn(f)}n f

n→ ∞ Ej,n= λj(Tn(f)) − f(θj,n)

f {Tn(f)}n

f(θ) = 2 − e+ 2ie−iθ, n= 5

T5(f) =

2 2i 0 0 0

−1 2 2i 0 0 0 −1 2 2i 0 0 0 −1 2 2i 0 0 0 −1 2

.

g(θ) Tn(f) ∼ Tn(g) n

f n

g

g(θ) = 2 + 2

2ei3π/4cos(θ), n= 5

T5(g) =

2 √2ei3π/4 0 0 0

√2ei3π/4 2 √2ei3π/4 0 0

0 √2ei3π/4 2 √2ei3π/4 0

0 0 √2ei3π/4 2 √2ei3π/4

0 0 0 √2ei3π/4 2

.

Tn(g) Tn(f)

Dn Tn(g) = DnTn(f)Dn−1 fˆ1fˆ−1̸= 0

n= 5 D5

D5 =

1 0 0 0 0 0 γ 0 0 0 0 0 γ2 0 0 0 0 0 γ3 0 0 0 0 0 γ4

,

(23)

γ = +fˆ−1/ ˆf1 = √2i/√−1 = 1 − i

{Tn(f)}n f {Tn(f)}n ̸∼λf {Tn(f)}n λg {Tn(g)}n ,σ,λg

f

g g τ5

T5(f) ∼ T5(g)

|f(θ)| |g(θ)| θ∈ [−π, π]

Tn(f) f : [−π, π] → C

g : [−π, π] → C n Tn(f)

Tn(g) f τ5

g τ5

T5(f) T5(g)

Tn(f)

Tn(g) |f(θ)| |g(θ)|

θ ∈ [−π, π] |f| |g|

θ∈ [−π, π]

τ5 [−π, 0] ¯θj,5

|f(¯θj,5)| σj(T5(f))

T5(g) (AA = AA) σj(T5(g))

j(T5(g))| ¯θj,n τ5

T5(g) |g(θ)| |g(¯θj,n)|

0−(a(x)u(x))= b(x), x ∈ (0, 1), u(x) = 0, x∈ {0, 1},

(24)

a(x) b(x) a(x) = 1 −u′′(x)

−(a(x)u(x)) = −a(x)u(x) − a(x)u′′(x) ≈ Anun = bn,

An =

a1/2+ a3/2 −a3/2

−a3/2 a3/2+ a5/2 −a5/2

−a5/2

−an−1/2

−an−1/2 an−1/2+ an+1/2

,

(An)i=(0, . . . , 0, −ai−1/2, ai−1/2+ ai+1/2,−ai+1/2,0, . . . , 0), ai = a(xi) xi = ih i = 0, . . . , n + 1 h = 1/(n + 1) bi = b(xi) un = [u1, . . . , un]T bn= [b1, . . . , bn]T

{An}n

Dn(a) a(x)

Tn(f) f(θ) = 2 − 2 cos(θ)

Dn(a) =

a1

a2

an

, Tn(f) =

2 −1

−1

−1

−1 2

,

Dn(a)Tn(f) =

2a1 −a1

−a2 2a2 −a2

−a3

−an−1

−an 2an

.

An= Dn(a)Tn(2 − 2 cos(θ)) + En

(En)i,j=

a(2i−1)/2− 2a2i/2+ a(2i+1)/2, i= j, i = 1, . . . , n, a2i/2− a(2i−1)/2, i= j + 1, i = 2, . . . , n, a2i/2− a(2i+1)/2, i= j − 1, i = 1, . . . , n − 1,

0, .

(25)

a(x)

En ∥En∥ → 0 n → ∞

{En}n σ0 {En}n {En}n 0 {Dn(a)}n a(x), {Tn(f)}n f(θ), {En}n 0

{An}n a(x)(2 − 2 cos(θ)) An

{An}n σ,λa(x)(2 − 2 cos(θ))

a(x)

a(x) =

2 + x/2, x∈ [0, 1/3), eπx/2, x∈ [1/3, 2/3), 2 + cos(3x), x ∈ [2/3, 1].

a(x)

An Dn(a)Tn(f) n = {5, 1000}

ξr r= 100 ξrj,5)

a(x) A5

D5(a)T5(f)

ξ100

1002 = 10000 τ5 ξr

r

Gr= {(i/n, j/(n + 1)); i, j = 1, . . . , r} ,

a(x)f(θ) (x, θ) ∈ Gr r2 ξr

ξr ξ(θ) r→ ∞

ξr Dn(a)Tn(f) ξ(θ)

ξ(θ) θj,n

ξr θj,n

n= 1000 An Dn(a)Tn(f)

ξ100

References

Related documents

Activity and Inhibition of Plasmepsin IV, a New Aspartic Proteinase from the Malaria Parasite, Plasmodium falciparum.. A Distinct Member of the Aspartic Proteinase Gene Family from

Acta Universitatis Upsaliensis Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1987 Editor: The Dean of the Faculty of Science

As can be seen in the figure, the posit had a lower error rate in 32-bit across all dimensions compared to the float-754, for a matrix chain of 10 matrices in terms of Euclidean

sent evidence from sporadic studies conducted at the sequence level using evolutionary substitution rates, gene expression studies and evidence from both protein and gene

As described in section 2.5 neutralinos (or other WIMPs) tend to accumulate the interior of bodies like the Sun or Earth. Most of the annihilation products will be absorbed

In paper I of this thesis, we demonstrate that αB-crystallin is specifically up- regulated in tube forming endothelial cells in vitro and in tumor associated blood vessels in vivo,

Combining this information with dispatch information from the environmental schedule which applies to the location would enable Holland America Group to create a database where

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1956.. Results in