• No results found

Analytical evaluation of bond models for glued-in rods in timber

N/A
N/A
Protected

Academic year: 2021

Share "Analytical evaluation of bond models for glued-in rods in timber"

Copied!
1
0
0

Loading.... (view fulltext now)

Full text

(1)

ISBN: 978-91-88898-64-7

47

Analytical evaluation of bond models for glued-in rods in timber

Eleni Toumpanaki†*, Michael Ramage

 Centre for Natural Material Innovation, University of Cambridge, 1-5 Scroope Terrace, CB2 1PX, et343@cam.ac.uk The experimental investigation of glued-in rod connections has been the subject of many studies. However, to date the modelling of these connections and the understanding of their mechanics has been limited in literature [1]. The aim of this study is to evaluate known bond models against experimental data of glued-in CFRP and GFRP rods in block laminated timber as reported in [2]. The CFRP and GFRP rods were tested in a pull-compression method with a 50 mm bonded length corresponding to 5D, where D is the core diameter of the rod. Despite pull-pull test method being commonly applied for studying glued-in rods in timber, the pull-compression test method allows experimental recording of the slip values at both the loaded end (end where the load is directly applied) and free end of the specimens. Therefore, bond stress slip models can be analytically studied following an energy based method according to Equation (1) [3]

Wint= 1 2Ar Erσ2= τ s dsdΩ sl

sf

=Wext (1)

where Wint and Wext are the internal energy and external work done respectively, Ar, Er are the rod’s cross sectional area and elastic Young’s modulus accordingly, σ is the axial normal stress, τ(s) is the bond stress slip model, sl and sf are the loaded end and free end slip values and Ω is the surface area of the rod.

Moreover, specimens with 4 strain gauges attached on the rods and equally distributed along the bonded length (Figure 1a) and an additional specimen cut in half and analysed with Image Processing technique (GeoPIV) [4] (Figure 1b and c) were prepared to understand the bond stress transfer mechanism during the pulling out of the rods and any induced stress concentrations due to the adopted test method.

Figure 1: (a) strain distribution of a CFRP rod glued-in block laminated timber, (b) GeoPIV specimen and (c) strain analysis εyy. A linear and the m.B.E.P ascending bond stress-slip models have been chosen and their constant values are derived following the Nedler optimization algorithm using a Matlab script such that the error function is minimized. To assess a non-uniform bond stress distribution scenario along the bonded length, bilinear models are also adopted. The aforementioned models neglect the mechanical properties of the adhesive layer and might be suitable for very thin glue-line thicknesses. For ease of comparison, the Volkersen model and a new model adapted from [5] that account for the mechanical properties of the adhesive layer are also studied.

The indentification of a suitable bond model relies on the bond failure mode of the glued-in rod connections and can enable their accurate modelling in a detailed analysis stage. The analytical prediction of the slip values allows the calculation of the bond stiffness at each loading stage and consequently the overall stiffness performance of glued-in rods in timber under tension.

References

[1] M. Stepinac: Joints in beech LVL timber frames. COST Action FP1004 Report. (2015).

[2] E. Toumpanaki, M. Ramage: Bond performance of glued-in CFRP and GFRP rods in timber. Proc., INTER 2018:

5th Meeting of the International Network on Timber Engineering Research, Tallinn, Estonia, 13-16 August.

[3] F. Focacci, A. Nanni, C. Bakis: Local bond-slip relationship for FRP reinforcement in concrete. Journal of

Composites for Construction, 4(2000), 24-31.

[4] S.A. Stanier, J. Blaber, W.A. Take, D.J. White: Improved image-based deformation measurement for geotechnical applications. Canadian Geotechnical Journal, 53(2015), 727-739.

[5] S.Y., Fu, C.Y. Yue, X. Hu, Y.W. Mai: Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests. Composites Science and Technology, 60 (2000), 569-579.

Figure

Figure 1: (a) strain distribution of a CFRP rod glued-in block laminated timber, (b) GeoPIV specimen and (c) strain analysis εyy

References

Related documents

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Det har inte varit möjligt att skapa en tydlig överblick över hur FoI-verksamheten på Energimyndigheten bidrar till målet, det vill säga hur målen påverkar resursprioriteringar

DIN representerar Tyskland i ISO och CEN, och har en permanent plats i ISO:s råd. Det ger dem en bra position för att påverka strategiska frågor inom den internationella

Den här utvecklingen, att både Kina och Indien satsar för att öka antalet kliniska pröv- ningar kan potentiellt sett bidra till att minska antalet kliniska prövningar i Sverige.. Men

Av 2012 års danska handlingsplan för Indien framgår att det finns en ambition att även ingå ett samförståndsavtal avseende högre utbildning vilket skulle främja utbildnings-,

Det är detta som Tyskland så effektivt lyckats med genom högnivåmöten där samarbeten inom forskning och innovation leder till förbättrade möjligheter för tyska företag i