• No results found

Picha pastoris expressing recombinant spider silk, is it possible?

N/A
N/A
Protected

Academic year: 2022

Share "Picha pastoris expressing recombinant spider silk, is it possible?"

Copied!
50
0
0

Loading.... (view fulltext now)

Full text

(1)

Oktober 2012

Picha pastoris expressing recombinant spider silk, is it possible?

Cheuk Hin Lau

(2)
(3)

   

UPTEC  X  12  019 Date of issue 2012-06 Author

Cheuk Hin Lau

Title (English)

Picha Pastoris expressing recombinant spider silk, is it possible?

Title (Swedish)

Abstract

Native spider silk is a versatile biomaterial that is stronger than steel, tougher than Kevlar and yet very flexible. This combined with recent research showing biocompatibility with cells gives the spider silk a wider range of applications such as for biomedical applications. A total of 5 different genes (A, B, C, D, E) were cloned into P. pastoris, with each gene containing 4RepCT coupled to different tags. The genes were ligated to expression vectors pGAPZαC, pGAPZαA and pPICZαA and were successfully transformed to P. pastoris. So far gene B has been successfully expressed and secreted by P. pastoris using the expression vector

pPICZαA.

Keywords

Pichia pastoris, Spider silk, Cloning, Protein expression, Purification, Protease assay Supervisors

My Hedhammar & Mats Sandgren

Swedish University of Agriculture Sciences (SLU)

Scientific reviewer

Margareta Krabbe

Uppsala University

Project name Sponsors

Language

English

Security

Secret until 2014-12

ISSN 1401-2138 Classification Supplementary bibliographical information Pages

48

Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687

 

Molecular Biotechnology Program

Uppsala University School of Engineering

(4)

         

(5)

 

Picha  Pastoris  expressing  recombinant   spider  silk,  is  it  possible?  

CHEUK  HIN  LAU  

POPULÄRVETENSKAPLIG  SAMMANFATTNING    

 

Naturlig  spindeltråd  är  ett  mångsidigt  biomaterial  som  är  starkare  än  stål,  tåligare  än   kevlar  och  ändå  mycket  flexibel.  Detta  i  kombination  med  den  senaste  forskningen  som   påvisar  dess  biokompatibilitet  ger  spindeltråd  ett  bredare  spektrum  av  möjliga  

applikationer  till  exempel  inom  biomedicin.  

 

Genom  rekombinant  uttryck  av  en  liten  del  av  spindeltrådsprotein  (4RepCT)  i  E.  coli,  har   proteiner  som  själv  sammansätts  till  mikroskopiska  fibrer  med  liknande  egenskaper   som  det  nativa  spindelsilke  fibrer  åstadkommits.  Emellertid  har  4RepCT  en  tendens  att   bilda  proteinaggregat,  vilket  försvårar  hantering  av  proteinet.    

 

Målet  för  detta  examensprojekt  var  att  klona,  uttrycka  och  utsöndra  4RepCT  i  Pichia   pastoris.  Fem  olika  gener  (A,  B,  C,  D,  E)  klonades  in  P.  Pastoris.  Generna  ligerades  till   expressionsvektorerna  pGAPZαC,  pGAPZαA  och  pPICZαA  som  därefter  framgångsrikt   klonats  till  P.  pastoris.  Flera  försök  med  att  uttrycka  pGAPZαC  och  pGAPZαA  vektorn  i  P.  

pastoris  prövades,  dock  så  kunde  inte  målproteinet  upptäckas.  Ändring  av   expressionsbetingelser  genom  att  ändra  temperatur,  pH  och  buffert  löste  inte   problemet.  Detta  visade  sig  senare  bero  på  proteolytisk  nedbrytning  orsakad  av  P.  

pastoris  specifika  proteaser  som  finns  närvarande  under  odlingen.  Genom  att  tillsätta   proteashämmare  till  odlingsmediet  så  kunde  vi  på  så  sätt  uttrycka  och  utsöndra  gen  B   produkten  framgångsrikt  med  expressionsvektorn  pPICZαA.  

     

     

Examensarbete  30  hp  

Civilingenjörsprogrammet  Molekylär  bioteknik   Uppsala  universitet,  Oktober  2012  

 

(6)

 

                                                                                         

(7)

Table  of  contents    

Introduction  ...  

         Spider  silk  ...  9  

         Spider  silk  secretion  pathway  of  dragline  silks  ...  9  

         Spider  silk  applications  ...  10  

         Recombinant  spidroin  production  in  different  host  system  ...  11  

         Pichia  Pastoris  ...  13  

         Description  and  aim  of  the  project  ...  15  

Material  and  methods  ...                          Gene  and  expression  vector  ...  16  

         Infusion  cloning  procedure  ...  16  

         T4  ligase  cloning  procedure  ...  17  

         pPICZαA  cloning  procedure  ...  17  

         Sequence  analysis  ...  18  

         Pichia  pastoris  transformation  procedure    ...  18  

         Expression  procedure  ...  18  

         Protein  purification  (supernatant  and  cell  lysate)  ...  19  

         Supernatant  ...  19  

         Cell  lysate  ...  20  

         Protease  assay  ...  20  

Cloning  and  expression  results  ...                          Infusion  cloning  to  pGAPZαA  ...  21  

         T4  ligase  to  pGAPZαC  ...  22  

         pPICZαA  cloning  ...  25  

         Sequence  analysis  ...  26  

         Transformation  to  Pichia  pastoris  ...  27  

         Expression  analysis  of  expression  vector  pGAP  ...  28  

         Low  temperature  expression  of  vector  pGAP  ...  29  

         Protein  expression  at  high  pH  of  vector  pGAP    ...  30  

         High  pH  and  low  temperature  expression  of  vector  pGAP  ...  31  

         Cell  analysis  ...  32  

         pPic  expression  ...  33  

Protease  assay  results  ...                        Papain  protease  assay  ...  35  

         Growth  media  protease  assay  ...  36  

(8)

         pH  adjusted  growth  media  protease  assay  ...  37  

         Pepstatin  A  and  EDTA  protease  assay  ...  38  

Additional  results  ...                                Solution  to  chelation  of  the  IMAC  column  ...  39  

Discussion  ...                          Cloning  and  transformation  difficulties  ...  40  

         Expression  difficulties  using  pGAP  vector  ...  41  

         Interpretation  of  the  results  obtained  from  protease  assays  ...  41  

         Successful  expression  using  pPIC  vector  ...  42  

         Comparison  between  pGAP  and  pPIC  ...  42  

         Alternative  solutions  for  protease  activity  ...  43  

         Advantages  of  P.  pastoris  ...  43  

         Other  obstacles  ...  43  

         Future  work  ...  43  

Acknowledgements  ...  44  

References  ...  45    

 

   

                           

 

 

(9)

Key  terms  and  abbreviations    

4RepCT      C-­‐terminal  domain  and  four  repetition  of  the  repetitive  region   of  the  spidroin.  

 

AOX1      One  of  two  genes  that  code  for  the  enzyme  alcohol  oxidase  in   Pichia  pastoris.  

 

AOX2      Second  gene  that  codes  for  the  enzyme  alcohol  oxidase  in   Pichia  pastoris.  

 

ARG4      A  S.  cerevisiae  gene,  host  with  this  gene  has  the  function  of   growing  in  media  lacking  arginine.  

 

Dragline  silk     One  type  of  spider  silk.  

 Endo  H     Deglycosylation  enzyme    

GAP       Glyceraldehyde-­‐3-­‐phosphate  dehydrogenase  gene  

 

HIS4     Histidinol  dehydrogenase  gene    

 

MaSp1       Major  ampullate  spidroin  1    

MaSp2       Major  ampullate  spidroin  2    

Mut-­‐        A  phenotype  of  Pichia  pastoris  that  has  the  AOX1  gene  largely  

deleted  and  replaced  with  the  S.  cervisiae  ARG4  gene.  

 

Mut+        A  phenotype  of  Pichia  pastoris  that  has  both  of  the  genes  AOX1  

and  AOX2  present  in  their  genome.  

 

pGAPZαA       Expression  vector  supplied  by  Invitrogen.  

 

pGAPZαC     Expression  vector  supplied  by  Invitrogen.  

 

pPICZαA    Expression  vector  supplied  by  Invitrogen.    

 

PTM       Post  translation  modification    

Spidroin      Protein  that  assembles  into  spider  silk  and  are  comprised  of   3000-­‐4000  amino  acids,  that  are  composed  of  3  parts:  an  N-­‐

terminal  domain,  a  large  repetitive  region  and  a  C-­‐terminal   domain.  

     

(10)

                                                                                               

(11)

Introduction  

SPIDER  SILK    

Spider  silk  is  by  far  the  toughest  natural  fibers  known  to  mankind  [2],  and  this  naturally   produced  biomaterial  has  properties  that  exceeds  todays  synthetic  materials.  For  

example  silk  is  as  much  as  5  times  stronger  by  weight  than  steel  and  have  physical   properties  comparable  to  those  of  the  synthetic  fiber  Kevlar  [3].    Using  spider  silk  to  our   advantage  has  been  done  for  many  centuries,  it  has  been  ascribed  to  stop  bleeding  and   promote  wound  healing.  Other  appealing  properties  of  spider  silk  include  

biodegradability  [4],  biocompatibility  [5],  stickiness  and  flexibility  [6].  Thanks  to  

different  molecular  bio-­‐techniques  the  mysterious  biochemical  properties  of  spider  silk   has  been  partly  solved.  This  incredible  silk  is  comprised  of  at  least  two  similar  proteins,   the  major  ampullate  spidroin  1  (MaSp1)  and  ampullate  spidroin  2  (MaSp2).  The  ratio   between  MaSp1  and  MaSp2  in  spider  silk  has  been  estimated  to  be  3:2  [6].    

 The  spidroin  proteins  are  macromolecules  comprised  of  4000-­‐3000  amino  acids  [7]  that   can  be  divided  into  3  parts,  an  N-­‐terminal  domain  of  approximately  130  amino  acids,  a   C-­‐terminal  domain  of  approximately  110  amino  acids  and  a  large  repetitive  region,   which  is  flanked  by  the  N-­‐terminal  and  C-­‐terminal,  of  approximately  3500  amino  acids   that  is  composed  of  poly-­‐alanine  blocks  and  glycine  rich  segments  [8]  (fig1).  The  N-­‐

terminal  is  highly  conserved  trough  different  spider  spices  and  the  domain  is  not  a   necessity  when  forming  synthetic  spider  silk,  but  is  highly  soluble  which  may  be  an   important  factor  for  spidroin  post  expression  processing  [9].  The  C-­‐terminal  domain   governs  the  spider  silk  assembly  while  preventing  unwanted  aggregation  [10].  The   repetitive  region  is  what  gives  the  spider  silk  its  strength  and  flexibility  when   assembled.  The  secondary  

structure  of  the  repetitive  region   converts  mainly  into  β-­‐sheet   during  spider  silk  formation.  While   in  soluble  form  the  spidroin  

contains  mainly  random  and  α-­‐

helical  structures  [9].  Depending  on   different  species  of  spider,  the   amount  of  glycine  and  alanine  will  

differ  in  the  repetitive  region  and  hence  the  strength  and  mechanical  properties  of  the   spider  silk  fibers  will  also  differ  [11].  

 

SPIDER  SILK  SECRETION  PATHWAY  OF   DRAGLINE  SILK  

 

 The  mechanism  behind  production   and  secretion  of  spider  silk  protein  in   spiders  is  quite  well  understood.  The   pathway  of  secretion  can  be  divided   into  two  zones,  A-­‐zone  and  B-­‐zone  [3].  

The  A-­‐zone  contains  the  tail  and  first  

Figure 1: Schematic picture of the composition of spidroin. The spidroin protein are divided into 3 parts, a repetitive region, an N-terminal and a C-terminal.

Figure 2: Schematic representation of the major ampullate gland in orb spiders.

(12)

part  of  the  sac.  Here  a  single-­‐layered  epithelium  produces  the  spidroins  that  are  

exocytosed  into  the  lumen  (tail)  [12].  Spidroins  that  are  secreted  into  the  lumen  can  be   stored  at  a  very  high  concentration  (30-­‐50%  W:V)  in  the  sac  until  they  are  converted   into  solid  fibers  when  needed  [13].    The  spinning  duct  has  an  s-­‐shaped  form  and  gets   narrower  while  approaching  the  end  of  the  duct.  Here  the  spidroins  assembles  into   fibers  with  the  help  of  pH  adjustment,  changes  in  ion  composition  and  shear  force  along   the  duct  [3]  (Figure  2).  Each  gland  produces  a  specific  type  of  spider  silk  [1].  Orb  spiders   have  seven  different  types  of  glands  and  the  ampullate  gland  produces  only  dragline  silk   [1].  

 SPIDER  SILK  APPLICATIONS  

Spider  silk  is  biodegradable  and  has  trough  history  been  ascribed  for  use  in  medical   applications.  Thanks  to  these  amazing  features  many  researchers  lately  have  proposed   spider  silk  to  be  the  ideal  biomaterial  [14].  The  understanding  of  spider  silk  proteins  has   just  started  in  the  recent  decades,  which  makes  the  studies  for  using  spider  silk  as  

biomaterial  relative  few.  But  many  ideas  have  been  proposed  for  the  use  of  spider  silk  as   biomaterial  and  spider  silk  proteins  have  shown  to  have  a  large  potential  in  many  

different  biomedical  applications  [14].  

The  main  studies  of  spider  silk  today  are  to  use  of  this  for  biomedical  applications.  But   different  applications  put  different  and  sometimes  more  complex  demand  on  the   produced  spider  silk  material.  The  term  biomaterial  is  often  mentioned  along  with   biocompatibility.  The  definition  of  biocompatibility  consists  basically  of  two  

components:  bio  functionality  and  biosafety  [14].  Definition  of  biosafety  is  for  example   appropriate  local  response  or  lack  of  systemic  response  and  absence  of  cytotoxic  and   mutagenesis/carcinogenesis  [14].  Biofunctionality  is  for  example  the  ability  of  the   biomaterial  product  to  perform  its  intended  task/tasks  [15].  One  have  to  keep  in  mind   that  the  definition  might  vary  a  lot,  because  the  biomaterial  might  have  a  different  effect   on  one  tissue  compared  to  another,  and  depending  on  where  the  biomaterial  is  going  to   be  applied,  the  degree  for  inflammatory  reaction  will  vary  [14].  Furthermore  the  

requirement  for  the  spider  silk  are  changed  depending  if  its  intended  to  be  used  in  vitro   or  in  vivo  [14].    

If  the  usage  of  spider  silk  as  a  biomaterial  will  have  any  chances  to  come  true  in  the   future,  the  question  that  has  to  be  answered  is  if  recombinant  spider  silk  is  

biocompatible  [14].  There  have  been  several  studies  to  assess  the  biocompatibility  with   living  tissue.  One  such  study  is  to  use  recombinant  spider  silk  proteins  to  form  a  porous   membrane  and  investigate  if  that  membrane  could  act  as  a  wound  dressing  on  deep   burns  in  rats  [16].  The  results  of  the  study  was  that  the  recombinant  spider  silk  had  a   good  biocompatibility  and  had  the  ability  to  induce  tissue  regeneration,  according  to  the   article  as  efficient  for  wound  healing  as  clinically  used  collagen  sponges  [16].  This  shows   that  spider  silk  proteins  have  good  prospects  as  a  new  type  of  biomaterial  for  tissue-­‐

engineering  of  artificial  skin  [16].  Another  study  that  was  done  on  recombinant  spider   silk  protein  was  to  see  how  well  the  body  of  a  rat  did  accept  the  spider  silk  fibers  when   implanted  subcutaneously  [17].  The  study  did  show  that  the  recombinant  spider  silk   protein  was  well  accepted,  and  newly  formed  capillaries  and  fibroblast-­‐like  cells  in  the   center  of  the  silk  was  observed  already  after  one  week  of  implantation,  which  indicates   that  the  spider  silk  supports  the  formation  of  vascularized  tissue  [17].  According  to  the   paper  presenting  these  results  the  results  looks  promising,  but  further  in  vivo  studies  

(13)

have  to  be  performed  to  fully  evaluate  the  ability  of  spider  silk  as  a  biomaterial  for  tissue   engineering  in  humans.  Similar  results  have  also  been  observed  in  another  study,  were   spider  silk  protein  in  form  of  porous  bar  shaped  scaffolds  were  implanted  

subcutaneously  in  mice  [18].  The  result  in  this  study  did  show  that  the  scaffold  had  good   biocompatible  properties  in  vitro  and  in  vivo.  It  was  also  observed  eight  weeks  after   implantation  that  the  scaffolds  promoted  ingrowth  of  fibrous,  nerve  cells  and  adipose   tissue  elements  [18].  The  conclusion  from  the  study  was  that  the  spider  silk  scaffold   could  be  applied  in  biomedical  tissue  engineering  [18].  

Another  application  that  has  been  investigated  using  recombinant  spider  silk  is  to  make   film  for  cell  attachment  and  proliferation  in  vitro  for  cell  cultures  and  biomedical  sensors   [19].  The  different  types  of  spider  silk  film,  foam,  fiber  or  mesh  scaffold  offer  both  2D   and  3D  cell  culture  environments  which  have  shown  to  support  attachment  and  growth   of  human  primary  fibroblasts  [19].  The  article  also  stated  that  the  spider  silk  matrix   proved  to  be  robust  and  different  types  of  spider  silk  offers  a  similar  support  of  cell   growth.  Other  benefits  of  using  recombinant  spider  silk  as  a  cell  adhesion  matrix  would   be  to  modify  this  with  a  certain  adhesion  binding  molecules  added  in  the  spider  silk   protein  sequence  during  expression  [14].    Many  cells  interacts  with  the  environment  via   adhesion  molecules  such  as:  integrins,  cadherins  and  selectins  [14].  If  these  adhering   molecules  are  added  to  the  spider  silk  protein,  the  3D  silk  matrix  will  be  able  to  mimic  a   more  natural  environment  for  the  cells.  These  functionalized  spider  silk  matrix  could   have  the  possibility  to  provide  the  cells  with  signals  for  differentiation,  growth  and   migration.  One  study  shows  that  by  introducing  an  integrin  binding  motif  RGD  into  the   spider  silk,  it  supported  and  further  enhanced  the  growth  of  bone  tissue  [20].  

Another  interesting  usage  of  recombinant  spider  silk  protein  was  shown  in  an  study   were  the  researches  was  testing  it  as  a  drug  carrier  [21].  The  aim  in  this  study  was  to   make  a  drug  carrier  that  has  the  function  of  a  controlled  delivery  of  positively  charged   and  sufficiently  hydrophobic  drug  molecules.  The  molecules  were  loaded  onto  the   spider  silk  by  hydrophobic  and  electrostatic  interactions  and  were  slowly  releases  from   the  surface,  which  lead  to  a  constant  drug  release  rate.  The  authors  of  the  paper  did   conclude  that  the  spider  silk  particles  have  diverse  applications  where  this  type  of   release  and  mechanically  tough  and  slowly  biodegradable  carriers  is  desired.  

Applications  for  spider  silk  protein  are  not  confined  for  biomedical  application.  Other   areas  could  benefit  of  using  spider  silk  protein,  such  as  cosmetic  products,  shampoos,   soap  creams  and  nail  varnish  [22].  The  spider  silk  protein  will  lead  to  enhancement  of   the  softness,  brightness  and  toughness  of  the  product.  For  technical  applications  the   spider  silk  has  a  potential  to  be  used  in  micro-­‐mechanical  and  electronic  set-­‐ups  [22].  

Inorganic  particles  such  as  metals  could  be  incorporated  into  spider  silk  nano-­‐fibrils,   and  these  crossover  materials  could  be  used  for  nanowires  or  surface  coatings.  Lastly   the  properties  that  spider  silk  possess  and  the  similarity  with  the  silk  from  Bombax-­‐

mori,  points  towards  that  spider  silk  can  be  applied  and  used  in  technical  textiles,  for   example  parachute  or  even  bulletproof  vest.  Textiles  that  have  a  high  demands  on   toughness  and  strength  [22].  

RECOMBINANT  SPIDROIN  PRODUCTION  IN  DIFFERENT  HOST  SYSTEM  

Because  of  the  amazing  biochemical  properties  that  spider  silk  posses,  researchers  have   tried  many  ways  to  produce  spidroins  recombinantly  in  different  host  systems,  both  in  

(14)

prokaryotic  and  eukaryotic  hosts  [13].  There  are  several  big  disadvantages  of  using   spiders  for  spider  silk  production,  even  though  they  have  the  mechanism  ready  to  be   used.  Spiders  in  nature  are  cannibals,  which  means  they  cannot  live  in  the  same  cage   [23],  the  spider  also  produce  low  yield  of  spider  silk  protein  and  could  not  be  collected   easily  [24].  That  is  why  scientist  has  chosen  to  focus  on  alternative  ways  to  produce   spidroins  [13].  Different  host  systems  have  their  own  pros  and  cons,  such  as:  difference   in  expression  levels,  ease  of  use,  contamination  levels  during  production  and  most   important  for  industrial  purpose;  cost  compared  to  protein  yield  [13].    

Many  aspects  have  to  be  taken  into  account  when  choosing  a  suitable  protein  expression   host.  Spidroins  are  eukaryotic  proteins,  and  eukaryotic  proteins  often  require  post-­‐

translation  modifications  in  order  to  get  a  correct  fold  and  biological  activity  [25].  Most   of  mechanisms  for  modifications  (glycosylation,  phosphorylation  etc.)  are  only  present   in  eukaryotic  cells,  and  different  eukaryotic  cells  have  different  modifications  pattern   which  could  affect  the  spider  silk  properties.  Other  complications  are  the  nature  of  the   spidroins  itself.  As  mentioned  above,  the  repetitive  sequence  of  spidroins  is  composed  of   poly-­‐alanine  blocks  and  glycine  rich  segments,  which  could  lead  to  tRNA-­‐pool  depletion   in  the  host  [26].  On  DNA  level  the  repetitive  region  is  very  rich  in  guanine/cytosine  and   this  has  been  shown  to  be  problematic  when  expressing  a  protein  recombinantly  in   another  host  than  the  original  one  [27].  Genetic  instability,  mRNA  forming  unwanted   secondary  structures,  truncations  and  rearrangements  of  the  gene  during  duplication   and  translation  pauses  [27]  is  some  of  the  problems  that  has  occurred  during  

recombinant  protein  expression.  Further  on,  low  solubility  of  the  spidroins  cause  them   to  easily  form  aggregates  [13].  The  proteases  expressed  by  the  expression  host  might   also  degrade  the  spidroins  [28].  Approaches  to  overcome  these  obstacles  have  been   tried,  such  as  codon  optimization  [27]  and  culturing  in  enriched  media.  

Although  eukaryotic  hosts  might  be  the  most  suitable  for  recombinant  production  of   spidroins,  there  are  several  reports  of  successful  recombinant  production  of  fractional   parts  of  spidroins  in  prokaryotes  [26,  27].  The  most  broadly  used  prokaryotic  host  is  the   bacterium  Escherichia  coli,  although  it  has  drawbacks,  such  as:  low  yield  of  protein,   protein  accumulation  in  the  cell,  and  instable  protein  fragments  [13].  E.  coli  offers  a  well-­‐

controlled,  cost-­‐efficient  system  for  large-­‐scale  production  and  several  cases  of   successful  E.  coli  expression  processes  have  been  published  [27].  On  top  of  that,  the   expression  system  of  E.  coli  is  well  studied  and  easy  to  handle  [29].  

Another  host  that  has  been  used  for  recombinant  production  of  spidroins  is  the  yeast   Pichia  pastoris  (P.  pastoris).  The  advantage  of  using  yeast  instead  of  E.  coli  for  

recombinant  spidroin  expression  is  to  minimize  truncations  due  to  translation  stop  [30].    

P.  pastoris  is  a  eukaryotic  host,  which  means  larger  and  more  complex  fragments  of   spidroins  will  be  possible  to  produce  [30].  A  fractional  part  of  the  repetitive  part  of   spidroins  has  been  reported  to  be  successfully  expressed  intracellulary  in  P.  pastoris.  

The  part  that  was  successfully  produced  was  a  short  segment  of  the  repetitive  region  of   the  spidroin  [30-­‐32],  and  it  was  noted  that  the  gene  was  duplicated  in  the  genome,   which  resulted  in  varied  sizes  of  target  protein  [30].  However  according  to  the  papers,   the  results  from  the  spidroin  production  in  P.  pastoris  was  better  compare  to  E.  coli  in   many  aspects,  such  as  protein  yield.  P.  pastoris  produced  almost  1g/l  of  target  protein   which  is  at  least  two  fold  higher  then  the  expression  levels  observed  when  using  E.  coli   [30],  and  even  higher  protein  expression  levels  should  be  possible  to  reach  when  using     P.  pastoris  expression  host.  Additional  advantages  with  P.  pastoris  compared  to  E.  coli  is  

(15)

that  P.  pastoris  is  able  to  produce  more  complex  and  larger  proteins,  up  to  3000  amino   acids  in  P.  pastoris  compared  to  1000  amino  acids  in  E.  coli  [30].  By  fusing  an  

appropriate  secretion  signal  when  expressing  the  spidroin  in  P.  pastoris  the  target   protein  can  be  secreted  to  the  growth  media  [29],  and  the  spidroin  that  has  been   successfully  secreted  is  the  same  spidroin  that  has  been  produced  intracellular  in  P.  

pastoris.  However  it  was  noted  in  the  study  that  a  lot  of  the  target  protein  stayed  inside   the  cell  [29].  Secretion  will  be  an  essential  characteristic  for  any  low-­‐cost  silk  production   process,  not  just  because  of  the  huge  advantages  on  downstream  process  such  as  

purification  and  recovery  of  the  product,  because  the  amount  of  expressed  protein  that   is  needed  to  give  a  cost-­‐effective  production  yield  would  overwhelm  the  available   intracellular  volume  of  the  expression  host  [29].  

Different  and  more  complex  hosts  have  been  tested  for  the  expression  of  spidroins.  

Various  mammalian  cells  have  been  attempted  to  express  high-­‐molecular-­‐weight   spidroins  from  bovine  mammary  epithelial  alveolar  cells  to  baby  hamster  kidney  cells   grown  in  a  hollow  fiber  reactor  [33].  Secretion  of  spidroins  into  milk  of  goats  and  mice   in  their  glands  has  been  successfully  accomplished,  but  the  yield  was  low  compare  to  the   high  production  cost  and  the  time  that  was  consumed  to  perform  the  expression  [34,   35].    Expression  in  different  plants  such  as  potato,  tobacco  and  Arabidopsis,  has  been   tried  as  an  attempt  to  have  a  low-­‐cost  efficient  production  suitable  for  scale-­‐up.  

However,  the  attempts  of  large-­‐scale  productions  have  only  resulted  in  low  yield  of   spidroins  [22,  24].  Insect  cells  have  been  used  for  production  of  spidroins,  but  primarily   for  the  study  of  assembly  properties  of  spidroin  pieces  in  the  cytoplasm  since  insects   cells  are  less  suitable  for  large-­‐scale  production  [36].  Last  but  not  least  expression  in   larvae  of  the  silkworm  Bombyx  mori,  have  been  tried  and  the  target  protein  got  

expressed  but  the  amount  of  product  was  limited  by  the  solubility  of  the  spidroins  [14].  

PICHIA  PASTORIS  

The  eukaryotic  cell  Pichia  Pastoris  (P.  pastoris)  is  a  methylotrophic  yeast  that  can  utilize   methanol  as  a  sole  source  of  carbon  as  energy.  It  was  discovered  less  then  50  years  ago   by  Koichi  Ogata  [37].  Because  of  the  properties  that  P.  pastoris  posses,  such  as  capable  of   performing  posttranslational  modifications  performed  by  higher  eukaryotic  cells  and   also  cheaper,  faster  and  easier  to  use  then  other  eukaryotic  systems,  such  as  baculovirus   or  mammalian  tissue  culture  [38],  it  has  rapidly  been  accepted  as  a  system  for  

expression  of  heterologous  proteins  [39].  With  the  right  secretion  signal  peptide   coupled  to  the  expressed,  target  protein  can  be  expressed  extracellulary  [40].  

P.  pastoris  is  one  of  a  dozen  known  yeast  species  that  are  capable  of  metabolizing   methanol  [41].  If  methanol  is  fed  to  P.  pastoris  as  carbon  source,  the  methanol  will  be   processed  by  an  enzyme  called  alcohol  oxidase  (AOX)  that  is  coded  by  two  genes  AOX1   and  AOX2  in  P.  pastoris  [42].  AOX1  is  responsible  for  the  majority  of  AOX  activity  in  the   cell,  and  the  AOX1  promoter  is  strictly  regulated  and  induced  by  the  levels  of  methanol   in  the  surrounding  culture  liquid  [42].  This  regulating  feature  is  one  of  the  benefits  of   using  P.  pastoris  as  an  expression  host.  There  are  several  different  commercial  P.  

pastoris  expression  strains  available  today  that  can  be  used  for  expression  of  

heterologous  proteins  [40].  These  P.  pastoris  strains  are  different  in  terms  of  their  ability   to  utilize  methanol,  selection  markers  to  allow  selection  of  expression  vectors  and  also   lack  of  native  protease  expression  [38].  Most  of  the  strains  have  a  mutation  defect  in   histidinol  dehydrogenase  gene  (HIS4),  that  allows  for  selection  of  expression  vectors  

(16)

containing  the  HIS4  gene  upon  transformation,  which  will  restore  the  function  of   growing  in  media  lacking  histidine  [38].  Other  variants  of  host  strains  are  deletions  of   one  or  both  AOX  genes  that  will  affect  their  ability  to  utilize  methanol  [38].  These  P.  

pastoris  AOX  deletion  strains  are  sometimes  shown  to  be  better  at  producing  foreign   proteins  [43].  The  Result  of  deletion  of  AOX  genes  will  lead  to  different  phenotypes  of  P.  

pastoris,  one  phenotype  Mut+  has  both  of  the  genes  AOX1  and  AOX2  present  in  their   genome  and  grows  in  methanol  at  wild-­‐type  rate  [40].  Another  phenotype,  Mut-­‐,  has  the   AOX1  gene  largely  deleted  and  replaced  with  the  S.  cervisiae  ARG4  gene,  this  will  restore   the  function  of  growing  in  media  lacking  arginine  and  will  act  as  a  selection  marker  [38],   and  the  strain  will  have  to  rely  on  a  weaker  AOX2  gene  for  AOX  activity  which  

tremendously  limits  its  growth  rate  [40].  Lastly  there  are  strains  that  have  both  of  the   AOX  gene  removed  and  is  not  able  to  grow  on  methanol  [40].    

Endogenous  proteases  in  P.  pastoris  could  pose  problems  for  expressed  foreign  proteins,   since  the  protein  of  interest  could  be  degraded  by  these  proteases.  Major  vacuolar   proteases  appear  to  be  a  significant  factor  in  degradation  [40].  Because  of  the  high  cell   density  during  P.  pastoris  cultivation  a  small  percentage  of  the  cells  will  get  lysate  and   thereby  releasing  the  protease  to  the  growth  media,  which  especially  pose  a  problem  for   secreted  protein  [44].  But  there  are  strains  that  have  been  modified  to  be  defective  in   proteases,  which  have  proven  to  help  reduce  degradation  in  several  cases  and  

significantly  improve  overall  yields  [39].    

Plasmid  vectors  are  used  for  cloning  target  genes  into  P.  pastoris,  and  these  vectors  have   several  features  common.  For  methanol  induced  expression  the  cassette  is  composed  of   a  DNA  sequence  containing  the  AOX1  promoter,  followed  by  several  digestion  restriction   sites,  digestion  restriction  sites  are  DNA  sequence  are  targeted  by  a  given  restriction   enzyme  that  cleaves  the  DNA  fragment  [45].  Some  digestion  restriction  site  are  designed   to  be  unique  to  that  specific  expression  vector  and  are  used  for  insertion  of  the  target   gene  and  sequence  coding  [40].  This  is  followed  by  the  transcriptional  termination   sequence  from  the  P.  pastoris  AOX1  gene  that  directs  efficient  3’  processing  and  

polyadenylation  of  the  mRNAs  [40].  Other  more  specific  features  may  include  sequences   required  for  plasmid  replications  and  maintenance  in  bacteria  or  AOX1  3’  flanking   sequence  that  can  help  the  foreign  gene  cassette  in  the  expression  vector  to  integrate  at   the  AOX1  locus  in  P.  pastoris  genome  by  gene  replacement  [40].  Other  differences  also   include  selectable  markers  such  as  HIS4  gene  and  drug  resistance  markers  against   Zeocin,  kanamycin  et  cetera  [40].  There  are  also  vectors  that  are  design  to  be  able  to   construct  multiple  expression  cassette  copies  into  one  single  vector.  These  vector  are   attractive  if  the  aim  is  to  have  a  high  gene  expression  during  induction  [40].  Methanol   induced  expression  is  not  the  only  available  option,  the  GAP  promoter  is  derived  from   the  P.  pastoris  glyceraldehyde-­‐3-­‐phosphate  dehydrogenase  gene  and  is  sometimes  used   instead  of  the  AOX1  promoter  [39].  The  GAP  promoter  gets  induced  by  glucose  and  is  a   suitable  alternative  if  for  some  reason  methanol  cannot  be  used  during  expression  [39].  

One  of  the  biggest  advantages  using  P.  pastoris  as  an  expression  host  is  that  by  infusing  a   secretion  signal  in  front  of  the  target  protein  in  the  protein  will  be  secreted  to  the  

growth  media  during  expression  [39].  Because  the  amount  of  endogenous  secreted   proteins  by  P.  pastoris  is  very  low,  the  majority  of  the  protein  in  the  growth  media  will   be  the  protein  of  interest  [40].  Several  different  secretion  signal  sequences  have  been   used  successfully,  with  S.  cerevisiae  α-­‐mating  factor  with  the  most  success  [40].  

When  an  expression  vector  gets  introduced  to  P.  pastoris,  there  are  two  different  ways  

(17)

that  this  can  be  integrated  to  the  genome  of  P.  pastoris  [40].  Depending  of  the  design  of   the  vector  either  single  crossover  integration  or  gene  replacement  will  occur  [38].  DNA   fragment  of  AOX1  or  GAP  promoter  in  the  expression  vector  match  the  fragment  that  P.  

pastoris  carries  and  contains  a  specific  restriction  site.  The  restriction  site  in  the  

expression  vector  can  be  used  to  linearize  the  vector  and  aid  the  vector  to  integrate  into   P.  pastoris  genome  during  transformation  [38].  Sometimes  multiple  gene  insertions  can   be  detected  but  at  very  low  frequency,  this  could  happen  in  all  the  gene  insertion  events   [46].  

Post  translation  modifications  (PTM)  are  present  in  all  higher  eukaryotic  hosts  and  that   includes  P.  pastoris  [40].  These  PTM  includes  processing  of  signal  sequences  such  as:  

secretion  signals,  folding  of  protein,  disulfide  bridge  formation  and  O  and  N-­‐liked  

glycosylation  [40].  Many  of  these  PTM  is  usually  associated  with  higher  eukaryotes  [40],   and  this  gives  P.  pastoris  a  larger  advantage  compare  to  other  lower  eukaryotic  hosts.  

Even  tough  glycosylation  can  be  performed  in  P.  pastoris,  it  have  been  shown  to  be   problematic  to  replicate  glycosylation  that  occurs  in  mammalian  cells  [47].  Unlike  

mammalian  cells  where  O-­‐linked  oligosaccharides  are  composed  of  variety  of  sugars,  the   O-­‐oligosaccharides  that  are  attached  to  proteins  expressed  by  P.  pastoris  consist  only  of   mannose  residues  [47].  For  N-­‐glycosylation  there  has  also  been  observed  difference   between  higher  eukaryotic  hosts  and  P.  pastoris  [39].  Additionally,  P.  pastoris  can  O-­‐

glycosylate  proteins  that  normally  are  not  glycosylated  in  its  native  host,  and  foreign   proteins  that  are  secreted  by  P.  pastoris  can  occasionally  became  hyper  glycosylated   [39].  This  hyper  glycosylation  could  pose  a  problem  during  SDS-­‐PAGE  characterizations   where  the  protein  appears  to  be  of  a  different  size.  

DESCRIPTION  AND  AIM  OF  THE  PROJECT:  

A  total  of  5  different  spider  silk  genes  will  be  cloned  into  Pichia  pastoris,  each  gene   containing  the  4RepCT  gen,  which  are  the  C-­‐terminal  domain  and  four  repetition  of  the   repetitive  region  of  the  spidroin.  The  4RepCT  gen  construct  will  be  coupled  with   different  tags,  the  tags  will  mainly  serve  as  a  purification  tag,  but  will  hopefully  also   increase  the  solubility  of  minispidroin  and  thus  solve  the  problem  of  protein  

aggregation.  The  target  genes  will  be  ligated  to  the  P.  pastoris  expression  vectors   pGAPZαC,  pGAPZαA  and  pPICZαA,  which  will  then  be  transformed  to  P.  pastoris  for   expression  and  secretion  of  the  4RepCT  protein.  Different  modifications  will  be  tried   during  expression  of  the  target  protein  4RepCT,  such  as  alternating  the  cultivation   temperature,  growth  media,  expression  vector  etc.    

                     

(18)

Materials  and  methods  

GENE  AND  EXPRESSION  VECTOR    

For  this  project  5  different  4RepCT  genes  (denoted  A,  B,  C,  D,  E)  were  used  for  ligation   into  different  P.  pastoris  expression  vectors.  Primers  were  design  to  generate  PCR   fragments  of  the  genes  A,  B,  C,  D  and  E,  all  containing  the  part  4RepCT  but  coupled  with   different  tags,  from  template  vectors  containing  such  sequences.  Three  different  P.  

pastoris  expression  vectors  supplied  from  Invitrogen  were  used.  The  expression  vector   pGAPZαA  was  used  for  genes  A,  B,  C,  pGAPZαC  for  genes  B,  D,  E  and  pPICZαA  for  gene  B   and  E.  

 

Infusion  cloning  was  used  for  gene  ligation  of  A,  B,  C  into  the  pGAPZαA  expression   vector.  Following  the  protocol  of  infusion  cloning  (Clontech),  both  the  gene  and  the   vector  were  amplified  using  PCR  amplification  techniques.  Both  forward  and  revers   primer  (DNA  technology)  for  the  vector  contains  21  nucleotides  that  are  complementary   to  part  of  the  pGAPZαA  vector.  A  forward  gene  primer  (DNA  technology)  with  a  15   nucleotide  long  sequence  that  is  complementary  to  the  revers  vector  primer  was  

introduced  to  the  3’end,  whereas  15  nucleotide  sequence  complementary  to  the  forward   vector  primer  were  introduced  to  the  5’end  of  the  reverse  gene  primer  (DNA  

technology).    

 

Forward  primers  and  reverse  primers  (Invitrogen)  for  genes  B,  D  and  E  contain   restriction  endonuclease  recognition  sites.    At  the  3’  end  of  the  forward  primer  a  ClaI   restriction  site  was  introduced,  while  a  NotI  restriction  site  was  introduced  at  the  5’  end   of  the  revers  primer.  Because  T4  ligase  (Fermentas)  was  used  for  cloning,  no  PCR  

amplification  of  the  expression  vector,  pGAPZαC,  was  necessary.  The  pGAPZαC   expression  vector  has  many  restrictions  sites,  whereof  two  of  them  are  ClaI  and  NotI   restriction  sites.  

 

INFUSION  CLONING  PROCEDURE    

Cloning  of  the  genes  A,  B  and  C  to  expression  vector  pGAPZαA  was  done  by  using  

infusion  cloning  technique  and  the  reagents  and  protocol  was  supplied  by  Clontech.  PCR   gen  amplification  was  performed  on  the  gene  template  and  pGAPZαA  with  suitable   primers  to  generate  the  desired  fragments,  followed  by  ethanol  precipitation  of  the  PCR   sample.  The  pellet  was  digested  following  the  protocol  with  enzyme  DpnI  (Fermentas)  in   37°C  over  night.  The  digested  sample  was  run  on  an  agarose  gel  and  the  band  with  the   right  size  of  the  target  gene  was  cut  out  from  the  gel.  Gel  extraction  was  performed  on   the  gel  piece  using  a  gel  extraction  kit  from  Fermentas.  The  concentration  of  the  gen  in   the  gel  extraction  sample  was  measured  using  Nano-­‐drop  (Thermo  Scientific).  Infusion   cloning  and  transformation  to  Top10  E.  coli  (Invitrogen)  was  performed  according  to  the   protocol  provided  by  Clontech.  Spin-­‐column  purification,  Step  5  in  the  protocol  was  not   performed  during  the  procedures.  Transformed  Top10  E.  coli  were  diluted  10  times  and   1/10  of  the  volume  was  plated  on  autoclaved  LB  agarose  plates  with  25μg/ml  Zeocin   (Invitrogen).  The  plates  were  incubated  at  37°  C  for  24  hours  and  after  24  hours  visible   colonies  were  picked  to  a  new  plate  and  used  for  colony  PCR-­‐screening  using  

Gotaqgreen  (Promega).  Positive  colonies  were  incubated  in  10ml  autoclaved  LB  (0.5%  

References

Related documents

Keywords: System design methodology, Signal processing systems, Design decision, Communication, Computation, Model development, Transaction level model, System design language,

Previously the insulin used for treatment was isolated from pancreatic insulin producing cells from pigs, today the insulin used for treatment is human insulin and synthesised

This combined with recent research showing biocompatibility with cells gives the spider silk a wider range of applications such as for biomedical applications. pastoris, with each

Additionally, the spider silk protein could make different material forms like fibers, particles, capsules, films, gels and foams.. Each material form could be use in

Web storage is the combination of localStorage which allows for data to be saved locally and used while the web application is offline and session storage which allows for data to

This project explores the use of the FN-4RepCT silk protein as a matrice for 3D culture of human primary skin cells (i.e. dermal fibroblasts, dermal en- dothelial cells, and

µL of spidroin solution and set to evaporate in ambient conditions; (g) silk sheets are formed at the two hydrophobic liquid:air interfaces: i) at the free top

Another aspect of the surface design is the shape of the pillar heads. For the production in this work, spherical pillar heads were used. However, nanowires could also successfully be