• No results found

Pivoting methods for linear programming

N/A
N/A
Protected

Academic year: 2021

Share "Pivoting methods for linear programming"

Copied!
51
0
0

Loading.... (view fulltext now)

Full text

(1)

Examensarbete Stockholm, 2012 HENRIK SJÖSTRÖM

Pivoting methods for

linear programming

(2)
(3)
(4)
(5)
(6)
(7)

AK A K AK

A K

Aij i j A

xi i x

ei i x ≥ 0

x

xB x B x

xB xN

x =!xB

xN

"

.

xi≥k x i i ≥ k

ker(A) A v

Av = 0

Bin(p, q) Bin(p, q) = q!(p−q)!p!

0 ≤ q ≤ p p q

cTx Ax = b x ≥ 0.

A n×m cTx c b

m n

(8)

bTy

ATy + s = c s ≥ 00.

C ∀ x, y ∈ C λ ∈ [0, 1]

(1 − λ)x + λy ∈ C

B A |B| = n

AB AB i A i ∈ B

B N N = BC

x

Ax = b B xB ABxB = b

AB x B xN

xN = 0

x ≥ 0

C x

C x ∈ C y, z ∈ C λ ∈ (0, 1)

x = (1 − λ)y + λz y, z '= x

x C

x

x xN xB

x =!xB

xN

"

x = (1 − λ)y + λz z, y '= x λ ∈ (0, 1)

y z y ≥ 0 z ≥ 0

x x =!xB

xN

"

= (1 − λ)y + λz = (1 − λ)!yB

yN

"

+ λ!zB

zN

"

. xN = 0

0 = xN = (1 − λ)yN+ λzN. λ > 0 yN ≥ 0 zN ≥ 0

yN = zN = 0.

(9)

y, z ∈ C ABx = ABy = ABz = b A−1B

ABxB = AByB = ABzB= b =⇒ xB = yB = zB = A−1B b.

x = y = z y, z '= x x

y z

x x

x x0 = 0

xD > 0 A A0 AD

AD = AB x AD

ADxD = b.

AD y

z x = 12y + 12z x = y = z x

AD p

ADp = 0.

"

AD(x ± "p) = ADxB± "ADp = ADxB= b.

xD > 0 "

xD+ "p > 0,

xD− "p > 0.

y = xD + "p z = xD − "p x

x AD

AD

x #yT sT$T

cTx − bTy = sTx ≥ 0 cTx − bTy

Ax = b ATy + s = c cTx − bTy

cTx − bTy = (ATy + s)Tx − (Ax)Ty = (yTA + sT)x − xTATy.

(10)

xTATy xTATy = yTAx (yTA + sT)x − xTATy = yTAx + sTx − yTAx = sTx

cTx − bTy = sTx sTx ≥ 0 s ≥ 0 x ≥ 0

Ax = b, ATy + s = c, x ≥ 0, s ≥ 0, xjsj = 0 ∀j.

B

x s xN = 0 sB= 0

B AB

Ax =#AB AN

$!xB

xN

"

= b.

xN = 0

ABxB = b =⇒ xB= A−1B b.

B x

xisi= 0 sB= 0 sB= 0 ATBy = cB

y = A−TB cB ATNy + sN = cN =⇒

ATNA−TB cB+ sN = cN =⇒ sN = cN − ANy = cN − ANA−TB cB. sN

z w

ziwi = 0, w = M z + q,

z ≥ 0, w ≥ 0,

q M

(11)

B B# xB = xB!

(12)

B s s ≥ 0

t t

s

pB = −A−1B ANet

v x

pB xv

v

B

xB = A−1B b sN = cN − ATNA−TB cB

sN ≥ 0

t = argmin

i

(si|si< 0).

pB= −A−1B ANet pB ≥ 0 B v = argmini%

xi

−pi|i ∈ B pi < 0&

. t ∈ B v ∈ N

x ≥ 0 ABxB = b

xj =' xB,j j ∈ B 0 j '∈ B

(

sN

sN ≥ 0 xB ≥ 0

si ≥ 0 t = argmini(si)

1 Ax = b

x

!AB AN

0 I

"

p = et

(13)

Ax = c pt= 1

pj =

pB,j j ∈ B 0 j '∈ B + {t}

1 j = t

 pB = −A−1B ANet

cTp < 0 p st< 0

!ATB 0 ATN I

" ! y sN

"

=!cB

cN

"

cTp =!!ATB 0 ATN I

" ! y sN

""T

p

=#yT sTN$!AB AN

0 I

" !AB AN

0 I

"−1

et

=#yT sTN$ et= st.

st< 0 cTp < 0.

xB+kpB k

k kpB = −xB =⇒ k = −−xpBB

pi > 0

k k = mini%

xi

−pi|i ∈ B pi < 0&

i pi < 0 i ∈ B

k

(t, v) B

pB

k

(14)

st< 0

#−2 −1 0 0$ x,

!1 1 1 0 1 0 0 1

"

x =!2 1

"

, x ≥ 0.

B = 3, 4 AB = I

AN =!1 1 1 0

"

xB sN

xB = I−1!2 1

"

=!2 1

"

,

sN = cN− ATNA−TB cB =!−2

−1

"

. x1

pB=

! −1 −1

−1 0

" !1 0

"

=!−1

−1

"

. min(−xi/pi) = min(2, 1) x4

(1, 3)

(15)

η c

t

B

xB = A−1B b η =!−A−1B AN

I

"

IN

ηi η cTηi

i| ≥ 0 ∀i η

t = argmin

i

! cTηi

i|

"

.

s = argmin

i

! −xi

ηi,ti,t < 0 i ∈ B

"

. i ηi,t < 0

(t, s) s t

B

ηi i

ηi

i| c

pi= cTηi

i|.

(16)

pi≥ 0 ∀i

t pt

−c

pB = ηt ηt η

n ≥ 1 n

0 ≤ x1≤ 1,

βxj−1 ≤ xj ≤ δj− βxj−1 = 2, ..., n.

β = 0 δi= 1

x1≤ 1,

βxj−1− xj ≤ 0, j > 1, βxj−1+ xj ≤ δj, j > 1,

x ≥ 0

θ > 2 β ≥ 2 δj = (θβ)j−1 ci = −βi. θ > 2 β ≥ 1

xi

(17)

0 0.2 0.4 0.6 0.8 1 0

1 2 3 4 5 6

y1

y2

β = 2 θ = 3

βxi−1< δi− βxi−1 θ

δi = (θβ)i−1

βxi−1 ≤ xi≤ δi− βxi−1 =⇒ 2βxi−1 < δi, xi−1< δi

2β = (θβ)i−1 2β =! θ

2

"

(θβ)i−2. x1≤ 1 i = 2

x1<! θ 2

"

(θβ)0 =! θ 2

"i

. βxi−1 < δi− βxi−1 x1 ≤ 1 <#θ

2

$i

∀i > 1 θ > 2

a n ai = 1 xi

ai = 0 xi

a B

B x

xi =' βxi−1 ai = 0, δi− βxi−1 ai = 1.

(

(18)

xi

B B#

a

a# k x

x#

x#i− xi =

0 if i < k,

k− 2βxk−1)(1 − 2ak) i = k, βi−kk− 2βxk−1)/i

j=k(1 − 2aj) i > k.

xi xj<i i < k

x#i = xi x#i− xi = 0 ai = a#i

x#k− xk =

' −(δk− 2βxk−1) ak= 1, (δk− 2βxk−1) ak= 0.

ak = 1 1 − 2ak = −1 ak = 0 1 − 2ak = 1 x#k− xk= (δk− 2βxk−1)(1 − 2ak).

i > k ai= a#i x#i− xi =

' (δi− βx#i−1) − (δi− βxi−1) = −β(x#i−1− xi−1) ai = 1, βx#i−1− βxi−1= β(x#i−1− xi−1) ai = 0.

x#k− xk

x#i− xi = β(x#i−1− xi−1)(1 − 2ai).

x#i− xi= βi−k(x#k− xk)

i

0

j=k+1

(1 − 2aj).

x#k− xk x#i − xi

xk−1

x#i− xi= βi−kk− 2βxk−1)(1 − 2ak)

i

0

j=k+1

(1 − 2aj)

(19)

= βi−kk− 2βxk−1)

i

0

j=k

(1 − 2aj).

x#− x

|x#− x|.

x!i−xi

|x!−x| = 0 i < k x#i− xi

|x#− x| = βi−kk− 2βxk−1)/i

j=k(1 − 2aj) 1

2n

j=kβ2(j−k)k− 2βxk−1)2/j

w=k(1 − 2aw)2, if i ≥ k.

/i

j=k(1 − 2aj)2 = 1 aj

k− 2βxk−1)2β−2k x#i− xi

|x#− x| = βi−kk− 2βxk−1)/i

j=k(1 − 2aj) β−kk− 2βxk−1)1

2n j=kβ2j

= βi/i

j=k(1 − 2aj) 12n

j=kβ2j .

c·(x!−x)

|x!−x| ci = −βi

ci(x#i− xi)

|x#i− xi| = −βiβi/i

j=k(1 − 2aj) 12n

j=kβ2j

= −β2i/i

j=k(1 − 2aj) 12n

j=kβ2j .

c · (x#− x)

|x#− x| = − 2n

i=kβ2i/i

j=k(1 − 2aj) 12n

j=kβ2j

.

2n

i=kβ2i/i

j=k(1 − 2aj) /n

j=k(1 − 2aj)

(20)

wp =/p

j=k(1 − 2aj) wi = ±1 wn= 1

n

3

i=k

β2i−1

i

0

j=k

(1 − 2aj) > 0

β−1

n

3

i=k

β2iwi= β2n+

n−1

3

i=k

β2i−1wi.

wi<n= −1 k = 1

β2n+

n−1

3

i=k

β2iwi ≥ β2n

n−1

3

i=1

β2i 2n−1

i=1 y2i= −y(y2−y2−1)2n

β2n+

n−1

3

i=k

β2iwi ≥ β2n2− β2n2− 1)

β2n+ β2−β2−1)2n > 0 β

β2n2− 1) + β2− β2n > 0, β2− 1 + β2

β2n − 1 > 0, β2+ β2

β2n > 2, β2+ 1

β2(n−1) > 2 =⇒ β2 > 2.

β2> 2 2n

i=kβ2i−1wi> 0 wn= 1 wn= −1

n

3

i=k

β2i

i

0

j=k

(1 − 2aj) < 0.

wi<n= 1 k = 1

(21)

−β2n+

n−1

3

i=k

β2iwi ≤ −β2n+

n−1

3

i=1

β2i

β2n − 2n−1

i=k β2i > 0

−β2n−1+

n−1

3

i=1

β2i−1< 0,

β ≥ 2 m /n

j=m(1 −

2aj) = 1 k > m /n

j=k(1 − 2aj) = 1

c·(xm−x)

|xm−x| < c·(x|xkk−x|−x) xm x m

β

− 2n

i=mβ2i/i

j=m(1 − 2aj) 12n

j=mβ2j < − 2n

i=kβ2i/i

j=k(1 − 2aj) 12n

j=kβ2j

.

Φ =

k−1

3

i=m

β2i∀i

i

0

j=m

(1 − 2aj) = 1,

Ψ =

k−1

3

i=m

β2i∀i

i

0

j=m

(1 − 2aj) = −1,

Ω =

n

3

i=k

β2i∀i

i

0

j=m

(1 − 2aj) = 1,

Λ =

n

3

i=k

β2i∀i

i

0

j=m

(1 − 2aj) = −1.

Φ, Ω > 0 Ψ, Λ ≥ 0

−√Φ − Ψ +Ω − Λ

Φ + Ψ + Ω + Λ < −√Ω − Λ Ω +Λ.

(22)

(Φ − Ψ +Ω − Λ)2(Ω + Λ) − (Ω − Λ)2(Φ + Ψ + Ω + Λ) > 0 (Φ − Ψ + Ω − Λ)2(Ω + Λ) − (Ω − Λ)2(Φ + Ψ + Ω + Λ)

= (Φ − Ψ)2(Ω + Λ) + 2(Φ − Ψ)(Ω2− Λ2) − (Ω − Λ)2(Φ + Ψ)

= (Φ − Ψ)2(Ω + Λ) + (Ω − Λ)[Ω(Φ − 3Ψ) + Λ(3Φ − Ψ)].

(Φ − Ψ)2> 0 (Ω + Λ) > 0 (Ω − Λ)[Ω(Φ − 3Ψ) + Λ(3Φ − Ψ)]

(Φ−Ψ)2(Ω+Λ)+(Ω−Λ)[Ω(Φ−3Ψ)+Λ(3Φ−Ψ)] > (Ω−Λ)[Ω(Φ−3Ψ)+Λ(3Φ−Ψ)].

Ω > Λ (Ω −

Λ)[Ω(Φ − 3Ψ) + Λ(3Φ − Ψ)] Ω(Φ − 3Ψ) + Λ(3Φ − Ψ) (Φ − 3Ψ) ≥ 0

(3Φ − Ψ) > 0

n

0

j=k

(1 − 2aj) = 1

1 =

n

0

j=m

(1 − 2aj) =

k−1

0

j=m

(1 − 2aj)

n

0

j=k

(1 − 2aj) =⇒

k−1

0

j=m

(1 − 2aj) = 1.

/k−1

j=m(1−2aj) = 1 /j≤k−2

j=m (1−2aj) = −1

Ψ Φ

(Φ − 3Ψ) ≥ β2k− 32k−2

i=mβ2i

= β2k−22− 32k−2

i=mβ−2(k−i−1))

≥ β2k−22β2−12 ).

β2β2−12 ≥ 0 β ≥ 2

2n− 1

m

n

0

j=m

(1 − 2aj) = 1

(23)

am

n = 2 ai = 0 ∀i a0 = [0, 0]

/n

j=i(1 − 2aj) = 1∀i a1 = [1, 0]

a m

0 [0, 0] 1

1 [1, 0] 2

2 [1, 1] 1

3 [0, 1] −

n − 1 2n−1− 1 n

1 − 2an= 1|an=0

n − 1

an−1 = [0...0, 1n−1, 0]

i /n

j=i(1 − 2aj) = 1 n an= [0...0, 1n−1, 1n]

1 − 2an= −1|an=1 n−1

0

j=i

(1 − 2aj)|an=1= −

n−1

0

j=i

(1 − 2aj)|an=0. n − 1

n − 1

2 ∗ (22−1− 1) an= 1

2 ∗ (22−1− 1) + 1 = 2n− 1.

r

c·(x!−x)+cslack·(r!−r))

|x!−x+r!−r| cslack = 0

c·(x!−x)

|x!−x+r!−r|

d cTx,

Ax +Idrd= b, x, r ≥ 0.

(24)

B

x r d r = drd

c · (x#− x)

|x#− x + r#− r| = c · (x#− x)

|x#− x + d(r#changed− rchanged)|.

d 0

d→0lim

c · (x#− x)

|x#− x + d(r#d− rd)| = c · (x#− x)

|x#− x| .

d

cTx

dAx + rd= db, x, r ≥ 0,

c b

ci =

' βi i ≤ n 0 i > n

( ,

bi=' δi i ≤ n 0 i > n

( .

n A n −1

A =

1 0 0 ... 0

β 1 ... 0

0 β 1 ... 0

0 ... 0 β 1

β −1 ... 0

0 β −1 ... 0

0 0 ... β −1

 .

β ≥ 2 θ > 2 d > 0 d

2n− 1 xi>1 rn≤i≤2n−1

(25)

0 0.2 0.4 0.6 0.8 1 0

1 2 3 4 5 6

y1

y2

1

2 3 4

β = 2 θ = 3

cTηiki

s

x x# = x + ktηt B

xB = A−1B b η =!−A−1B AN

I

"

IN

ηi η cTηi

i| ≥ 0 ∀i

ηi ki

ki = min

j

! xj∈B

ηijij < 0

"

.

t = argmini(cTηiki) s s = argmin

j

! xj∈B

ηtjtj< 0

"

.

(26)

(t, s) s t B

ηi i

xj∈B− ηijki = 0 j xj∈B− ηijki≥ 0 j

ki = min

j

! xj

ηijij < 0, j ∈ B

"

.

cTηiki ηi ki

ηi

p cTx

(27)

ψ(p) p ψ(p) ∈ [1, 0]

y

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

x1

y1

p1

y1

y1

y1 y1

v w

pi ∈ p [(1 − ψ(pi))v + ψ(pi)w, pi]∀i [v1, p1] v1

[v1, p1] p [w1, pmax]

[w2, pmax] w [w3, pmax]

p w v pmax

p1 p v

v w v

w

p

v w

p

(28)

0 2 4 6 8 10 12 14

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

x2

y2

v1 w1

v w

y2

B

i xi < 0 si < 0 t

t ∈ B

ηN v ηv < 0

t ∈ N v

pB v

pv< 0 t v B

N

B B

xB = A−1B b sN = cN − ATNA−TB cB xB≥ 0 sN ≥ 0

t = min

i ({i|xi < 0orsi < 0}).

t ∈ B ηN = ATNA−TB et ηN ≥ 0 B v = mini(i|ηi < 0)

(29)

t ∈ N pB = −A−1B ANet pB ≥ 0 B

v = mini(i|pi < 0 i ∈ B)

(t, v) B

t

x s x s

t v

t ∈ B xB

sN

t xi < 0 si< 0

t ∈ B

t ∈ N

(t, v) t ∈ B t ∈ N v ∈ B t ∈ N t ∈ B v ∈ N

t ∈ N

t ∈ B

(30)

x# x## s s∗∗ (s− s∗∗)T(x#− x##) = 0

K = ker(A) AK = 0

x Ax = b Ax#− Ax##= b − b = 0 A(x#− x##) = 0 x#− x##∈ K

s ATy + s = c

ATy+ s− ATy∗∗+ s∗∗= c − c = 0.

AK = 0 KTAT = 0 KT

KTAT(y− y∗∗) + KT(s− s∗∗) = KT(s− s∗∗) = 0.

(KT(s− s∗∗))T = (s − s∗∗)TK = 0 (s− s∗∗)T K

x# − x## ∈ K (s − s∗∗)T K (s− s∗∗)T(x#− x##) = 0

t

B t B# t

k t t t t

(s1− s2)T(x3− x4) = 0 s1 s2

x3 x4 x3 x B#

x4

x3 x3− x4 = lp# l l

p# p

p#k= 1

(31)

p#j =

−A−1B!ANej j ∈ B#

1 j = k

0 j ∈ N#\k

 i sixi = 0

s s# B B# s s#

t

sj =' ≥ 0 j < t

< 0 j = t (

,

s#j =

f ree j > t

0 j = t

< 0 j = k

 .

0 = (s − s#)Tp# = skp#k+ stpt# − s#kp#k− s#tp#t+ 3

i∈N ∩B!\t,k

sip#i− s#ip#i.

p#i∈N!\k= 0 s#i∈B! = 0 s#i)=kp#i)=k= 0 p#k= 1

0 = (s − s#)Tp#= sk+ stp#t− s#k+ 3

i∈N ∩B!\t,k

sip#i.

sk≥ 0 st< 0 p#t< 0 s#k< 0 si∈N ∩B!\t,k ≥ 0 p#i∈N ∩B!\t,k ≥ 0

0 = (s − s#)Tp#= sk+ stp#t− s#k+ 3

i∈N ∩B!\t,k

sip#i> 0.

t

p# η

s# s x# x

0 = (s − s#)T(x − x#) sTx = s#Tx# = 0

0 = (s − s#)T(x − x#) = −sTx#− s#Tx.

sj =' ≥ 0 j < t

< 0 j = t (

,

(32)

xj =

' ≥ 0 j < t

0 j = t

( ,

s#j =' ≥ 0 j < t

0 j = t

( ,

x#j =

' ≥ 0 j < t

< 0 j = t (

.

0 = −sTx#− s#Tx = −si<tx#i<t− stx#t− s#i<txi<t− s#txt. s#t= 0 xt= 0

0 = −sTx#− s#Tx = −si<tx#i<t− stx#t− s#i<txi<t. si<tx#i<t ≥ 0 stx#t > 0 s#i<txi<t ≥ 0

0 = −sTx#− s#Tx = −si<tx#i<t− stx#t− s#i<txi<t< 0.

t

n ≥ 1 n

0 ≤ y1 ≤ 1,

εyj−1≤ yj ≤ 1 − εyj−1 2 ≤ j ≤ n.

ε = 0 ε#0,12$

(33)

0 0.2 0.4 0.6 0.8 1 0

0.2 0.4 0.6 0.8 1

y1

y2

The klee−minty polytope in 2 dimensions with ε=0.2

ε = 0.2

−y1 ≤ 0, y1 ≤ 1, εyj−1− yj ≤ 0, εyj−1+ yj ≤ 1.

yi

yi

ATy =

−1 0 0 ... 0

1 0 0 ... 0

ε −1 0 ... 0

ε 1 0 ... 0

0 ... 0 ε −1

0 ... 0 ε 1

 y1 y2

y3 y4 yn−1

yn

 0 1 0 1 0 1

 .

yn

(34)

yn,

−y1≤ 0, y1≤ 1,

εyj−1− yj ≤ 0 2 ≤ j ≤ n, εyj−1+ yj ≤ 1 2 ≤ j ≤ n.

2n i=1xui,

Ax =

−1 1 ε ε 0 0 0 ... 0

0 0 −1 1 ε ε 0 ... 0

0 0 0 0

0 0 0 0 0 0 0 −1 1

 xl1 xu1 xl2 xu2 xln xun

=

 0 0 0 0 0 1

 ,

x ≥ 0.

x xu xl xu

y xl

y1 = 1 xu1

xl xu i xli xui

xui yi

εyj−1+ yj = 1 xli εyj−1− yj = 0

yi−1 ∈ [0, 1] yi yi = 1 − εyi−1

εyj−1 ≤ yj

εyj−1 ≤ 1 − εyi−1 2εyj−1 ≤ 1

ε ∈ (0,12)

yi−1 ∈ [0, 1] yi yi = εyi−1

yi ≤ 1 − εyi−1 εyi−1 ≤ 1 − εyi−1 =⇒ 2εyj−1 ≤ 1 ε ∈ (0,12)

0 ≤ y1 ≤ 1 yi−1 ∈ [0, 1] i yi ∈ [εyi−1, 1 − εyi−1] ⊆ [0, 1]

i xli xui

xli xui i

xli xui

(35)

AB AN A−1B

AB =

±1 ε 0 . . . 0

0 ±1 ε 0

0 0 0

0 0 0 ±1 ε

0 0 0 0 ±1

 .

AB,i,i = 1 xli ∈ B AB,i,i = −1 xui ∈ B

A−1B diag(AB) = diag(A−1B ) AB

±1 A−TB

diag(A−TB ) = diag(AB)

AN,i,j = AB,i,j ∀i '= j AN,i,i = −AB,i,i diag(AN) = − diag(AB)

AN =

∓1 ε 0 . . . 0

0 ∓1 ε 0

0 0 0

0 0 0 ∓1 ε

0 0 0 0 ∓1

 .

ATN

ATNA−TB

diag(ATNA−TB ) = diag(ANT) diag(A−TB ) = − diag(AB) diag(AB) = −1.

ATNA−TB diag(ATNA−TB ) < 0

ηN = ATNA−TB ei=

 01

0i−1

−1i ηN,j>i

 .

ηj < 0 i : th

N xli xui

(36)

xui xli ∈ B xui xli xui < 0 xli < 0

xB,i < 0 |{j|xuj ∈ B ∀j ≥ i}|

xuj≥i xB,i < 0

AB=

±1 ε 0 ... 0

0 ±1 ε 0 ...

0 0 0

0 0 0 ±1 ε

0 0 0 0 ±1

 ,

AB,i,i= −1 xli ∈ B AB,i,i= 1 xui ∈ B b = en ABxB= b = en.

AB xB,i= xli xB,i = εxB,i+1

xB,n = xln xB,n= −1

xB,i = xui xB,i = −εxB,i+1 xB,n = xun xB,n = 1 xB,i = −εn−i/n

j=i|xuj∈B−1 xB,i < 0 xuj ∈ B ∀j ≥ i

2n− 1

xB,i< 0 {j|xuj ∈ B ∀j ≥ i}| = 0 xli xui

xB = xl

xB < 0 |{j|xuj ∈ B ∀j ≥ i}| = 0 2n− 1

xui

xli i u

l u xB,i= xui l xB,i = xli (l, u, u, l, l, u) (xl1, xu2, xu3, xl4, xl5, xu6)

n = 2

(l, l)

(37)

xu1 1 u#s

(u, l), (u, u), (l, u).

n = 2 n

2n− 1

(−, ..., −, un).

l

|{j|xuj ∈ B ∀j ≥ i}|

n + 1 l

(l, ..., ln−1, un, ln+1).

n + 1 u

|{j|xuj ∈ B ∀j ≥ i}|

(l, ..., ln−1, un, un+1).

n

2n− 1 (l, ..., l, un+1)

(2n− 1) + 1 + (2n− 1) = 2n+1− 1

(38)

0 0.2 0.4 0.6 0.8 1 0

0.2 0.4 0.6 0.8 1

y1

y2

The klee−minty polytope in 2 dimensions with ε=0.2

1

2 3 4

ε = 0.2

ziwi = 0 ∀i

w = M z + q,

w ≥ 0,

z ≥ 0,

wizi = 0.

M n × n w z q

n

(39)

cTx, Ax ≥ b, x ≥ 0, bTy,

−ATy ≥ −c, y ≥ 0,

aTx = c aTx ≥ c −aTx ≥ −c

cTx

Ax − r = b x, r ≥ 0, bTy

ATy + s = c y, s ≥ 0.

r = Ax − b s = −ATy + c

x ≥ 0

y ≥ 0

s ≥ 0

r ≥ 0

riyi = 0 sixi = 0

!s r

"

= ! 0 −AT

A 0

" !x y

"

+! c

−b

"

,

!x y

"

≥ 0,

!s r

"

≥ 0,

#x y$!s r

"

= 0.

(40)

A n × m n '= m det! 0 −AT

A 0

"

= 0.

j zjwj '= 0 ziwi= 0

∀i '= j

ziwi = 0 z0w0 = 0,

! w w0

"

=!M 0

"

z +!q 0

"

+!1 1

"

z0,

! z z0

"

≥ 0,

! w w0

"

≥ 0,

q M

w0 = z0 w0z0 = 0 w0= z0

z0 = 0 w0

z0 = 0 z0 = 0

ziwi = 0,

P =#I −M −1$ −1

−1 P

 w

z z0

= q,

(41)

! z z0

"

≥ 0, w ≥ 0, z0 = 0,

q M

w

z0 = −min(q) w = z0+ q w

0

z0 ∈ B

p z0

w P PB PN

q ≥ 0 w = q z0

z0 = −min(q) w w = z0+ q wi

t wt = 0 zt = 0

 w

z z0

B

= PB−1q.

et t

p p = −PB−1PNet.

(42)

s s = argmin

j∈B (−xj

pj|pj < 0).

j ∈ B −xpjj < 0 pj < 0

(s, t) z0 = 0

z0 > 0 wt= 0 zt= 0

z0

z0

wi

z0

i

wi zi zi

wi

z0 = 0 z0

(s, t)

#−1 −1 −1$ x

#−10 −10 −1$ x ≥ #−10$

x ≥ 0

(43)

ziwi = 0,

w =

0 0 0 10

0 0 0 10

0 0 0 1

−10 −10 −1 0

 z +

−1

−1

−1 10

 ,

z ≥ 0, w ≥ 0.

M =

0 0 0 10

0 0 0 10

0 0 0 1

−10 −10 −1 0

 ,

q =

−1

−1

−1 10

 .

P

 w

z z0

=

1 0 0 0 0 0 0 −10 −1 0 1 0 0 0 0 0 −10 −1

0 0 1 0 0 0 0 −1 −1

0 0 0 1 10 10 1 0 −1

 w

z z0

=

−1

−1

−1 10

 .

z0 = −min

−1

−1

−1 10

= 1 w = q + z0 =

 0 0 0 11

 w1 = w2 = w3 = 0

w1 (w2, w3, w4, z0)

w1 z0 0

z1 w1 w1 z1

PB=

0 0 0 −1 1 0 0 −1 0 1 0 −1 0 0 1 −1

 ,

(44)

PNe1 =

 0 0 0 10

 , .

p = −PB−1PNez1 =

 0 0

−10 0

 ,

 w

z z0

B

=

 w2 w3 w4 z0

=

 0 0 11

1

 .

j pj < 0 j = 3 w4

(w2, w3, z1, z0) 1

w4 z4

PB=

0 0 0 −1 1 0 0 −1 0 1 0 −1 0 0 10 −1

 ,

PNez4 =

−10

−10

−1 0

 ,

p = −PB−1PNez4 =

 0

−9

−1

−10

 ,

 w

z z0

B

=

 w2

w3 z1 z0

=

 0 0

11 10

1

 .

0

−9 w3 z0

(45)

M

M x = λx t x M =! 0 −AT

A 0

"

x =!x1 x2

"

M x =! 0 −AT

A 0

" !x1

x2

"

=!−ATx2 Ax1

"

.

λxT = xTM =#x1 x2$! 0 −AT

A 0

"

=#x2A −x1AT$ . λx = λ(xT)T

!−ATx2 Ax1

"

=! ATx2

−Ax1

"

.

(46)

B κ > 0

Ki Ki κ

B Ki

B Ki

f (Ki, A, b, c) Ki f (Ki, A, b, c)

B f (Ki, A, b, c)

f (B, A, b, c) Ki f (Ki, A, b, c) < f (B, A, b, c) B

f (Ki, A, b, c) f (Ki, A, b, c)

B

κ > 0

Ki 0 < |B ∩ Ki| ≤ |B| − κ |Ki| = |B|

Ki f (Ki, A, b, c)

vi

B St t = argmini(vi)

vt vt

B Ki

K1 A |A ∩ S| = |A| − 1

Kκ κ A |A ∩ K| = |A| − κ

κ B

B

f (K, A, b, c)

κ

(47)

p q

κ

2

t=1

Bin(p, t) Bin(q, t)

B |B| = p N

|N| = q

1...κ 1...κ

t antout(t) =

Bin(p, t) antin(t) = Bin(q, t)

t B Bin(p, t) Bin(q, t)

0 < t ≤ κ

κ

3

t=1

Bin(p, t) Bin(q, t).

κ (κ = 2)

p = 50 q = 50

≈ 1.5 ∗ 106 κ = 3

385 ∗ 106 κ = 5

4.5 ∗1012 κ

f (K, A, b, c) B

f (Ki, A, b, c) =

' ∞ A−1K

ib '≥ 0 cTK

iA−1K

ib A−1K

ib ≥ 0 (

.

κ A−1K

ib = xB f (Ki, A, b, c) = ∞

cTK

iA−1K

ib κ = |B|

Ki

(48)

cTxnonslack

#A I$!xnonslack

xslack

"

= b

!xnonslack

xslack

"

≥ 0.

A, b 1 : 100 A p p

2p c

−100 : −1 xslack = b

|{i|xi < 0 si< 0}|

−2

i(xi+ si)|xi < 0 si < 0

−2

i(x2i + s2i)|xi< 0 si < 0

−min(x√! i+ si)|xi < 0 si< 0

ix2i

|x| +

!

is2i

|s| |xi< 0 si< 0

!

ix2i+s2i

|x|2+|s|2 |xi < 0 si < 0

f (Ki, A, b, c)

κ ≤ 3 κ

(49)

B A b

A cT

A b c

(50)
(51)

Examensarbete E361 i Optimeringslära och systemteori Juni 2012

www.math.kth.se/optsyst/

References

Related documents

2 Available at: http://people.brunel.ac.uk/ mastjjb/jeb/orlib/scpinfo.html (accessed 2015-03-13).. Algorithm 2 is run for different maximum number of iterations of Algorithm 1 for

The linear programming model defines mathematically the problem of selecting suitable (=cost minimizing) combinations among the first best solution and a number of

Summary The Treiber stack demonstrated spec fields and specu- lative reads, val fields and stable paths, pristine values and tentative writes, and how different operations impose

Vi upplevde att profileringen idrott var något som personalen till en början tyckte var lätt att applicera på deras redan pågående och fungerande verksamhet

Det finns även litteratur som inriktar sig på handlingen i boken istället för vilket kön karaktären har, i sådana böcker använder man sig utav könsneutrala

Anna nämner även att de ”duktiga” eleverna ofta glöms bort under lektionstiden och får klara sig själva då fokus ofta hamnar på elever som inte når upp till

Hon förklarade skillnaden mellan att sjunga högt och att skrika, vilket barnen förstod och att de inte kan viska när de sjunger för då menar pedagogen att det

Hon menar vidare att det är viktigt att pedagogerna har kunskap om detta, och att deras förhållningssätt är avgörande för hur mycket fysiska aktiviteter barnen får på