• No results found

Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients

N/A
N/A
Protected

Academic year: 2022

Share "Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients"

Copied!
156
0
0

Loading.... (view fulltext now)

Full text

(1)DOC TOR A L T H E S I S. ISSN: 1402-1544 ISBN 978-91-7439-750-5 (print) ISBN 978-91-7439-751-2 (pdf) Luleå University of Technology 2013. Sara Chlot Nitrogen and Phosphorus Interactions and Transformations in Cold-Climate Mine Water Recipients. Department of Civil, Environmental and Natural Resources Engineering Division of Geosciences and Environmental Engineering. Nitrogen and Phosphorus Interactions and Transformations in Cold-Climate Mine Water Recipients. Sara Chlot.

(2)

(3) Nitrogen and Phosphorus Interactions and Transformations in Cold-Climate Mine Water Recipients. Sara Chlot. Division of Geosciences and Environmental Engineering Department of Civil, Environmental and Natural Resources Engineering Luleå University of Technology S-971 87 Luleå, Sweden.

(4) Cover picture: View over the Kiruna mine (left) and view over Brubäcken stream, Boliden (right). Photographs provided by Dmytro Siergieiev.. Printed by Universitetstryckeriet, Luleå 2013 ISSN: 1402-1544 ISBN 978-91-7439-750-5 (print) ISBN 978-91-7439-751-2 (pdf) Luleå 2013 www.ltu.se.

(5) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. Abstract Process water discharged from mine sites may contain elevated concentrations of nitrogen (N) and phosphorus (P), which both are nutrients for phytoplankton and macrophytes. Thus, discharge of QXWULHQWULFKPLQHZDWHUFDQUHVXOWLQDOJDOEORRPVHXWURSKLFDWLRQR[\JHQGH¿FLHQF\DQGFKDQJHG species composition in the recipients. This thesis is focused on the speciation and transformation SURFHVVHVRI1DQG3LQVWUHDPVDQGODNHVUHFHLYLQJPLQHHIÀXHQWVIURPWKH.LUXQDDQG%ROLGHQPLQH sites. The thesis also aimed at evaluating N removal capacity of these aquatic systems. Research PHWKRGVLQWKHWKHVLVLQFOXGHGFROOHFWLRQRI¿HOGGDWDODERUDWRU\DQG¿HOGH[SHULPHQWVDQGFRPSXWHU simulations. The question of limiting nutrient for production of phytoplankton and macrophytes in these mine water recipients was investigated. For this reason, total nitrogen (TN), total phosphorus (TP) and TN:TP ratios in water, sediment and macrophytes were analysed and evaluated. Depending on WKHDPPRQLXPFRQFHQWUDWLRQLQWKHHIÀXHQWDWWKH%ROLGHQVLWH7173UDWLRVRIWKHZDWHUFROXPQ VKLIWHG IURP EHLQJ ! LQGLFDWLQJ 3GH¿FLHQF\ IRU SK\WRSODQNWRQ WR EHWZHHQ  LQGLFDWLQJ D WUDQVLWLRQIURP1WR3GH¿FLHQF\ FROLPLWDWLRQ

(6) +RZHYHUZDWHUFROXPQ7173UDWLRVDWWKH.LUXQD VLWH DOZD\V LQGLFDWHG 3 GH¿FLHQF\ 2Q WKH RWKHU KDQG WKH7173 UDWLRV RI PDFURSK\WHV UHYHDOHG that both sites may vary from N to P limitation. These aspects have implications for assessing the HQYLURQPHQWDOLQÀXHQFHRIQXWULHQWULFKPLQHHIÀXHQWV$GRZQVWUHDPGHFUHDVHLQLQRUJDQLF1 1+4+ DQG 123) as well as lower concentrations during summer was observed in the receiving streams and lakes. To identify and quantify the major N transformation and removal processes responsible for these changes, a dynamic biogeochemical model was developed, calibrated and validated using K\GURORJLFDO DQG ZDWHU FKHPLVWU\ GDWD IRU WKH FODUL¿FDWLRQ SRQG 1\D 6M|Q %ROLGHQ

(7)  7KH PRGHO calculates concentrations of six N species and simulates the rate of 16 N transformation processes RFFXUULQJ LQ WKH ZDWHU FROXPQ DQG VHGLPHQW DV ZHOO DV ZDWHUVHGLPHQW DQG ZDWHUDWPRVSKHUH LQWHUDFWLRQV 7KH FDOLEUDWHG PRGHO UHQGHUHG FRHI¿FLHQWV RI GHWHUPLQDWLRQ 52

(8)  RI   DQG 0.86 for the inorganic nitrogen species ammonium, nitrate and organic nitrogen, respectively. When DSSO\LQJWKHPRGHOLQWKHGRZQVWUHDP/DNH%UXWUlVNHWWKHFRUUHVSRQGLQJ52YDOXHVZHUH DQG0RGHOVLPXODWLRQVLQWKHWZRV\VWHPVVXJJHVWHGWKDWQLWUL¿FDWLRQFRQWUROOHGWKHUHDFWLRQ UDWHRIWKHFRXSOHGQLWUL¿FDWLRQGHQLWUL¿FDWLRQSURFHVVDQGWKDWDSSUR[LPDWHO\±RISHUPDQHQW UHPRYDO RFFXUUHG WKRXJK GHQLWUL¿FDWLRQ IROORZHG E\ EXULDO LQ WKH VHGLPHQW a 

(9)  0D\  2FWREHU

(10) $VWDEOHQLWURJHQLVRWRSH 15N) was employed to trace N cycling in the various plant parts of common reed (P. australis

(11) JURZLQJLQWKHOLWWRUDO]RQHRI/DNH%UXWUlVNHW,VRWRSHHQULFKPHQW GDWDLQGLFDWHGDVLJQL¿FDQWO\PRUHHIIHFWLYHDVVLPLODWLRQRI1LQWKHURRWV0D[LPXPWUDFHUXSWDNH rates of 0.25 μg g min 123) and 1.4 μg g min 1+4+) are similar to model simulated rates of PDFURSK\WH1XSWDNH6LPXODWLRQUHVXOWVDQGUHVXOWVIURPWKHWUDFHUVWXG\LQGLFDWHGWKDWGLUHFW1 removal through N uptake in macrophytes and phytoplankton may be of minor importance relative WRQLWUL¿FDWLRQDQGGHQLWUL¿FDWLRQ  $ VHGLPHQW LQFXEDWLRQ H[SHULPHQW XVLQJ ODNH ZDWHU DQG VHGLPHQW IURP /DNH %UXWUlVNHW %ROLGHQ

(12) UHVXOWHGLQDVHGLPHQWDU\ÀX[RIVROXEOHUHDFWLYHSKRVSKRUXV 653

(13) RIPJ653P d. Field measurements suggested that oxidation of organic matter and inorganic mining related FKHPLFDOV HJ1+4+DQGWKLRVDOWV

(14) PD\UHVXOWLQLQFUHDVHGLQWHUQDO653ÀX[7KHVH¿QGLQJVSRLQWWR DSRVVLEOHLQWHUDFWLRQEHWZHHQWKHF\FOHVRI1 R[\JHQFRQVXPSWLRQ

(15) DQG3 ÀX[IURPVHGLPHQW

(16) WKDW PD\EHLPSRUWDQWIRUQXWULHQWUHJXODWLRQLQPLQHZDWHUUHFLSLHQWV6HGLPHQWSUR[\GDWD b13C, b15N, &1UDWLRV

(17) ZDVXVHGWRUHFRQVWUXFWKLVWRULFDOFKDQJHVLQRUJDQLFPDWWHU 20

(18) DFFXPXODWLRQLQODNHV UHFHLYLQJQXWULHQWULFKPLQHZDWHUVLQWKH%ROLGHQDQG.LUXQDPLQHVLWHV6HGLPHQWDFFXPXODWLRQ rates increased upwards in all cores, which correlates with an increase in suspended load in the PLQLQJ HIÀXHQWV GLVFKDUJLQJ WR WKH V\VWHPV 6LPLODU b151 YDOXHV LQ GLVVROYHG LQRUJDQLF 1 ',1

(19)  DQGVXUIDFHVHGLPHQWVPRVWOLNHO\UHÀHFWELRORJLFDODVVLPLODWLRQRI',1DQGVXEVHTXHQWVHWWOLQJRI phytoplankton and macrophyte organic detritus. The improved knowledge on N and P dynamics in mine water recipients can be used in selection of mine water management strategies that may lead to reduced N discharge..

(20)

(21) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. Acknowledgements Financial support from the Swedish Governmental Agency for Innovation Systems (VINNOVA), Luleå University of technology (LTU), LKAB, Boliden Mineral AB, the Adolf H Lundin Charitable Foundation and J Gust Richert Foundation is gratefully acknowledged. This project has been conducted within the framework of Centre of Advanced Mining & Metallurgy (CAMM). Even though it is my name on the thesis, there are several people that in different ways have contributed and that I would like to acknowledge. First of all, I want to send my gratitude to my supervisors Björn Öhlander and Anders Widerlund. Both are appreciated for always taking their time to give fast and constructive comments on my written work. Anders has shown invaluable support, both by quick and thorough reading of my manuscripts and help with planning and performing field work. I would like to thank Björn for support and encouragement and for showing true interest in the project. Further, I am grateful to Lena Alakangas for valuable advices that have been useful to me, both for my professional and personal development. Frauke Ecke is acknowledged for fruitful comments on the first two manuscripts and for contributing with valuable knowledge about macrophytes. Eva Husson is acknowledged for providing me with macrophyte data. Personnel at Boliden Mineral AB and LKAB are acknowledged for provision of data and reports, answering questions and for assistance in field sampling. Colleagues of Department of Civil, Environmental and Natural Resources Engineering and especially my colleagues at the Division of Geosciences and Environmental Engineering are all acknowledged for nice coffee breaks and assistance in the field on one or several occasions. Thank you Fredrik for always taking your time to talk, whether it is related to science or not! Thank you Heléne for encouraging talks during our “lunch dates”. Dmytro is appreciated for good teamwork when working with the model. Others I would like to thank are Peter, Nathalie and Sarah. Many thanks to Milan Vnuk for final drawing of many the figures and technical preparation of this thesis. Last but not the least I would like to thank my dear family (pappa, Elisabeth, Johannes, Mirjam and Maggie) and friends (close and far) that are there whenever I need them and show that they believe in me. A big thanks to my parents-in-law Kjell and Yvonne for all the hours you have spent on baby-sitting. I am especially grateful for all support and love from my Christoffer, this wouldn’t be possible without you! You, Axel and Majken mean everything to me..

(22)

(23) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. List of papers This thesis is based on the following papers hereafter referred to by their Roman numerals: I. II. III. IV. V. VI.. Chlot S, Widerlund A, Husson E, Öhlander B, Ecke F (2013) Effects on nutrient regime in two recipients of nitrogen rich mine effluents in northern Sweden. Applied Geochemistry, 31:12-24 Chlot S, Widerlund A, Siergieiev D, Ecke F, Husson E, Öhlander B (2011) Modelling nitrogen transformations in waters receiving mine effluents. Science of the Total Environment, 49:4585-4595 Chlot S, Widerlund A, Olausson L, Öhlander B (2013) A combined modelling and mass balance approach to estimate nitrogen removal capacity of a mine water recipient Manuscript submitted to Environmental Science and Pollution Research Chlot S, Widerlund A, Öhlander B (2013) Interaction between nitrogen and phosphorus cycles in mining-affected aquatic systems-experiences from field and laboratory measurements. Environmental Science and Pollution Research, 20:5722-5736 Chlot S, Widerlund A, Öhlander B (2013) Nitrogen uptake and cycling in Phragmites australis in a lake receiving nutrient rich mine water: A 15N tracer study. In review. Submitted to Ecological Engineering Widerlund A, Chlot S, Öhlander B (2013) Sedimentary records of d13C, d15N, and organic matter accumulation in lakes receiving nutrient-rich mine waters Manuscript to be submitted to Science of the Total Environment Papers I and II are reprinted with permission of Elsevier. Paper IV is reprinted with permission of Springer.. My contribution to appended papers I. II. III. IV. V. VI.. Most of the field sampling, evaluation and writing. Macrophyte data was obtained in collaboration with Frauke Ecke and Eva Husson. Most of the field sampling. Initial development and calibration of the model was performed in close collaboration with a master thesis student (Dmytro Siergieiev). Most of the evaluation and written work. Most of the modelling, evaluation and writing. Mass balance calculations were performed by an undergraduate student (Liselotte Olausson) as part of a senior design project under supervision from me and Anders Widerlund. Most of planning and performing experimental work. Also did most of the evaluation and writing. Most of planning and performing experimental work. Also did most of the evaluation and writing. Assisted in field sampling and sample preparation. Contributed to evaluation and writing..

(24)

(25) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. Paper not included in the thesis Österlund H, Chlot S, Faarinen M, Widerlund A, Rodushkin I, Ingri J , Baxter DC (2010) Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite diffusive gradients in thin films (DGT) device. Analytica Chimica Acta 682 (1-2): 59-65 Contributions at international conferences, not included in the thesis Chlot S, Widerlund A (2013) The fate of nitrogen in a lake occupied by Phragmites australis: A stable isotope tracer study. Abstract, AIG-10, 10th International symposium on Applied Isotope Geochemistry, Budapest, Hungary, 22-27 September 2013. Oral presentation (given by Sara Chlot) Chlot S, Widerlund A (2013) Using DGT to estimate soluble reactive phosphorus in a stream receiving nutrient rich mine water. Abstract, Conference on DGT and the environment- Lancaster, England, 9-11 July 2013. Poster presentation (given by Sara Chlot) Chlot S, Widerlund A, Öhlander B (2011) Studying nitrogen cycling and uptake by macrophytes using 15N tracer techniques. Abstract, AIG-9, 9th International symposium on Applied Isotope Geochemistry, Tarragona, Spain, 19-23 September 2011. Oral presentation (given by Sara Chlot) Chlot S, Widerlund A, Öhlander B (2011) Carbon and Nitrogen Concentrations and Isotopic Composition in Sediments of Lakes Receiving Nitrogen Rich Mine Effluents. Abstract, International Applied Geochemistry Symposium, Rovaniemi, Finland, 22-26 August 2011. Oral presentation (given by Sara Chlot) Frandsen S, Widerlund A, Herbert RB and Öhlander B (2009) Nitrogen effluents from mine sites in northern Sweden – environmental effects and removal of nitrogen in recipients. Conference proceedings, Securing the Future, Skellefteå 23-26 June 2009. Oral presentation (given by Sara Chlot).

(26)

(27) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 1. Table of contents  ,QWURGXFWLRQ  6FRSHRIWKHWKHVLV 2. Nitrogen and phosphorus in the aquatic environment 2.1 Nitrogen cycling in the aquatic environment 2.2 Phosphorus cycling in the aquatic environment  %LRORJLFDOXSWDNHDQGUHOHDVHRI1DQG3 2.4 TN:TP ratios and limiting nutrient 2.5 N and P in mine waters 2.5.1 Explosives  *ROGOHDFKLQJXVLQJF\DQLGH 2.5.3 Tracing the fate of mining related N: a stable isotope approach  (QYLURQPHQWDOHIIHFWVRI1DQG3LQPLQHZDWHUV  7UHDWPHQWRIPLQHZDWHU  6WXG\VLWHV  0DWHULDOVDQGPHWKRGV  6DPSOLQJDQGVDPSOHSUHSDUDWLRQ 4.1.1 Water sampling  ,QVLWXPHDVXUHPHQWRIZDWHUÀRZDQGZDWHUTXDOLW\SDUDPHWHUV  'LIIXVLYHJUDGLHQWVLQWKLQ¿OPVGHYLFHV  6HGLPHQWDQGVRLO  %LRORJLFDOPDWHULDO  $QDO\WLFDOPHWKRGV 4.2.1 Water parameters  6HGLPHQWDQGVRLO  %LRORJLFDOPDWHULDO  6WDWLVWLFDODQDO\VLV 4.4 Laboratory experiments  ,QYHVWLJDWLRQRISKRVSKRUXVVSHFLDWLRQ  ,QYHVWLJDWLQJ653UHOHDVH 3DSHU,9

(28)  4.5 Field experiments  ,QYHVWLJDWLQJOLPLWLQJQXWULHQWIRUPDFURSK\WHJURZWK  6WDEOHLVRWRSHWUDFHUVWXG\ 3DSHU9

(29)  4.6 Modelling and mass balance and approach to simulate nitrogen transformations 4.6.1 Conceptual model 4.6.2 Quantitative and dynamic models 4.6.3 Model boundaries and input data 4.6.4 Model evaluation and calibration  0DVVEDODQFHFDOFXODWLRQV  )LQGLQJV  3DSHU,  2EMHFWLYHVRIWKHSDSHU 5.1.2 Results  3DSHU,,DQG3DSHU,,,  2EMHFWLYHVRIWKHSDSHUV  5HVXOWV  3DSHU,9.   1 2 3  4 5 5  6      11      13    14   14   15 15 16 16 16     18    .

(30)  2EMHFWLYHVRIWKHSDSHU 5.3.2 Results  3DSHU9  2EMHFWLYHVRIWKHSDSHU 5.4.2 Results  3DSHU9,  2EMHFWLYHVRIWKHSDSHU 5.5.2 Results  2YHUDOOFRQFOXVLRQVDQGVLJQL¿FDQFHRIWKHVWXG\  )XWXUHZRUN 8. References. Appended papers I-VI.  20   21   22   26.

(31) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 1. Introduction 0LQLQJDQGPLQHUDOSURFHVVLQJUHTXLUHODUJHYROXPHVRISURFHVVZDWHU$OWKRXJKZDWHUWRDODUJH H[WHQWLVUHF\FOHGLQPLQHUDOSURFHVVLQJSODQWV /XQGNYLVW

(32) H[FHVVZDWHULVGLVFKDUJHGLQWR WDLOLQJVDQGFODUL¿FDWLRQSRQGV\VWHPVDQGIXUWKHULQWRQDWXUDOZDWHUV\VWHPV2YHUWKHODVWGHFDGHV VWXGLHVRIPLQHZDWHUHIÀXHQWVKDYHPDLQO\IRFXVHGRQDFLGPLQHGUDLQDJH $0'

(33)  /RWWHUPRVHU 1RUGVWU|P

(34) ZKLOHOHVVDWWHQWLRQKDVEHHQSDLGWRFLUFXPQHXWUDOQXWULHQW QLWURJHQDQG phosphorus) rich mine waters, which is partly explained by the naturally low N levels in rocks 0RULQDQG+XWW

(35) +RZHYHUPLQHZDWHUVULFKLQ1DQG3DUHDJURZLQJFRQFHUQVLQFHERWK 1DQG3DUHHVVHQWLDOQXWULHQWVIRUSK\WRSODQNWRQDQGPDFURSK\WHSURGXFWLRQ %DUNRHWDO Wetzel, 2001), and high levels of nutrient release may be associated with eutrophication in aquatic V\VWHPV UHFHLYLQJWKLVW\SHRI PLQHHIÀXHQWV7KHPDMRUELRJHRFKHPLFDO1 WUDQVIRUPDWLRQVZHUH discovered over a century ago, while new discoveries have been made regarding new types of RUJDQLVPVLQYROYHGLQZHOONQRZQSURFHVVHVDVZHOODVQHZW\SHVRISURFHVVHV 7KDPGUXS

(36)  $OVRWKHUHDUHVWLOOJDSVLQRXUNQRZOHGJHUHJDUGLQJWKHEHKDYLRXURI1 $GDPV

(37) ZKLFKKDYH DGLUHFWEHDULQJWRZDUGVQLWURJHQHIÀXHQWVIURPPLQHVLWHV2QHDVSHFWLVWRLQYHVWLJDWHWKHUHODWLRQ EHWZHHQ QXWULHQW FRQFHQWUDWLRQV 1 DQG 3

(38)  DQG WURSKLF OHYHO LQ WKH UHFHLYLQJ ZDWHUV ,Q DGGLWLRQ the responsiveness of N removal mechanisms (e.g. gaseous losses) to elevated concentrations of DQWKURSRJHQLF1LVQRWZHOONQRZQ :HW]HO*DOORZD\HWDO

(39) )XUWKHUPRUHFROGFOLPDWH DVSHFWVRIWKHELRJHRFKHPLFDOF\FOLQJDQGVSHFLDWLRQRI1LQZDWHUVUHFHLYLQJPLQHHIÀXHQWVUHTXLUH further research. 1.1 Scope of the thesis. The focus of this research project was to study speciation and transformation processes of N and 3 LQ VWUHDPV DQG ODNHV UHFHLYLQJ PLQH HIÀXHQWV 7KH .LUXQD DQG %ROLGHQ PLQH VLWHV LQ QRUWKHUQ 6ZHGHQZHUHFKRVHQDVVWXG\VLWHV7KHWZRVLWHVFDQEHFKDUDFWHUL]HGDVQLWUDWHGRPLQDWHGZLWKORZ± PRGHUDWHLQSXWRI3 .LUXQD

(40) DQGDPPRQLXPGRPLQDWHGZLWKKLJKLQSXWRI3 %ROLGHQ

(41) %DVHGRQWKH fact that the two sites display different N and P concentrations, the question of limiting nutrient for SK\WRSODQNWRQDQGPDFURSK\WHJURZWKLQZDWHUVUHFHLYLQJPLQHHIÀXHQWVZDVHYDOXDWHG7KHWKHVLV also aimed at evaluating the major N transformation pathways and processes leading to a natural permanent removal of N in the recipients. The two systems are populated by various macrophyte VSHFLHVDQGWKHLUSRWHQWLDOFRQWULEXWLRQWR1UHPRYDOZDVHYDOXDWHG3UHVHQFHRIR[\JHQFRQVXPLQJ PLQLQJUHODWHGFKHPLFDOVLQPLQHZDWHUFRXOGSRWHQWLDOO\UHVXOWLQVHGLPHQWDU\UHOHDVHRIVROXEOH UHDFWLYHSKRVSKRUXV 653

(42) 7KHSRVVLEOHRFFXUUHQFHRIWKLVSKHQRPHQRQZDV LQYHVWLJDWHGLQWKLV WKHVLV$OVRWKHFRQWULEXWLRQRIPLQLQJUHODWHG1LQUHODWLRQWRWKHQDWXUDOORDGRIQLWURJHQLQWKH recipients was evaluated. The methods used and the obtained results are described in detail in the appended papers, and VXPPDUL]HGDQGGLVFXVVHGLQWKH¿UVWSDUWRIWKLVWKHVLV7KH¿UVWVHFWLRQRIWKHWKHVLVDOVRGHVFULEHV the general geochemistry of N and P, and their occurrence and potential environmental problems in natural and mine waters. 2. Nitrogen and phosphorus in the aquatic environment The availability of N and P determines various aspects of global biogeochemistry as well as ORFDO HFRV\VWHP IXQFWLRQ 6FKOHVLQJHU 

(43)  )LJXUHV  DQG  GHVFULEH VRPH PDMRU F\FOLQJ DQG transformation processes of N and P between the atmosphere and terrestrial and aquatic ecosystems, with focus on processes in the aquatic environment.. 1.

(44) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 2.1 Nitrogen cycling in the aquatic environment. NH3(g ). Atmosphere (N2)(g). Rain. Human activities. Denitrification. Volatilisation. Biological fixation. Run-Off. Macrophytes LAKE Phytoplankton. Org-N. Org-N, NH4+ /NO3– Leaching. Ammonification. Org-N. Assimilation. NH4+. Nitrification. Sedimentation. NO3–. Assimilation. Remineralisation. LAND. Org-N. NH4+. Diffusion. SEDIMENT. NO3–. Assimilation. Burial Figure 1. Conceptual model displaying some of the major pathways included in the complex nitrogen cycle. Nitrogen PD\UHDFKWKHDTXDWLFHFRV\VWHPWKURXJKUXQRIIOHDFKLQJELRORJLFDO¿[DWLRQDQGDWPRVSKHULFGHSRVLWLRQ+XPDQ DFWLYLWLHVLQFOXGHWKHXVHRIIHUWLOL]HUV 6FKOHVLQJHU

(45) DQGWKHXVHRIH[SORVLYHVDQGF\DQLGHIRUJROGH[WUDFWLRQLQ the mining industry.. The nitrogen cycle is very complex and in the biosphere, nitrogen is involved in both abiotic LQRUJDQLF

(46) DQGELRWLF RUJDQLF

(47) WUDQVIRUPDWLRQV 9\PD]DO7KDPGUXS

(48) 1LWURJHQRFFXUV LQVHYHQYDOHQFHVWDWHVIURPWR 9\PD]DO

(49) DQGLQRUJDQLFLQRUJDQLFDQGJDVHRXVIRUPV Through the microbial process aPPRQL¿FDWLRQ .DGOHFDQG.QLJKW

(50) RUJDQLFQLWURJHQPD\EH FRQYHUWHGWRLQRUJDQLFDPPRQLXP 1+4+

(51) WKDWPD\EHWUDQVIRUPHGWRQLWUDWH 123) by the bacterial process QLWUL¿FDWLRQ summarized as 1+4+22 ĺ123+++22. . . . . . . 

(52). The process is catalyzed by chemoautotrophic bacteria in the genera Nitrosomonas and Nitrobacter. 1LWUL¿FDWLRQGHSHQGVRQWHPSHUDWXUHS+DQGFRQFHQWUDWLRQVRI1+4+ and dissolved oxygen (Reddy DQG3DWULFN&RORPHUDQG5LFR

(53) 'HQLWUL¿FDWLRQLVDPXOWLVWHSSURFHVVSHUIRUPHGE\ denitrifying bacteria, e.g. Pseudomonas .QRZOHV 

(54)  UHVXOWLQJ LQ WKH UHGXFWLRQ RI 123 to dinitrogen gas (N2

(55) DFFRUGLQJWRWKHRYHUDOOUHDFWLRQ 5HGG\DQG3DWULFN

(56)  &+22123(aq)++ Æ&22 (g) + 2N2 (g)+22.  . . 

(57). ZLWK12212DQG122DVLQWHUPHGLDWHFRPSRXQGV'HQLWUL¿FDWLRQGHSHQGVRQHQYLURQPHQWDOIDFWRUV VXFKDVR[\JHQFRQFHQWUDWLRQWHPSHUDWXUHDQGS+ 5HGG\DQG3DWULFN3HWHUMRKQ

(58) . 2.

(59) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. Ammonia volatilisation (i.e. the transfer of NH3 (aq) into ammonia gas NH3 (g)) is a physicochemical process and depends on the concentration of ammonia gas in the liquid (NH3-N(g)), pH and temperature (Pano and Middlebrooks, 1982): NH4+ + OH- ↔ NH3 (aq) + H2O. (3). NH3(aq) ↔ NH3(g). (4). In mine waters with high pH (> 8–9), the release of NH3 (g) into the atmosphere may be significant (Bouldin et al., 1974). 2.2 Phosphorus cycling in the aquatic environment. In contrast to N, P is only present in one oxidation state (+5) in natural systems and has no significant gas phase (Schlesinger, 1997). Soluble reactive phosphorus (SRP) refers to dissolved inorganic P (orthophosphate, H2PO4-, HPO42-, PO43-) and is believed to be the only bioavailable P form (Zhang et al., 1998; Vymazal, 2007). The following major biogeochemical transformations of P occur in aquatic systems: plant/microbial assimilation, adsorption/desorption, sedimentation followed by burial, and remineralisation (Fig. 2) (Wetzel, 2001; Vymazal, 2007).. Rain Human activities Run-Off Macrophytes LAKE Phytoplankton. Org-P, SRP Leaching. SRP. Org-P. Assimilation. Adsorption. Diffusion. Org-P. SRP. Sedimentation Remineralisation. LAND. SRP. SEDIMENT Assimilation. Org-P. Burial Figure 2. Conceptual model of the phosphorus cycle. Flux of P in the atmosphere occurs through transport of soil dust but is much smaller than other pathways. Human activities include mining of phosphate rocks to be used as fertilizers (Das, 1999) and application of sewage sludge for mine waste remediation (Härynen et al., 2008).. 3.

(60) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. ,QODNHVVHGLPHQWDWLRQRISDUWLFXODWH3QRUPDOO\H[FHHGVWKHGLIIXVLYHÀX[RI3IURPWKHVHGLPHQW WKHUHE\ OHDGLQJ WR D QHW VHGLPHQWDWLRQ RI 3 RYHU WLPH +RZHYHU FKDQJHG FRQGLWLRQV ZLWK HJ LQFUHDVHGS+ORZHUHGUHGR[SRWHQWLDODQGLQFUHDVHGPLFURELDODFWLYLW\FDQUHVXOWLQUHOHDVHRI3WR WKH K\SROLPQLRQ $QGHUVHQ  %RVWU|P DQG 3HWWHUVVRQ  -DPHV HW DO 

(61) :KHQ WKLV K\SROLPQHWLF 3 UHDFKHV WKH HSLOLPQLRQ 6WDXIIHU 

(62)  HXWURSKLFDWLRQ LV LQLWLDWHG RU LQWHQVL¿HG -DPHVHWDO6¡QGHUJDDUGHWDO

(63)  2.3 Biological uptake and release of N and P. 3K\WRSODQNWRQ DVVLPLODWH PDFURQXWULHQWV HJ 1 3 DQG .

(64)  DV ZHOO DV PLFURQXWULHQWV HJ )H =Q DQG1L

(65) IURPWKHZDWHUFROXPQ %DUNRHWDO

(66) 0DFURSK\WHVVWXGLHGLQWKLVWKHVLVDUHURRWHG HPHUJHQW PDFURSK\WHV ORFDWHG LQ WKH OLWWRUDO ]RQH RI WKH LQYHVWLJDWHG ODNHV *HQHUDOO\ IRU WKHVH PDFURSK\WHVODNHVHGLPHQWVDUHWKHSULPDU\VRXUFHIRUWKHPDFURQXWULHQWV1DQG3 %DUNRHWDO :HW]HO

(67) $PPRQLXP 1+4+) is usually the preferred form of N for phytoplankton and PDFURSK\WHXSWDNHGXHWRORZHUHQHUJHWLFFRVWVDVVRFLDWHGZLWK1+4+ uptake and inhibition of nitrate XSWDNHE\1+4+ 'XJGDOHHWDO-DPSHHWRQJDQG%UL[

(68) 3UHVHQFHRIPDFURSK\WHVWHQGVWR LQFUHDVHZDWHUFODULW\GXHWRWKHLUDELOLW\WRUHGXFHVHGLPHQWUHVXVSHQVLRQ +RUSSLODDQG1XUPLQHQ 

(69) $OVRQLWURJHQWUDQVIRUPDWLRQSURFHVVHV HJGHQLWUL¿FDWLRQ

(70) DUHHOHYDWHGGXHWRFRPELQHG uptake and organic matter accumulation (Forshay and Dodson, 2011; Epstein et al., 2012). Decay of macrophytes and settling phytoplankton mainly takes place in the lake sediment where a fraction of these compounds will be permanently buried and thereby become unavailable for biological uptake. +RZHYHU VRPH RI WKH 1 DQG 3 ZLOO EH UHWXUQHG WR WKH ZDWHU SKDVH WKURXJK remineralisation and WKHUHE\ FRQWULEXWH WR ORQJWHUP LQWHUQDO QXWULHQW ORDGLQJ LQ WKH ODNH %XUJHU HW DO 

(71) . Thus, unless the macrophytes are harvested, P and N assimilation in vegetation only partially contributes to DORQJWHUPUHPRYDORIWKHVHQXWULHQWV $VDHDGDHWDO'XQQHDQG5HGG\

(72)  2.4 TN:TP ratios and limiting nutrient. *HQHUDOO\ELRORJLFDOSURGXFWLRQLQIUHVKZDWHUV\VWHPVLVDVVXPHGWREHOLPLWHGE\3 HJ6FKLQGOHU 

(73) ZKLOHELRORJLFDOSURGXFWLRQLVDVVXPHGWREH1OLPLWHGLQRFHDQLFDQGFRDVWDOZDWHUV HJ *XLOGIRUGDQG+HFN\

(74) +RZHYHUWKHJHQHUDOLW\RIWKLVYLHZKDVEHHQTXHVWLRQHG (OVHUHWDO 

(75) %HUJVWU|PHWDO 

(76) DUJXHWKDWODNHVWKDWKLVWRULFDOO\KDYHEHHQ1OLPLWHGKDYHVKLIWHGWR UHFHQW3OLPLWDWLRQGXHWRDQWKURSRJHQLF1GHSRVLWLRQ6HYHUDODXWKRUVKDYHXVHGWKHZDWHUFROXPQ TN:TP ratio to predict the potentially limiting nutrient for phytoplankton growth in aquatic systems FI'RZQLQJDQG0F&DXOH\*XLOGIRUGDQG+HFN\

(77) ,QVRPHVWXGLHV 0RUULVDQG/HZLV %HUJVWU|P3WDFQLNHWDO

(78) WKHUDWLREHWZHHQGLVVROYHGLQRUJDQLFQLWURJHQ ',1

(79)  and TP has been used and suggested to be a more appropriate measure to assess phytoplankton QXWULHQWOLPLWDWLRQ1HYHUWKHOHVVDWERWKWKH.LUXQDDQGWKH%ROLGHQVLWHV',1RQDYHUDJHFRQVWLWXWHV !RI71OHDGLQJWRVLPLODUYDOXHVIRU',173DQG7173UDWLRV7KHUHIRUH1DQG3DQGWKHLU ratios are discussed in terms of TN and TP. Predictions on limiting nutrient often use as a target the DWRPLF7173UDWLRRIIRUSODQNWRQLFELRPDVV¿UVW SURSRVHGE\5HG¿HOG 

(80) *XLOGIRUG DQG+HFN\ 

(81) FRQFOXGHGWKDWDWDZDWHUFROXPQ7173UDWLR!SK\WRSODQNWRQJURZWKZLOOEH 3OLPLWHGZKLOHDWD7173UDWLR1ZLOOEHWKHOLPLWLQJQXWULHQW 7173UDWLRVUHIHUWRPDVVUDWLRV LQDFFRUGDQFHZLWKFLWHGOLWHUDWXUH

(82) 6\VWHPVZLWKUDWLRVZLWKLQWKHUDQJHVKRZDVLPXOWDQHRXV OLPLWDWLRQ E\ 1 DQG 3 FROLPLWDWLRQ 6DLWR HW DO 

(83)  .RHUVHOPDQ DQG 0HXOHPDQ 

(84)  DQG *VHZHOO HW DO 

(85)  VXJJHVWHG WKDW SODQW WLVVXH7173 UDWLRV FRXOG EH XVHG WR SUHGLFW OLPLWLQJ QXWULHQWIRUPDFURSK\WHV7KLVPHWKRGZRXOGEHWLPHDQGODERXUVDYLQJDQGOHVVGLVWXUELQJWRWKH site. They suggested that at a TN:TP ratio > 16, macrophyte production is limited by P, and at a 7173UDWLR1LVOLPLWLQJ,QWHUPHGLDWHUDWLRVLQGLFDWHFROLPLWDWLRQE\WKHVHQXWULHQWV,Q3DSHU ,WKHUHODWLRQVKLSEHWZHHQ7173UDWLRVLQZDWHUPDFURSK\WHVDQGVHGLPHQWZDVFRPSDUHGZLWK these ratios.. 4.

(86) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 2.5 N and P in mine waters. 7KHPDLQVRXUFHVRI1LQPLQHZDWHUVDUHDPPRQLXPQLWUDWHEDVHGH[SORVLYHV 5HYH\0RULQ DQG+XWW

(87) DQGGHVWUXFWLRQRIF\DQLGHXVHGLQJROGH[WUDFWLRQ $NFLO

(88)  VHHEHORZ

(89) 2WKHU VRXUFHV LQFOXGH S+UHJXODWLQJ DJHQWV DQG WKH XVH RI DPPRQLD DV OL[LYLDQW LQ FRSSHU DQG QLFNHO K\GURPHWDOOXUJ\ .RUHQHWDO+l\U\QHQHWDO

(90) 0DMRU3VRXUFHVLQFOXGHGLVVROXWLRQ RIDSDWLWHLQDSDWLWHLURQRUHFKHPLFDOVXVHGLQWKHÀRWDWLRQSURFHVVVHZDJHVOXGJHXVHGIRUPLQH ZDVWHUHPHGLDWLRQ +DQVVRQ+l\U\QHQHWDO

(91) DVZHOODVPLQLQJRISKRVSKDWHURFNIRU PDQXIDFWXULQJRIPLQHUDOIHUWLOLVHUV 'DV81(3DQG,)$

(92)  2.5.1. Explosives. ,QWKHPLQLQJLQGXVWU\FRPPRQO\XVHGH[SORVLYHVLQFOXGH$1)2 DPPRQLXPQLWUDWHIXHORLO

(93) ZDWHU JHOVVOXUULHV DQG HPXOVLRQV 5HYH\  0RULQ DQG +XWW 

(94) 7KH\ DOO FRQWDLQ D IXHO DQG DQ oxidizing agent, often ammonium nitrate salts, with a nitrogen content varying between 20 and 33  E\ZHLJKW

(95)  )RUV\WKHWDO

(96) $1)2LVPRUHZDWHUVROXEOHWKDQWKHRWKHUH[SORVLYHVDQGWKXV WKHOHDFKLQJUDWHIRUWKHDPPRQLXPQLWUDWHVDOWVLVKLJKHU 5HYH\

(97) 7KHTXDQWLW\RIQLWURJHQ in the mine water depends on spillage during transportation or loading of explosives, leaching of explosives in wet blastholes or from explosives that remain undetonated in the broken rock (Forsyth HW DO 

(98)  8QGHWRQDWHG H[SORVLYHV VRUE WR SDUWLFOH VXUIDFHV DQG IROORZ RUH DQG ZDVWH URFN WR waste rock dumps or to processing plants, where they are washed out and nitrogen is dissolved in the process water. Leachate runoff from waste rock dumps is largest during spring and after heavy UDLQ 0DWWLODHWDO

(99) ,QXQGHUJURXQGPLQHVVRPHRIWKHQLWULFJDVHVIRUPHGGXULQJH[SORVLRQV dissolve in mine waters, which are pumped up from the mines. *HQHUDOO\XQGHUJURXQGPLQLQJUHTXLUHVDERXWGRXEOHWKHDPRXQWRIH[SORVLYHVSHUWRQRIRUHH[WUDFWHG FRPSDUHGWRRSHQSLWPLQLQJ 0DWWLODHWDO

(100) $VWXG\E\)RUVEHUJDQGcNHUOXQG 

(101) VKRZHG WKDW±RIWKHQLWURJHQFRQWDLQHGLQH[SORVLYHVXVHGLQWKH.LUXQDLURQPLQHZDVUHWXUQHG ZLWKWKHFUXGHRUHDVXQGHWRQDWHGH[SORVLYHVDQGWKDWDERXWZZRI1LQWKHH[SORVLYHVZDV discharged to the aquatic environment. Measures to decrease the amount of undetonated explosives include improved timing of blasting, alternative techniques for loading of the blastholes, and training RIWKHSHUVRQQHOKDQGOLQJWKHH[SORVLYHV %M|UQVWU|PDQG%UlQQVWU|P

(102) 7KLVVKRZVWKDWWR some extent, nitrogen concentrations in the mine water can be reduced through proper management of the explosives. Furthermore, the quality of the explosives is continuously improved. 2.5.2. Gold leaching using cyanide. &\DQLGH &1

(103)  KDV WKH DELOLW\ WR GLVVROYH UHVLVWDQW SUHFLRXV PHWDOV /RJVGRQ HW DO 

(104)  ,Q WKH VRFDOOHGcyanidation process, gold is extracted at oxidized and alkaline conditions according to the following reaction (Lottermoser, 2003): $X(s) + 8NaCN(aq)22(g)+22(l) Æ1D$X &1

(105) 2(aq)1D2+(aq). (5). +RZHYHUWKHIUHHIRUPVRI&1 &1DQG+&1

(106) SUHVHQWLQWKHSURFHVVZDWHUDUHWR[LF FI/RJVGRQHW DO/RWWHUPRVHU

(107) DQGLWLVGHVLUDEOHWRUHGXFHWKH&1OHYHOEHIRUHWKHZDWHULVGLVFKDUJHG &\DQLGHFDQEHGHVWUR\HGFKHPLFDOO\XVLQJHJ,1&2622/air or hydrogen peroxide, or biologically R[LGL]HGE\PLFURRUJDQLVPV 'LFWRUHWDO$NFLOHWDO

(108) (TVGHVFULEHVRPHJHQHUDO cyanide oxidation reactions with nitrogenous compounds as end products. 2CN22ĺ&12 &1222ĺ123&22. (6) . . 5. . . . 

(109).

(110) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. &12+++22ĺ1+4++&23. (8). The CN that has not been removed in treatment facilities may undergo natural decomposition processes such as hydrolysis/evaporation, oxidation and bacterial decomposition in tailings ponds UHFHLYLQJSURFHVVZDWHU -RKQVRQHWDO/LQGVWU|PHWDO

(111)  2.5.3. Tracing the fate of mining related N: a stable isotope approach. %RWK QLWURJHQ DQG FDUERQ KDYH WZR VWDEOH LVRWRSHV UHVSHFWLYHO\ ZLWK D PDVV GLIIHUHQFH RI a between 14N and 151DQGaEHWZHHQ12C and 13&,VRWRSLFFRPSRVLWLRQLVJHQHUDOO\UHSRUWHGLQWKH standard delta (b) notation: (bsample) = ((R6$/R67

(112) 

(113) Å. . . . . . . 

(114). For nitrogen, R6$ and R67 refer to the ratio 15N/14N in the sample and atmospheric N2 respectively; for carbon R6$ and R67 refer to the ratio13C/12& LQ WKH VDPSOH DQG 9±3'% 9LHQQD 3HH'HH %HOHPQLWH

(115)  UHVSHFWLYHO\ %LRJHRFKHPLFDO HJ GHQLWUL¿FDWLRQ DQG DVVLPLODWLRQ

(116)  UHDFWLRQV XVXDOO\ OHDGWRDQHQULFKPHQWRIWKHOLJKWHULVRWRSHLQWKHUHDFWLRQSURGXFW 21HLO

(117) WKHUHE\SURGXFLQJ GLVWLQFW LVRWRSH VLJQDOV +HQFH VWDEOH LVRWRSH YDOXHV RI RUJDQLF PDWHULDO DUH HIIHFWLYH WUDFHUV RI ELRJHRFKHPLFDOSURFHVVHVLQDTXDWLFVWXGLHV 0DULRWWLHWDO

(118) )RUH[DPSOHWKH13C/12C ratio of RUJDQLFFDUERQKDVEHHQFRPPRQO\XVHGDVDQLQGLFDWRURIFKDQJHVLQDTXDWLFSURGXFWLYLW\ 6FKHOVNH DQG+RGHOO.ULVKQDPXUWK\HWDO7HUDQHVDQG%HUQDVFRQL

(119) 6HYHUDOVWXGLHVKDYH shown a strong relationship between nitrate depletion in surface water and an increase in b15N values LQVXUIDFHVHGLPHQWV FI+ROPHVHWDO6LJPDQHWDO

(120) ,QWKH³GXDOLVRWRSHDSSURDFK´ 6LOYDHWDO

(121) WKHQLWURJHQ b15N) and oxygen isotope (b182

(122) FRPSRVLWLRQRIGLVVROYHGQLWUDWH LQZDWHUFDQEHXVHGWRLGHQWLI\VRXUFHVRIQLWUDWHDQGWRDVVHVQLWUDWHUHPRYDO GHQLWUL¿FDWLRQ

(123) IURP ZDWHU $UDYHQDDQG5REHUWVRQ.HQGDOO

(124) 7KURXJKLVRWRSLFDQDO\VLVRIGLVVROYHGRUJDQLF FDUERQ ',&

(125) LQWDLOLQJVDQGFODUL¿FDWLRQSRQGVLWFDQEHFDOFXODWHGKRZPXFK',&WKDWLVGHULYHG IURP&1EUHDNGRZQ -RKQVRQHWDO

(126)  /DNH VHGLPHQWV DUH FRQVLGHUHG DV D VHPLSHUPDQHQW VLQN IRU RUJDQLF 1 DQG FDQ UHYHDO PLQLQJ UHODWHGHFRV\VWHPFKDQJHVLQYROYLQJWKHW\SHVRIRUJDQLFPDWWHU 20

(127) DFFXPXODWLQJ DXWKRFKWRQRXV YV DOORFWKRQRXV

(128)  DQG SDWKZD\V IRU WUDQVSRUW RI PLQLQJUHODWHG 1 WR VHGLPHQWV SK\WRSODQNWRQ YV PDFURSK\WHV

(129)  7KH W\SH RI 20 VHWWOLQJ WR WKH VHGLPHQW PD\ KDYH DQ LPSRUWDQW LPSDFW RQ remineralisation and permanent burial of N in the sediment, as well as remediation measures based RQPDFURSK\WHELRPDVVKDUYHVWLQJ $VDHGDHWDO

(130) ,Q3DSHU9,IRXU20VRXUFHHQGPHPEHUV (soil, phytoplankton, terrestrial and littoral vegetation) were chosen. They were analysed with respect to their isotopic composition (b15N and b13C) and nitrogen and carbon concentrations giving C/N UDWLRVZKLFKDUHKHOSIXOLQLQWHUSUHWDWLRQRILVRWRSLFGDWD7KHUHODWLYHFRQWULEXWLRQRIWKH20HQG PHPEHUVWRODNHVHGLPHQW20ZDVFDOFXODWHGXVLQJWKH9LVXDO%DVLFŠVRIWZDUH,VR6RXUFH YHUVLRQ 

(131)  3KLOOLSVDQG*UHJ'DVHWDO

(132) ,QDGGLWLRQb15N and b182FRPSRVLWLRQRIGLVVROYHG QLWUDWHDQGDPPRQLXPZDVDQDO\VHG2QHDVSHFWWRFRQVLGHULQWKHLQWHUSUHWDWLRQLVWKHGHSOHWLRQRI DWPRVSKHULF&22 in 13&GXHWRIRVVLOIXHOEXUQLQJ 6XHVVHIIHFW

(133)  )ULHGOLHWDO

(134) ZKLFKZDV modelled using the polynomial equation b13& ±W±[± t2[± t3. (10). ZKHUHWLVWLPH \HDU$'

(135)  6FKHOVNHDQG+RGHOO

(136) 7KHPRGHOOHGWLPHGHSHQGHQWGHSOHWLRQRI b13&VLQFHaZDVDGGHGWRb13&PHDVXUHGLQPRGHUQ20VDPSOHVFROOHFWHGLQ±ZKHQ these were used to model the source contribution to each 2103EGDWHGVHGLPHQWVHFWLRQ 3DSHU9,

(137) . 6.

(138) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. $OWKRXJK&DQG1LVRWRSHUDWLRVKDYHEHHQZLGHO\XVHGLQELRJHRFKHPLFDOVWXGLHVWKHLULQWHUSUHWDWLRQ is complicated by the fact that a number of isotope fractionating processes occur simultaneously /HKPDQQ

(139) $OVRWKHSULPDU\LVRWRSHVLJQDOVPD\EHDOWHUHGGXULQJHDUO\GLDJHQHVLVUHVXOWLQJ LQ GLIIHUHQW LVRWRSH FRPSRVLWLRQ LQ WKH 20 UHDFKLQJ WKH VHGLPHQW FRPSDUHG WR WKH EXON VRXUFH 0H\HUVDQG,VKLZLWDUL/XHWDO

(140)  $QRWKHUDSSURDFKWRLQFUHDVHWKHXQGHUVWDQGLQJRIWKHIDWHRIQLWURJHQLQPLQLQJDIIHFWHGDTXDWLF systems is to use stable isotope labelling, a technique that has been widely used in recent years (Wozniak et al., 2008; Li et al., 2010; Tan et al., 2013). Experimental units (mesocosms) of varying sizes enclose macrophytes, which can be analysed for their N isotope composition in order to quantify enrichment of added 15N tracer in various ecosystem parts and to quantify nitrogen uptake rates (see VHFWLRQDQG3DSHU9

(141)  2.5.4. Environmental effects of N and P in mine waters. %RWK1 1+4+DQG123) and P are nutrients for aquatic plants. Therefore, large volumes of nutrient (N and P) rich water could result in algal blooms and eutrophication, and consequently oxygen GH¿FLHQF\DQGFKDQJHGVSHFLHVFRPSRVLWLRQLQWKHPLQHZDWHUUHFLSLHQWV .RUHQHWDO0DWWLOD HW DO 

(142)  0LQH ZDWHU FDQ FRQWDLQ KLJK FRQFHQWUDWLRQV RI 1+4+ DQG WKLRVXOSKDWHV 6223), the ODWWHU SUHVHQW LQ WKH PLQH HIÀXHQW DV D UHVXOW RI R[LGDWLRQ RI FRPSOH[ VXOSKLGH RUHV 6|GHUOXQG 0LUDQGD7UHYLQRHWDO

(143) 7KHVHWZRFRPSRXQGVXQGHUJREDFWHULDOO\PHGLDWHGR[LGDWLRQ SURFHVVHVWKDWUHTXLUHPROHVRIR[\JHQSHUPROHRI1+4+DQG6223 reactant, potentially resulting in R[\JHQGH¿FLHQF\LQWKHUHFLSLHQW,QERWKSURFHVVHVK\GURJHQLRQVDUHSURGXFHGWKHUHE\ORZHULQJ WKHS+RIWKHZDWHU 0LUDQGD7UHYLQRHWDO

(144) $QRWKHUDFLGLI\LQJHIIHFWFDQEHFDXVHGE\DFLG deposition, since the nitric gases formed during detonation of explosives may react with oxygen and IRUPQLWULFDFLG$WOHDVWGXULQJSDUWRIWKH\HDUGLVFKDUJHG1LVWUDQVIRUPHGWKURXJKWKHQLWUL¿FDWLRQ DQGGHQLWUL¿FDWLRQSURFHVVHV (TVDQG

(145) ZKLFKERWKDUHUHFHLYLQJLQFUHDVLQJDWWHQWLRQDVWKH\ produce N22DVDQLQWHUPHGLDWHSURGXFWZKLFKLVDSRZHUIXOJUHHQKRXVHJDV 0¡UNYHGHWDO 6FKOHVLQJHU  0DOWDLV/DQGU\ HW DO 

(146)  1LWULWH 122) is another intermediate N species formed during these processes. This N species may be toxic to aquatic organisms through destroying WKHIXQFWLRQRIWKHUHGEORRGFHOOV,QDGGLWLRQ1+3SUHVHQWDWKLJKS+ (T

(147) LVWR[LFWR¿VKDQG other aquatic organisms (Randall and Tsui, 2002). 2.5.5. Treatment of mine water. 0LQHZDWHUHIÀXHQWVDUHW\SLFDOO\JHQHUDWHGLQODUJHYROXPHVZLWKOLWWOHRUJDQLFPDWHULDODQGORZ± PRGHUDWHO\KLJKFRQFHQWUDWLRQVRIQLWURJHQRXVFRPSRXQGV(I¿FLHQWWUHDWPHQWRIVXFKZDWHUVUHTXLUHV WHFKQRORJLHVZLWKQRRUORZWHPSHUDWXUHRUS+GHSHQGHQFHHVSHFLDOO\LQFROGHQYLURQPHQWV Examples of physical treatment processes include membrane technologies such as reverse RVPRVLV 52

(148)  ZKLFK XVHV DSSOLHG SUHVVXUH WR IRUFH ZDWHU WKURXJK D PHPEUDQH ZLWK SRUH VL]H  QP6XFKWHFKQRORJLHVRIIHUVXLWDEOHYROXPHUHGXFWLRQVWHSEHIRUHbiological treatments can be DSSOLHG +l\U\QHQ HW DO 

(149)  ZLWK PHWKRGV UDQJLQJ IURP SDVVLYH QDWXUDO ZHWODQG V\VWHPV WR ELRUHDFWRUV ,Q DHUDWHG ZHWODQGV 1+4+ ZLOO HIIHFWLYHO\ EH QLWUL¿HG WR 123 ,Q VDWXUDWHG ZHWODQGV ZLWKORZR[\JHQFRQGLWLRQV HJ'2PJ/

(150) GHQLWUL¿FDWLRQPD\HIIHFWLYHO\UHGXFH123 FRQFHQWUDWLRQV7KHSHUIRUPDQFHRIWKHZHWODQGVLVWHPSHUDWXUHOLPLWHGLQFROGFOLPDWHV :HUNHUHW DO

(151) EXWWKLVGLVDGYDQWDJHFDQEHRYHUFRPHWKURXJKFRQVWUXFWLRQRIVXEVXUIDFHÀRZZHWODQGV 'HPLQ DQG 'XGHQH\ 

(152)  UHSRUWHG  UHPRYDO RI 1+4+ LQ VXPPHU DQG  LQ ZLQWHU IRU D VXEVXUIDFHZHWODQGWUHDWLQJPLQHZDWHU5HPRYDOWKURXJKWKHGHQLWUL¿FDWLRQSURFHVVKDVEHHQXVHG LQDSHUPHDEOHUHDFWLYHEDUULHUV\VWHPLQVWDOOHGDWWKH0DOPEHUJHWLURQPLQHLQQRUWKHUQ6ZHGHQ +HUEHUW 

(153)  7KH EDUULHUV\VWHP GHVLJQ ZDV EDVHG RQ FROXPQ H[SHULPHQWV +HUEHUW 

(154)  ZKLFKLQYHVWLJDWHGWKHPRVWVXLWDEOHRUJDQLFVXEVWUDWHDQGÀRZUDWHVUHTXLUHGWRDFKLHYHWKHKLJKHVW GHQLWUL¿FDWLRQUDWHV,QWKHEDUULHUV\VWHP!RILQFRPLQJQLWUDWHZDVUHPRYHGDWVXLWDEOHÀRZ .

(155) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. UDWHV %LRORJLFDO WUHDWPHQW PHWKRGV DUH UHODWLYHO\ FKHDS EXW UHTXLUH ODUJH XQLWV GXH WR NLQHWLFDOO\ slow processes. Chemical treatment methods on the other hand are kinetically rapid with less strict S+ DQG WHPSHUDWXUH UHTXLUHPHQWV $GYDQWDJHV ZLWK VRUSWLRQ WHFKQLTXHV LQFOXGH WKHLU UHODWLYH VLPSOLFLW\ORZFRVWLQDSSOLFDWLRQDQGRSHUDWLRQDQGORZWHPSHUDWXUHGHSHQGHQFH 6FKRHPDQ

(156)  (OHFWURFKHPLFDOO\DVVLVWHG1+4+ removal technology combines air stripping and an electrochemical FHOODQGKDVWKHSRWHQWLDOWRRYHUFRPHS+DQGWHPSHUDWXUHDOWHUDWLRQVUHTXLUHGIRUFRQYHQWLRQDODLU stripping (Desloover et al., 2012). 3. Study sites 7KHWZR¿HOGVLWHVWKDWDUHLQIRFXVLQWKLVWKHVLVDUHORFDWHGLQWZRRIWKHPDMRUPLQLQJGLVWULFWV LQ QRUWKHUQ 6ZHGHQ WKH 1RUWKHUQ 1RUUERWWHQ 2UH 'LVWULFW 5DNNXULMRNL FDWFKPHQW

(157)  DQG 6NHOOHIWH 6XOSKLGH2UH'LVWULFW %UXElFNHQFDWFKPHQW

(158)  )LJ

(159)  Luossajärvi. N. Tailings impoundment. KIRUNA. Kiruna mine. Tailings impoundment. Concentration plant. BOLIDEN. 6201. Nya Sjön. Open pit. KVA88 N 67°50’. Gillervattnet Tailings impoundment. Sewage treatment plant. 6202. N. 70°N. Saolujärvi. 61°N. ki. KVA38 KVA02. rij o. 6203a. S W E D E N. rvi ijä ur KVA122 kk Ra. Bruträsket. 6203b. Ra k. ku. 58°N. KVA03. Wetland Sampling station. ken. 64°N. KVA37 VVA11. Kaalasjärvi. N 64 °50’. Boliden. KVA36. VVA10. Kiruna. 67°N. KVA01 Mätt ä-Ra kkur ijärv i. bäc. KVA35. Bru. KVA109. 12°E. 20°E. Finnforsfallet hydroelectric power station. KVA04 2 km. E 20°20’. E 20°10’. Ske. ll e ft. e R iv. er. 6251. 1 km. Figure 3.6WXG\VLWHVDQGSRVLWLRQRIWKHVDPSOLQJSRLQWV .LUXQDOHIWDQG%ROLGHQULJKW

(160) 'RWWHGOLQHLQGLFDWHVWKHDUHDO H[WHQVLRQRIWKHQHZO\FRQVWUXFWHGWDLOLQJVSRQG+|WMlUQVPDJDVLQHW ULJKW

(161) 0DUNHGVHFWLRQDW6WDWLRQ.9$LQGL FDWHVDUHDRIPDFURSK\WHDQGVHGLPHQWVDPSOLQJDWWKH.LUXQDVLWH 3DSHU,

(162) 0DUNHGHOOLSVHVRQWKH6ZHGHQPDSVKRZ DSSUR[LPDWHORFDWLRQRIWKH6NHOOHIWH6XOSKLGH2UH'LVWULFW %ROLGHQ

(163) DQG1RUWKHUQ1RUUERWWHQ2UH'LVWULFW .LUXQD

(164) . ,Q0D\DQHZO\FRQVWUXFWHGWDLOLQJVSRQG +|WMlUQVPDJDVLQHW

(165)  +HOOPDQDQG/LQGVWU|P )RUVHOO

(166) VWDUWHGWRRSHUDWHDWWKH%ROLGHQVLWH )LJ

(167) UHSODFLQJWKHIRUPHUFODUL¿FDWLRQSRQG ³1\D6M|Q´ )LJ

(168) +RZHYHUPRVWRIWKHVWXGLHVFRQGXFWHGLQWKLVWKHVLVZHUHSHUIRUPHGEHIRUH this new pond became operational. Boliden – Brubäcken – Skellefte River system7KHDSSUR[LPDWHO\NPORQJ%UXElFNHQV\VWHP is dominated by boreal coniferous forest and peatlands, with Quaternary deposits mainly consisting RIJODFLDOWLOOZLWKZHOOGHYHORSHGSRG]ROSUR¿OHV7KHVWXG\DUHDEHORQJVWRWKHPLGGOHERUHDOVXE ]RQH 6M|UV

(169) ZLWKWHPSHUDWXUHVoC from November to May. The system annually receives ±¯ 106 m3RIZDWHUIURPWKH%ROLGHQFRQFHQWUDWLRQSODQWZKHUHVXOSKLGHRUHVIURPWKH6NHOOHIWH 8.

(170) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 2UH'LVWULFW :HLKHGHWDO

(171) KDYHEHHQSURFHVVHGVLQFH8QWLOWDLOLQJVZHUHGHSRVLWHG LQWKH*LOOHUYDWWQHWLPSRXQGPHQWIURPZKLFKZDWHUZDVGLVFKDUJHGLQWRWKHFODUL¿FDWLRQSRQG³1\D 6M|Q´DQGWKHQWRWKH%UXElFNHQV\VWHP7KLVV\VWHP¿QDOO\GUDLQVLQWRWKH6NHOOHIWH5LYHUDQG FRQVLVWVRIRQHPDMRUVWUHDP %UXElFNHQDYHUDJHDQQXDOGLVFKDUJHaP3 s±

(172) DQG/DNH%UXWUlVNHW )LJ

(173) )URP-XQHWR0DUFKDJROGOHDFKSODQWZDVLQRSHUDWLRQDWWKH%ROLGHQSODQW 6LQFHWKHQWKHJROGOHDFKSODQWKDVEHHQLQRSHUDWLRQWHPSRUDULO\ 6HSWHPEHU'HFHPEHU ±0D\6HSWHPEHUDQGRQZDUGV

(174) 7KHH[WUDFWLQJDJHQW1D&1ZDVR[LGLVHGXVLQJWKH 622$LUSURFHVV 5REELQVHWDO

(175) UHVXOWLQJLQ1+41FRQFHQWUDWLRQVYDU\LQJEHWZHHQ± mg L±LQWKH%UXElFNHQV\VWHP,QWKHV\VWHPUHFHLYHGaWRQQHVRI1 5|QQEORP3lUVRQ 

(176) DQGaWRQQHVRI3IURPWKH%ROLGHQSODQWZKLFKLV IRU1WUDQVSRUW

(177) WR IRU3WUDQVSRUW

(178)  WLPHVKLJKHUWKDQWKHQDWXUDOWUDQVSRUWHVWLPDWHGXVLQJWKH+<3(PRGHO /LQGVWU|PHWDO 60+,

(179) ,QDGGLWLRQWKH%UXElFNHQV\VWHPDOVRUHFHLYHGHOHYDWHGQXWULHQWGLVFKDUJHIURPWKH ORFDOVHZDJHWUHDWPHQWSODQWFRQWULEXWLQJRIWKHWRWDO1WUDQVSRUWLQ%UXElFNHQ%DVHGRQ GDWDZLWK71DQG73FRQFHQWUDWLRQVLQWKHUDQJHV±PJ/±DQG±PJ/±, respectively, WKHV\VWHPFDQEHFODVVL¿HGDVPHVRWURSKLFWRHXWURSKLF .DOII

(180) &RPPRQUHHG Phragmites australis &DY

(181) 6WHXG

(182) LVWKHGRPLQDWLQJPDFURSK\WHVSHFLHVLQWKHV\VWHPFRYHULQJa±RI SRQGDQGODNHDUHDV +XVVRQHWDO

(183)  Kiruna – Rakkurijoki – Kalix River system- 7KH.LLUXQDYDDUDLURQPLQHRSHUDWHGE\/RXVVDYDDUD .LLUXQDYDDUD$NWLHERODJ /.$%

(184) LVVLWXDWHGMXVWRXWVLGHWKHWRZQRI.LUXQDZKLFKLVORFDWHGLQ DVXEDUFWLFUHJLRQGRPLQDWHGE\GHFLGXRXVIRUHVWDQGSHDWODQGV )LJ

(185) $SDWLHLURQRUHLVPLQHG DQGUH¿QHGLQWRLURQSHOOHWV$QQXDOO\DERXW[6 m3RIVOLJKWO\DONDOLQH S+

(186) PLQH ZDWHULVGLVFKDUJHGIURPDWDLOLQJVDQGFODUL¿FDWLRQSRQGV\VWHP7KHUHFHLYLQJ5DNNXULV\VWHPLV approximately 10 km long and consists of one major stream (Rakkurijoki, average annual discharge aP3 s

(187) ZHWODQGVDQGWKHWKUHHODNHV0HWWl5DNNXULMlUYL5DNNXULORPSRORDQG5DNNXULMlUYL )LJ 

(188) 7KH5DNNXULMRNLVWUHDP¿QDOO\GLVFKDUJHVLQWRWKH.DOL[5LYHU'LVFKDUJHRIPLQHZDWHUHIÀXHQWV WRWKHV\VWHPEHJDQaDQGWDLOLQJVGDPVZHUHFRQVWUXFWHGLQWKHHDUO\V,QDERXW 23.3 x 106 tonnes of ore was extracted using about 0.4 kg of ammonium nitrate based explosives per WRQRIH[WUDFWHGRUH %M|UQVWU|PDQG%UlQQVWU|P

(189) 7KH1+4+123 ratio in the explosives is DERXWa /XQGTYLVW

(190) +RZHYHUWKHFRQFHQWUDWLRQRI1+4+ is rapidly reduced in the waste URFN±SURFHVV ZDWHU±FODUL¿FDWLRQ SRQGV\VWHP DQG ZDWHU GLVFKDUJLQJ IURP WKH FODUL¿FDWLRQ SRQG LVGRPLQDWHGE\123 !RI71

(191)  )LJ3DSHU,

(192)  ,QDERXWWRQQHVRI1DQGNJ RI3ZHUHUHOHDVHGLQWRWKHV\VWHP :DDUDQSHUl

(193) ZKLFKLV IRU3WUDQVSRUW

(194) WRWLPHV IRU 1WUDQVSRUW

(195) KLJKHUWKDQWKHQDWXUDOWUDQVSRUWHVWLPDWHGXVLQJWKH+<3(PRGHO /LQGVWU|PHWDO 60+,

(196) %DVHGRQ71FRQFHQWUDWLRQVLQWKHUDQJHPJ/, WKHV\VWHPLVFODVVL¿HG DVHXWURSKLFZKLOHEDVHGRQD73FRQFHQWUDWLRQEHWZHHQPJ/WKHV\VWHPLVFODVVL¿HG DVROLJRWURSKLFWRPHVRWURSKLF .DOII

(197) %RWWOHVHGJH Carex rostrata), Salix sp. and common sedge (Carex nigra) are three common species of littoral vegetation at the site. %RWK WKH 6NHOOHIWHDQG .DOL[ 5LYHUV GUDLQ LQWR WKH %RWKQLDQ %D\ ZKLFK UHFHLYHVa  WRQQHV RI 1 DQQXDOO\ IURP WKH 9lVWHUERWWHQ DQG 1RUUERWWHQ FRXQWLHV 9DWWHQP\QGLJKHWHUQD 

(198)  7KH average annual N transport in the two rivers is 1250 tonnes/year and 3500 tonnes/year, respectively 6/8

(199) ZKLOH1WUDQVSRUWHGLQWKHGLVFKDUJHSRLQWGUDLQLQJWRWKHULYHUVLV±WRQQHV \HDU7KHUHIRUHGLVFKDUJHIURPWKHWZRPLQHVLWHVFRQWULEXWHVDSSUR[LPDWHO\WRWKHWRWDOULYHU1 transport. 4. Materials and methods To address the formulated research tasks, research in the thesis was based on three, partly integrated PDLQ PHWKRGV 

(200)  FROOHFWLRQ RI ¿HOG GDWD 

(201)  ODERUDWRU\ DQG ¿HOG H[SHULPHQWV DQG 

(202)  FRPSXWHU VLPXODWLRQV,Q3DSHUV,,DQG,,,VRPHRIWKHFROOHFWHGGDWDZDVXVHGERWKDVPRGHOLQSXWGDWDDVZHOO. .

(203) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. as for calibration and validation of the model. Rates of some N transformation processes obtained in the experiments were compared with model-simulated rates. Partly for practical reasons, a relatively large part of the research was performed at the Boliden field site. However, the intention was to design experiments so that results should be applicable also for the Kiruna site. 4.1 Sampling and sample preparation. The following section describes field sampling performed at the Boliden and Kiruna sites. Field sampling was performed during 2008-2011, with the most frequent and extensive stream water sampling in 2008. A sampling schedule is presented in Fig. 4. Water. Biological material. Soil and sediment. Stream water sampling. Phytoplankton. Lake sediment cores. Lake vertical profiles. Littoral vegetation (macrophytes). Soil (stream, sediment, peat, humus). Boliden: May - Oct 2008; Feb - Sept 2009 Kiruna: Apr - Oct 2008. NS, Bru: May, Jul, Oct 2008; Apr, Jun 2009 Tailings, MR, R: Aug 2008; Apr, Jun 2009. NS, Bru: May, Jul, Oct 2008 Tailings, MR, R: Aug 2009; Jun 2010. Boliden: Jul 2008; Aug 2011 Kiruna: Aug 2010 and 2011. NS, Bru: Jun 2009; Apr 2010 Tailings, MR, R: Aug 2009; Jun 2010. Boliden and Kiruna: Jun and Aug 2011. Terrestrial vegetation (fir and spruce needles, birch leaves) Boliden and Kiruna: Jun and Aug 2011. Figure 4. Sampling schedule describing when sampling of water, biological material and soil and sediment occurred. NS = Nya Sjön; Bru = Lake Bruträsket; Tailings = tailings pond Kiruna; MR = Lake Mettä Rakkurijärvi; R = Lake Rakkurijärvi. Table 1. Analysed parameters in the sampling media water, biological material and soils and sediment. Parameters analysed Parameters Data used in in laboratory analysed in field Paper # Stream water samples. TN, TP, NH4+, NO3-, NO2-, PO4-P (SRP), DOC, POC, PON, Chl-a, Cu. Flow, Temp, Conductivity, pH, DO (% and mg L-1). d18O, d15N in nitrate and ammonium. Lake water samples Soil and sediment. TN, TP, NH4+, NO3-, NO2-, PO4-P (SRP), Chl-a, phytoplankton, Fe, Mn, S. I, II, III, IV, VI. VI Temp, Conductivity, pH, DO (% and mg L-1). I, II, III, IV, VI. Lead-210, TN, OC, P, Fe. I, II, III, IV, VI. d13C, d15N. VI. Littoral vegetation. TN, TP, OC, d13C, d 15N , 13Ca (at-%), 15 N (at-%)a. Terrestrial vegetation. TN, OC, d13C, d15N. VI. Biomass, species composition. I, II, III, VI. Phytoplankton. Biomass, species composition. 10. I, II, III, V, VI, V, VI.

(204) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. Table 1 summarizes the various parameters analysed in water, sediment, soil and vegetation (littoral DQGWHUUHVWULDO

(205) $VXPPDU\RIWKHDQDO\WLFDOPHWKRGVIRUDOOLQFOXGHGSDUDPHWHUVLVJLYHQLQVHFWLRQ IRUGHWDLOVVHH0DWHULDOVDQG0HWKRGVVHFWLRQRI3DSHUV,9, 4.1.1. Water sampling. The sampling programme in the Brubäcken system included weekly to biweekly sampling at the VDPSOLQJSRLQWVDEDQG )LJ

(206) ,QDGGLWLRQVDPSOHVZHUHFROOHFWHGDW DUHIHUHQFHVWDWLRQ5ORFDWHGaNPIURPWKH%UXElFNHQV\VWHP ,Q WKH Kiruna–Rakkurijoki system VWDWLRQV .9$ .9$ DQG .9$  DUH VDPSOHG HYHU\ WZR PRQWKV E\ /.$% 'XULQJ  WKLV VDPSOLQJZDV H[WHQGHGWR LQFOXGHWKH  VWDWLRQV VKRZQ LQ )LJ7KHPDLQVDPSOLQJZDVSHUIRUPHGE\WHFKQLFDOSHUVRQQHODW/.$%DVSDUWRIWKHUHJXODU environmental monitoring programme. ,Q3DSHU,VDPSOLQJVWDWLRQVDQGWKHUHIHUHQFHVWDWLRQ5DUHUHIHUUHGWRDV%%DQG%5 ZKLOH.9$.9$DQG99$DUHUHIHUUHGWRDV..DQG.5,Q3DSHUV,,9GDWDREWDLQHG IURPWKHHQYLURQPHQWDOPRQLWRULQJSURJUDPPHVRI%ROLGHQ0LQHUDO$%DQG/.$%ZDVXVHG 9HUWLFDOSUR¿OHV (Fig. 4) were measured in the deepest part of the lakes and ponds in the two systems. :DWHU ZDV VDPSOHG HYHU\   P GRZQ WR D GHSWK RI IRXU WR QLQH PHWHUV:DWHU ZDV FROOHFWHG XVLQJDQDOOSODVWLF5XWWQHUVDPSOHU +HUDFR

(207) DQGLPPHGLDWHO\¿OWHUHGWKURXJK—P0LOOLSRUH PHPEUDQH¿OWHUV Water samples for dissolved organic carbon '2&

(208)   P/

(209)  ZHUH YDFXXP ¿OWUDWHG WKURXJK D SUHFRPEXVWHG ƒ&

(210) *))JODVV¿EUH¿OWHU SRUHVL]H—P

(211) DQGLPPHGLDWHO\DFLGL¿HGZLWK ȝ/RI0+&O3DUWLFXODWHRUJDQLFPDWWHU 320

(212) ZDVGH¿QHGDVWKHPDWHULDOFROOHFWHGRQ WKH¿OWHU)RUSDUWLFXODWHRUJDQLF&GHWHUPLQDWLRQVFDOFLXPFDUERQDWHZDVUHPRYHGWKURXJKLQVLWX DFLGL¿FDWLRQRI*))¿OWHUVLQDVLOYHUFDSVXOH %URGLHHWDO

(213) ZLWK—/RIGHLRQLVHGZDWHU DQG[—/RI0+&ODGGHGWRHDFKFDSVXOH )RU WUDFH PHWDO DQDO\VLV ZDWHU ZDV ¿OWUDWHG WKURXJK D ȝP 0LOOLSRUH PHPEUDQH ¿OWHU XVLQJ D:KDWPDQŠPP¿OWHUKROGHUGLUHFWO\FRQQHFWHGWRDV\ULQJH$ERXWPORIWKHDOLTXRWZDV VTXHH]HGWKURXJKWKH¿OWHUEHIRUHFROOHFWLRQRIWKH¿OWUDWH6\ULQJHVDQG¿OWHUKROGHUVZHUHZDVKHG LQ+&OIRU¿YHGD\VDQGZHUHWKHQWKRURXJKO\ULQVHGZLWK0LOOL4ZDWHU 0LOOLSRUH0ȍ

(214)  7KH¿OWHUVZHUHZDVKHGLQDFHWLFDFLGZLWKVXEVHTXHQWULQVLQJLQ0LOOL4ZDWHU $OOVDPSOHVZHUHVWRUHGLQDFLGZDVKHGSRO\HWK\OHQHERWWOHVDWoC until analysis. The nitrogen isotopic composition of dissolved nitrate (b151±123) and ammonium (b151±1+4) was GHWHUPLQHGDWWKHGLVFKDUJHSRLQWIURPWKH.LUXQDPLQHDQGLQWKH5DNNXULMRNLODNHV b151±123) (Fig. 3). The samples were stored frozen until analysis. 4.1.2. ,nsitu measurement of water Àow and water Tuality parameters. Boliden – 7KHZDWHUTXDOLW\SDUDPHWHUVGLVVROYHGR[\JHQS+FRQGXFWLYLW\DQGZDWHUWHPSHUDWXUH were measured in situXVLQJD+\GURODE06ZDWHUTXDOLW\VRQGH +DFK(QYLURQPHQWDO/RYHODQG &2 86$

(215)  )RU %ROLGHQ PRQLWRULQJ GDWD ±

(216)  GLVVROYHG R[\JHQ DQG S+ ZHUH PHDVXUHG XVLQJDQ07:ZKLOHDW6WDWLRQS+LVUHSRUWHGDVWKHDYHUDJHYDOXHIURPWZRRQOLQH S+PHWHUV$WWKHWLPHRIZDWHUVDPSOLQJZater dischargeZDVPHDVXUHGXVLQJDPHFKDQLFDOÀRZ PHWHU *HQHUDO2FHDQLFV

(217)  6WDWLRQVDDQGE

(218) RUZDVSURYLGHGE\%ROLGHQ0LQHUDO $% 6WDWLRQ

(219) . 11.

(220) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. Kiruna -'LVVROYHGR[\JHQZDVPHDVXUHGLQVLWXXVLQJD+$&++4'08/7,ZKLOHS+DQG FRQGXFWLYLW\ ZDV PHDVXUHG DW WKH /.$% ODERUDWRU\ ZLWK D 7LQHW LQVWUXPHQW 0HWURKP

(221)  Water discharge ZDV HVWLPDWHG IURP PHDVXULQJ VWDWLRQV PDQDJHG E\ 6ZHGLVK PHWHRURORJLFDO LQVWLWXWH 60+,

(222)  6|GHUVWU|P

(223)  4.1.3. 'iffusive gradients in thin ¿lms devices. )HUULK\GULWH GLIIXVLYH JUDGLHQWV LQ WKLQ ¿OPV )+ '*7

(224)  GHYLFHV '*7 5HVHDUFK /DQFDVWHU 8.

(225)  ZHUHXVHGWRPHDVXUHWUXO\GLVVROYHGRUWKRSKRVSKDWH KHUHGHVLJQDWHG'*73

(226)  3DSHU,9

(227) %HWZHHQ PLG$SULODQGPLG2FWREHU)+'*7GHYLFHVZHUHGHSOR\HGIRURQHRUWZRZHHNVDWVDPSOLQJ station 6203b. They were mounted singly or in duplicate together with a temperature logger, enabling WHPSHUDWXUHFRUUHFWLRQRIWKHGLIIXVLRQFRHI¿FLHQW =KDQJDQG'DYLVRQ

(228) 7KHGHYLFHVZHUHDOVR GHSOR\HGWRREWDLQDYHUWLFDOSUR¿OHRIRUWKRSKRVSKDWHLQ/DNH%UXWUlVNHW 3DSHU,9

(229)  4.1.4. Sediment and soil. 6HGLPHQWFRUHVZHUHFROOHFWHGIURPWKHODNHVDQGSRQGVLQWKHWZRV\VWHPVXVLQJD.DMDNJUDYLW\ FRUHU ZLWK D FRUH WXEH GLDPHWHU RI  PP %ORPTYLVW DQG $EUDKDPVVRQ 

(230)  7KH VHFWLRQHG sediment samples were dried at 50 oC and ground. For organic C determinations, samples were DFLGL¿HGDVWKH*))¿OWHUV 6HGLPHQWDWLRQ UDWHV ZHUH FDOFXODWHG EDVHG RQ 210Pb data using a 210Pb constant rate of supply &56

(231) PRGHO 7XUQHUDQG'HORUPH

(232) 2UJDQLFPDWWHUGHFRPSRVLWLRQDQGUHPLQHUDOLVDWLRQRI VHGLPHQWDU\1ZHUHGHVFULEHGXVLQJDPXOWL*PRGHO :HVWULFKDQG%HUQHU

(233)  6RLO KXPXV SHDW DQG VWUHDP VHGLPHQW

(234)  ZDV FROOHFWHG IURP WKH FDWFKPHQW RI WKH WZR V\VWHPV DQGWUHDWHGDVWKHODNHVHGLPHQWVDPSOHVIRUGHWHUPLQDWLRQRIWRWDO1RUJDQLF&DQG&±1LVRWRSLF FRPSRVLWLRQ7KLV20VRXUFHHQGPHPEHUGDWDZDVXVHGLQ3DSHU9, VHHDOVRVHFWLRQ

(235)  4.1.5. Biological material. 6WHP DQG OHDI VDPSOHV RI WKH PDFURSK\WH Phragmites australis (common reed) were collected DORQJ D JUDGLHQW LQ WKH %UXElFNHQ V\VWHP LQFOXGLQJ WKH OLPLQJ SRQG FRQQHFWHG ZLWK WKH WDLOLQJV LPSRXQGPHQW WKH FODUL¿FDWLRQ SRQG DQG /DNH %UXWUlVNHW 6DPSOHV ZHUH DOVR FROOHFWHG IURP WKH UHIHUHQFH/DNH%UlQQWUlVNHW 1o31`, E 21o25`). Macrophytes were also collected at the two of the ¿YHVDPSOLQJVWDWLRQVLQWKH5DNNXULMRNLVWUHDPPHQWLRQHGDERYHZLWK¿YHUHSOLFDWHV [FP squares) randomly distributed. Macrophytes found included (TXLVHWXPÀXYLDWLOH(water horsetail), Potentiella palustris (marsh cinquefoil), Carex nigra sp., Carex rostrata and Salix sp.$WERWKVLWHV biomass ZDVHVWLPDWHGDVGHVFULEHGLQ3DSHU, VHHDOVR+XVVRQHWDO

(236) 7KHGLVWULEXWLRQRI OLWWRUDOYHJHWDWLRQ ELRPDVVDQGVSHFLHV

(237) ZDVLQYHVWLJDWHGXVLQJDQXQPDQQHGDLUFUDIWV\VWHP 8$6

(238)  5DQJRHWDO+XVVRQHWDO

(239)  7HUUHVWULDOYHJHWDWLRQ ¿UDQGSLQHQHHGOHVDQGELUFKOHDYHV

(240) ZDVFROOHFWHGIURPWKHFDWFKPHQWRIWKH %UXElFNHQDQG5DNNXULMRNLV\VWHPVDQGZDVXVHGWRUHSUHVHQWRQHRIWKH20VRXUFHHQGPHPEHUV LQWKHLVRWRSHVRXUFHPL[LQJPRGHO VHHVHFWLRQDQG3DSHU9,

(241)  6DPSOHVRIYHJHWDWLRQZHUHGULHGDWoC, milled and put in tin capsules for determination of C and 1FRQFHQWUDWLRQVDQGLVRWRSLFFRPSRVLWLRQ VHHHJ3DSHU9

(242)  Lake water samples were collected to obtain biovolume and species composition of phytoplankton 6(3$ 

(243)  /DNH gJHUWUlVNHW 9lVWHUERWWHQ FRXQW\ 1 o8`, E 20o5`) and Lake Jutsajaure 1RUUERWWHQFRXQW\1oC(oC

(244) ZHUHFKRVHQDVUHIHUHQFHODNHVIRUWKH%ROLGHQDQG.LUXQD VLWHUHVSHFWLYHO\6HH3DSHU,IRUIXUWKHUGHWDLOV. 12.

(245) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 4.2 Analytical methods 4.2.1. Water parameters. $OOVDPSOHVFROOHFWHGLQWKHBoliden – Brubäcken system were sent to accredited laboratories for DQDO\VLV,QDQG71DQG73ZHUHGHWHUPLQHGXVLQJ)ORZ,QMHFWLRQ$QDO\VLV ),$

(246) DQG VSHFWURSKRWRPHWULF GHWHFWLRQ UHVSHFWLYHO\ 653 DQG 1+41 ZHUH DQDO\VHG RQ DQ $XWRDQDO\VHU )LQDOO\1231DQG1221ZHUHGHWHUPLQHGVSHFWURSKRWRPHWULFDOO\RQD75$$&6LQVWUXPHQW,Q  3DSHU,

(247) 7173DQG653ZHUHGHWHUPLQHGXVLQJ),$&KORURSK\OOD &KOD

(248) ZDVGHWHUPLQHG VSHFWURSKRWRPHWULFDOO\RQ D 6KLPDG]XLQVWUXPHQW 095

(249)  DIWHU¿OWUDWLRQXVLQJ:KDWPDQ*)& ¿OWHUVDQGH[WUDFWLRQZLWKPHWKDQRO ,QWKHKiruna – Rakkurijoki system, water samples were analysed for their N and P species at the DQDO\WLFDO ODERUDWRU\ RI /.$% .LUXQD 7RWDO 1 DQG 1221 ZHUH PHDVXUHG XVLQJ ),$ 7RWDO 3 1+41 DQG 653 ZHUH GHWHUPLQHG VSHFWURSKRWRPHWULFDOO\ DQG 1231 ZDV GHWHUPLQHG XVLQJ LRQ FKURPDWRJUDSK\&KODZDVGHWHUPLQHGVSHFWURSKRWPHWULFDOO\RQD+DFKLQVWUXPHQW '5

(250) DIWHU ¿OWUDWLRQXVLQJ:KDWPDQ*)&¿OWHUVDQGH[WUDFWLRQZLWKPHWKDQRO '*73DQG¿OWHUHGWUDFHPHWDOV —P

(251) ZHUHDQDO\VHGXVLQJLQGXFWLYHO\FRXSOHGSODVPDVHFWRU ¿HOGPDVVVSHFWURPHWU\ ,&36)06

(252)  Nitrogen isotopic composition of dissolved nitrate and ammonium was analysed at the University of :DWHUORR±(QYLURQPHQWDO,VRWRSH/DERUDWRU\0RGL¿HGYHUVLRQVRIWKHPHWKRGVGHVFULEHGE\6LOYD et al. (2000) (b151±123

(253) DQG%URRNVHWDO 

(254)  b151±1+4) were used, with analytical precisions RI“ÅDQG“ÅIRUb151±123 and b151±1+4, respectively. 4.2.2. Sediment and soil. Boliden (Paper I) - Total N in sediment was determined using D3'=(XURSD$1&$*6/HOHPHQWDO DQDO\VHU 6HUFRQ/WG&KHVKLUH8.

(255) while sedimentary TP was determined by inductively coupled SODVPDDWRPLFHPLVVLRQVSHFWURVFRS\ ,&3$(6

(256)  Kiruna (Paper I) ±6HGLPHQWDU\73ZDVGHWHUPLQHGXVLQJ,&3$(66HGLPHQWDU\71LQVHGLPHQW ZDVGHWHUPLQHGDFFRUGLQJWRDPRGL¿HG.MHOGDKOPHWKRG %UHPQHU

(257)  Papers II, III, IV, VI - /HDGLQVHGLPHQWZDVGHWHUPLQHGE\LWVJUDQGGDXJKWHU2103R )O\QQ

(258)  PHDVXUHGE\DOSKDVSHFWURPHWU\DW5LV¡1DWLRQDO/DERUDWRU\IRU6XVWDLQDEOH(QHUJ\'HQPDUN,Q 3DSHU,9)HDQG3FRQFHQWUDWLRQVLQWKHFPGHHSVHGLPHQWFRUHZHUHDQDO\VHGXVLQJ,&3$(6 ZKLOHVHGLPHQWDU\3DQG)HIURPWKHLQFXEDWLRQH[SHULPHQWZHUHGHWHUPLQHGXVLQJ,&36)06 7RWDO1 71

(259) RUJDQLF& 2&

(260) DQG&±1LVRWRSLFFRPSRVLWLRQZHUHGHWHUPLQHGDW8&'DYLV 8QLYHUVLW\ RI&DOLIRUQLD

(261) XVLQJD3'=(XURSD$1&$±*6/HOHPHQWDODQDO\VHUFRXSOHGWRD3'=(XURSD± LVRWRSHUDWLRPDVVVSHFWURPHWHU)RUODERUDWRU\VWDQGDUGVWKHORQJWHUPVWDQGDUGGHYLDWLRQZDV“ ÅIRUb13&DQG“ÅIRUb15N. 4.2.3. Biological material. Boliden (Papers I-III) –7RWDO 1 LQ PDFURSK\WHV ZDV GHWHUPLQHG XVLQJ D /HFR7UX 6SHF /(&2 0LFKLJDQ86$

(262) DQG73ZDVDQDO\VHGXVLQJ,&36)06 Kiruna (Paper I)- 7RWDO3LQPDFURSK\WHVZDVDQDO\VHGXVLQJ,&36)06ZKLOH71ZDVGHWHUPLQHG DFFRUGLQJWRDPRGL¿HG.MHOGDKOPHWKRG %UHPQHU

(263)  Papers V and VI ±7RWDO12&DQGLVRWRSLFFRPSRVLWLRQLQPDFURSK\WHVZHUHGHWHUPLQHGDVIRUWKH sediment samples. Quantitative determination of biomass and species composition of algae was performed at the %LRGLYHUVLW\/DERUDWRU\RI6ZHGLVK8QLYHUVLW\RI$JULFXOWXUDO6FLHQFHV 2OULNHWDO

(264)  13.

(265) Nitrogen and phosphorus interactions and transformations in cold-climate mine water recipients. 4.3 Statistical analysis. 6WDWLVWLFDOSURFHVVLQJRIWKHGDWDZDVSHUIRUPHGZLWKWKHVRIWZDUHMinitab 16. ,Q3DSHUV,DQG9 sedimentary TN and TP concentrations and 15N data from sediment and plant analysis did not meet DVVXPSWLRQVRIKRPRFHGDVWLFLW\DQGQRUPDOLW\+HQFHQRQSDUDPHWULFSURFHGXUHV 0DQQ:KLWQH\ WHVW IRU WZRVDPSOH FRPSDULVRQV DQG .UXVNDO:DOOLV IRU PXOWLSOH FRPSDULVRQV

(266)  ZHUH XVHG IRU VWDWLVWLFDODQDO\VLV,Q3DSHU9ZDWHUFROXPQGDWDZDVIRXQGWREHQRUPDOO\GLVWULEXWHG+HQFHVLQJOH IDFWRU$129$WHVWZDVHPSOR\HGWRWHVWIRUVLJQL¿FDQWGLIIHUHQFHV 3

(267) 3RVWKRF7XNH\V+6' WHVWZDVXVHGWRLGHQWLI\VLPLODULWLHVDQGGLIIHUHQFHVDPRQJVDPSOHPHDQV7KHVLJQL¿FDQFHOLPLWZDV VHWDW3 4.4 Laboratory experiments 4.4.1. Investigation of phosphorus speciation (Paper I). $¿OWUDWLRQH[SHULPHQWZDVFRQGXFWHGWRLQYHVWLJDWHWKHVL]HGLVWULEXWLRQRI3LQWKHZDWHUFROXPQ,W ZDVSHUIRUPHGDW6WDWLRQVDQGELQHDUO\-XQH %UXElFNHQV\VWHP

(268) DQGDW6WDWLRQV.9$ DQG.9$LQODWH$XJXVW 5DNNXULMRNLV\VWHP

(269) 7KHLQLWLDOZDWHUYROXPHZDV¿OWUDWHGLQVHULHV WKURXJK¿OWHUVRIGHFUHDVLQJSRUHVL]HZLWKSDUWRIWKH¿OWUDWHFROOHFWHGLQDQDFLGZDVKHGRU POSRO\HWK\OHQHERWWOHIRUDQDO\VLVRI73DQGRU3243 653

(270) $IWHUWKH¿QDO¿OWUDWLRQVWDJHDERXW POZDVNHSWIRUXOWUD¿OWUDWLRQLQDQ(SSHQGRUIFHQWULIXJH5 4.4.2. Investigating SRP release (Paper IV). %RWWRPZDWHUDQGVHGLPHQWFRUHVZHUHFROOHFWHGIURP/DNH%UXWUlVNHW7KHVHZHUHXVHGWRVHWXS DQ H[SHULPHQW ZLWK WKH DLP RI TXDQWLI\LQJ VHGLPHQWDU\ 653 UHOHDVH ,Q VKRUW WKLV ZDV GRQH E\ VKLIWLQJEHWZHHQR[LFDQGORZR[\JHQFRQGLWLRQVLQWKHRYHUO\LQJZDWHUDQGDQDO\VLQJWKHZDWHU IRUFRQFHQWUDWLRQVRI653DQG¿OWHUHG —P

(271) )H0QDQG6RYHUDWLPHSHULRGRIGD\V )ROORZLQJWKHSURFHGXUHLQ+DJJDUGHWDO 

(272) WKH653ÀX[IURPWKHVHGLPHQWZDVFDOFXODWHG DVWKHOLQHDUWHPSRUDOFKDQJHLQ653PDVVLQWKHRYHUO\LQJZDWHUDIWHUFRUUHFWLRQVIRUWKHZDWHU UHPRYHGIRU¿OWUDWLRQDQGUHSODFHPHQWZLWKUHIHUHQFH EODQN

(273) ZDWHU:DWHUFROXPQH[SHULPHQWVZHUH SHUIRUPHGWRVWXG\KRZWKH653FRQFHQWUDWLRQYDULHGDVDUHVXOWRIFKDQJHVLQS+ WULDO

(274) 624 concentration (trial 2), and dissolved oxygen concentration (trial 3). Furthermore, an experiment was SHUIRUPHGWRLQYHVWLJDWHLI123ZRUNHGDVDQR[LGDQWRI)H ,,

References

Related documents

To quantify the input of mining-related nitrogen in relation to the natural river transport of nitrogen in Sweden, water quality data from monitoring programmes run by the

Uppgifter för detta centrum bör vara att (i) sprida kunskap om hur utvinning av metaller och mineral påverkar hållbarhetsmål, (ii) att engagera sig i internationella initiativ som

This project focuses on the possible impact of (collaborative and non-collaborative) R&amp;D grants on technological and industrial diversification in regions, while controlling

pH in influent wastewater and leachates from the Tu site column replicates (Tu 1, Tu 2), Lu sites column replicates (Lu 1, Lu 2), Kn site column replicates (Kn 1, Kn 2), Ri

Dissolved organic matter regulates nutrient limitation and growth of benthic algae in northern lakes through interacting effects on nutrient and light availability..

In the sections below, the main ndings from paper I (Modelling nitrogen transformations in waters receiving mine ef uents) and paper II (Limiting nutrient and

Geological Survey of Finland, Rovaniemi, Finland The Lätäseno Greenstone Belt is in the Käsivarsi area of northwestern Finnish Lapland. Several mapping and exploration projects

The modeled transformation ef ficiency to CH 4 , the speed of CH 4 production, and the estimated maximum CH 4 produc- tion rate (Asym, scal, and P max , respectively) correlated with