• No results found

Odd-Frequency Superconductivity in Topological Insulators and Multiband Superconductors

N/A
N/A
Protected

Academic year: 2022

Share "Odd-Frequency Superconductivity in Topological Insulators and Multiband Superconductors"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

Odd-Frequency Superconductivity in Topological Insulators and

Multiband Superconductors

Annica Black-Schaffer

Nordita July 25th, 2016

(2)

Outline

•  Introduction to odd-frequency pairing

•  Odd-frequency pairing in topological insulator-superconductor hybrid structures

–  Spin-singlet s-wave superconductor –  Spin-triplet p-wave superconductor

•  Odd-frequency pairing in multiband superconductors

(3)

Outline

•  Introduction to odd-frequency pairing

•  Odd-frequency pairing in topological insulator-superconductor hybrid structures

Spin-singlet s-wave superconductor Spin-triplet p-wave superconductor

•  Odd-frequency pairing in multiband superconductors

(4)

Superconducting Symmetries

The superconducting order parameter is fermionic:

spin-singlet s-wave or spin-triplet p-wave

The order parameter can also be odd in time/frequency: [1]

odd-frequency spin-triplet s-wave

orbital

spin

[1]: Berezinskii, JETP Lett. 20, 287 (1974)

(5)

Odd-frequency (ω) Pairing

BCS order parameter:

vanishes for an odd-frequency component

Equal-time odd-frequency order parameter: [1,2]

Theory proposals for odd-frequency bulk superconductors exists [1,2]

but only found so far at interfaces

[1]: Abrahams et al, PRB 52, 1271 (1995), [2]: Dahal et al, NJP 11, 065005 (2009)

(6)

S|F Interface

Spin-singlet s-wave pairing in SC converted into odd-frequency spin-triplet s-wave pairing in FM

•  Long-range superconducting proximity effect in the FM

•  s-wave = robust against impurities

singlet SC FM

Bergeret et al, RMP, 77, 1321 (2005), [1]: Eschrig, Phys. Today 64, 43 (2011)

[1]

(7)

S|N Interface

Spin-singlet s-wave pairing in SC converted into odd-frequency spin-singlet p-wave pairing

•  Only high-transparency junctions

•  p-wave = only ballistic systems

singlet SC Normal metal

[1]: Tanaka et al, PRL 99, 037005 (2007)

[1]

(8)

Outline

•  Introduction to odd-frequency pairing

•  Odd-frequency pairing in topological insulator-superconductor hybrid structures

–  Spin-singlet s-wave superconductor –  Spin-triplet p-wave superconductor

•  Odd-frequency pairing in multiband superconductors

(9)

Topological Insulator (TI)

Surface state of a topological insulator

–  Dirac spectrum

–  Momentum locked to spin: H ~ k Ÿ σ

E

kx ky

(10)

TI – SC Hybrid Structure

SC

TI H

TI = X

k,↵,

c↵,kk · c ,k HSC = X

k,↵,

"(k)d↵,kd↵,k + X

i,↵,

(i) d↵,id,i + H.c.

HT = X

Tic↵,id↵,i + H.c.

Conventional s-wave SC with position (i) dependent order parameter

Local tunneling

TI surface state

ABS and Balatsky, PRB 86, 144506 (2012)

(11)

Analytic Derivation

Anomalous Green’s function in TI:

Order parameter for s-wave odd-frequency pairing:

à Odd-frequency spin-triplet s-wave pairing:

–  Spatially inhomogeneous SCs

@FˆTI(⌧|i)|0 @

@x

ABS and Balatsky, PRB 86, 144506 (2012)

= + + ...

TI TI TI SC TI

T T

(12)

S|N Junction in a 2D TI

TI SC y x

Kane-Mele 2D TI

Fs(⌧|i) = (hci#(⌧ )ci"(0) ci"(⌧ )ci#(0)i)/2

Ft(⌧|i) = (hci#(⌧ )ci"(0) + ci"(⌧ )ci#(0)i)/2

Spin-singlet s-wave pairing:

Spin-triplet s-wave pairing:

−20

0

20

10 0 0 0.1

|Fs|

x y

t = 0

−20

0

20

10 0 0 0.01

x y

t = 1

|Ft|

−20

0

20 10 0

0 0.01

t = 6

|Ft|

−10 0 10

0

0.01 ⇥ : @Ft|0 : @Fs

@x

Δ = 0.16 Δ= 0.3

ABS and Balatsky, PRB 86, 144506 (2012)

(13)

In-surface Supercurrent

In-surface supercurrent: = | |eıkx

I

⇥ : @Ft|0 : @Fs

@x

0 0.1 0.2 0.3

0 0.02 0.04

0 0.3

0.19 0.2

k

|∂F|

Ratio

ABS and Balatsky, PRB 86, 144506 (2012)

(14)

Gradient-Induced Odd- ω Pairing

•  Electric field induced sublattice staggering in silicene and stanene

•  Linear k-dependence of the pairing in a p-wave superconductor:

Odd-frequency s-wave spin-triplet pairing

Kuzmanovski and ABS (in preparation), ABS and Balatsky, PRB 87, 220506(R) (2013),

Effective d-vector

(15)

Odd-frequency pairing in TIs

Odd-frequency pairing in TI-SC hybrid structures

•  Spin-singlet s-wave SC with in-plane gradient à

Odd-frequency spin-triplet s-wave pairing

•  SN junctions

•  Supercurrents

•  Sublattice staggering

•  Spin-triplet p-wave SC à

Odd-frequency spin-triplet s-wave pairing

(16)

Outline

•  Introduction to odd-frequency pairing

•  Odd-frequency pairing in topological insulator-superconductor hybrid structures

Spin-singlet s-wave superconductor Spin-triplet p-wave superconductor

•  Odd-frequency pairing in multiband superconductors

(17)

Bi

2

Se

3

– SC Hybrid Structure

SC Bi2Se3

2D superconductor

Bi2Se3 (τ orbital Pauli matrix) [1]

ABS and Balatsky, PRB 87, 220506(R) (2013), [1]: Rosenberg and Franz, PRB 85, 195119 (2012)

Local tunneling

(18)

Superconductivity in Bi

2

Se

3

Proximity-induced superconductivity in Bi2Se3 SC

Classification of all superconducting symmetries in Bi2Se3

–  Spin-singlet/triplet, spatial (s/d/p-wave), even/odd-frequency, even/odd orbital

ABS and Balatsky, PRB 87, 220506(R) (2013)

(19)

Frequency and Interband Index

Complete reciprocity between oddness in frequency and orbital index

Generic property for multiband superconductors

ABS and Balatsky, PRB 87, 220506(R) (2013)

(20)

Multiband Superconductors

•  S: Spin (spin-singlet: S = 0 or spin-triplet: S = 1)

•  P: Spatial parity (even: s-,d-wave or odd: p-,f-wave)

•  T: Time (even or odd-frequency)

•  O: Orbital/band parity

Spin-singlet s-wave: TO = 1

ABS and Balatsky, PRB 88, 104514 (2013)

(21)

Two-Band SC with Band Hybridization

Bands (orbitals) a & b with finite interband hybridization/scattering Γ:

ABS and Balatsky, PRB 88, 104514 (2013), Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

Interband pairing F12:

(22)

Interband Pairing

Perturbation theory to infinite order in Γ:

(using a geometric series)

Odd-interband:

Even-interband:

D =

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

Interband pairing: Γ ≠ 0

Odd-frequency, odd-interband pairing: Γ ≠ 0, Δ1 ≠ Δ2

(23)

Interband Frequency Dependence

Odd-frequency Even-frequency

Δ2 = 2.5 meV, Γ = 3 meV

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

Odd-frequency, odd-interband pairing: Γ ≠ 0, Δ1 ≠ Δ2

(24)

0 300 600 900 1200

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 0.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000 2500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 2 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 700 1400 2100 2800 3500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 2.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000 2500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 2.8 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 400 800 1200 1600

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 4.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 7.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000 2500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 10 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 15 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

(a) (b)

(c) (d)

(e) (f)

(g) (h)

0 300 600 900 1200

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 0.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000 2500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 2 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 700 1400 2100 2800 3500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 2.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000 2500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 2.8 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 400 800 1200 1600

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 4.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 7.5 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000 2500

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 10 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

0 500 1000 1500 2000

-20 -15 -10 -5 0 5 10 15 20 DOS [states/eV/nm3 ]

E - EF[meV]

1= 15 meV,2= 2.5 meV, Γ = 3 meV NN1

N2

(a) (b)

(c) (d)

(e) (f)

(g) (h)

DOS for Two-Band Superconductor

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

Additional gaps with coherence peaks at high energies Only appears with odd-frequency pairing

(25)

Hybridization Gaps

Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

Intraband SC gaps Hybridization

SC gaps

hole electron

Hybridization gaps

•  High-energy gaps with pronounced coherence peaks

•  Only appears for finite odd-frequency pairing

Two bands Two bands + Superconductivity

(26)

Multiband Superconductors

Odd-frequency pairing in multiband superconductors

–  Odd-frequency, odd-interband pairing if there exist interband pairing

•  Finite interband hybridization (+ non-identical intraband pairing)

•  Hybridization gaps only if odd-frequency pairing is present

•  TI-SC hybrid structures

•  Iron-based superconductors, heavy fermion superconductors, Sr2RuO4, MgB2, …

ABS and Balatsky, PRB 88, 104514 (2013), Komendova, Balatsky, and ABS, PRB 92, 094517 (2015)

(27)

Summary

•  Odd-frequency pairing in TI-SC hybrid structures

–  Spin-singlet s-wave SC with in-plane gradient à

Odd-frequency spin-triplet s-wave pairing –  Spin-triplet p-wave SC à

Odd-frequency spin-triplet s-wave pairing

•  Odd-frequency pairing in multiband superconductors

–  Odd-frequency, odd-interband pairing if there is interband pairing –  Gives hybridization gaps

(28)

Acknowledgements

Collaborators:

Alexander Balatsky (LANL/Nordita) Jacob Linder (NTNU)

In Uppsala:

Lucia Komendova Dushko Kuzmanovski Kristofer Björnson

Fariborz Parhizgar (IPM)

The Carl Trygger Foundation

Funding:

References

Related documents

Svenska Odd Fellow Orden genomför varje år en uppsatstävling, om FN och dess verksamhet, i utvalda gymnasieskolor runt om i Sverige.. Projektet kallas UNP – United Nations

The analytical work proposed a general criterion for a non-zero odd-frequency part of the anomalous Green function in multiband transition metal dichalcogenides hetero-structures,

We show that these exotic Cooper pairs are possible because the Floquet modes in time-periodic systems provide an additional index (a Floquet index) that broadens the classification

from a ferromagnet (F), then the even-ω spin-singlet pair amplitudes of a conventional superconductor can be converted to a odd-ω spin-triplet ampli- tude, leading to the creation

However, the surface interaction calculations predict neutron pairing gaps in neutron-rich nuclei that are significantly stronger than those given by the mixed and volume pairing..

However, in works on thermoelectricity in FM/SC inter- faces, mainly the role of the conventional s-wave spin-singlet even-frequency (even-ω) pairing has been discussed, although

In 2009 the decision was made to design and market a menswear collection, which will be launched by retailers in fall 2010.. In its first season, the menswear collection will be

I sina egna butiker får Odd Molly möjlighet att visa upp hela sin kollektion och skapa en känsla för varumärket för alla sinnen - och bedöm- ningen är att den första