• No results found

Towards Liquid Fuels from Lignin

N/A
N/A
Protected

Academic year: 2022

Share "Towards Liquid Fuels from Lignin"

Copied!
63
0
0

Loading.... (view fulltext now)

Full text

(1)

   

 

Master  Thesis  

 

Towards  Liquid  Fuels  from  Lignin    

     

   

                 

Author:  

Nicola Giummarella

Academic  Supervisor:  

Gunnar Henriksson, Professor in Wood Chemistry Supervisor:  

Christofer Lindgren, CleanFlow Black AB  

Examiner:  

Mikael Lindström, Dean School of Chemical Sciences and Engineering

Pulp  Technology,  Fiber  and  Polymer  Technology  Department,   School  of  Chemical  Science  and  Engineering,    

KTH  Royal  Institute  of  Technology,  Stockholm,  2014

(2)

TABLE  OF  CONTENTS  

ABSTRACT   4  

1.   INTRODUCTION   5  

1.1   THE  NEED  OF  BIOREFINERY   5  

1.2   LIGNIN:  structure  and  properties  of  an  underutilized  resource   5  

1.3   CHEMICAL  PULPING:  different  ways  to  isolate  lignin   8  

1.3.1   Kraft  Pulping   8  

1.3.2   Sulfite  pulping   9  

1.3.3   Organosolv  pulping   10  

1.4   PRECIPITATION  OF  TECHNICAL  LIGNIN   10  

1.5   CONVERSION  TO  LIQUIDS  FUELS   12  

1.6   DISSOLUTION  OF  LIGNIN   13  

1.6.1   Termodynamical  Background   13  

1.6.2   Hildebrand  Solubility  Parameters   14  

1.6.3   Hansen  Solubility  Parameters   15  

1.6.4   Lignin  Solvents   16  

1.6.4.1   METHANOL   17  

1.6.4.2   MBO   17  

1.6.4.3   FORMIC  ACID:  A  H  DONOR  SOLVENT   18  

1.6.4.4   FURFURAL   19  

1.7   REHOLOGY:  laws  and  tests   19  

1.7.1   Hooke´s  Law   20  

1.7.2   Newton´s  law   20  

1.7.3   Dynamic  Mechanical  Testing   21  

1.8   VISCOSITY   22  

1.8.1   Non  Newtonian  Flow  Behaviour   23  

1.8.1.1   SHEAR  RATE  DEPENDENT  FLOW  BEHAVIOUR   23  

1.8.1.2   SHEAR  TIME  DEPENDENT  FLOW  BEHAVIOUR   24  

1.8.2   The  Mark–Houwink–Sakurada  Relationship   24  

1.9   ASH  IN  LIGNIN   25  

2   MATERIALS  AND  METHODS   27  

2.1   δ  HILDEBRAND  VALUES  CALCULATION   27  

2.2   HANSEN  PARAMETERS  DETERMINATIONS   29  

2.3   SOLUBILITY  OF  LIGNIN   30  

2.3.1   Lignin  samples   30  

2.3.2   Experimental  part   30  

2.4   VISCOSITY  AND  RHEOLOGICAL  EVALUATION   31  

(3)

2.5   BLACK  LIQUOR  TITRATION   32  

2.6   WASHING  LIGNIN   32  

2.6.1   Preliminary  test   32  

2.6.2   Lowering  ash   32  

2.6.3   Scaling  Up   33  

2.7   ASH  MOISTURE  CONTENT  ANALYSIS   33  

2.8   FRACTIONATION  OF  LIGNIN   34  

2.8.1   Methanol   34  

2.8.2   MBO   34  

2.9   SEC  SET  UP   35  

2.9.1   Intrinsic  viscosity  by  Mark–Houwink–Sakurada  equation   35  

2.10   HYDROGENATION  OF  LIGNIN   35  

3   RESULTS  AND  DISCUSSION   37  

3.1   LIGNIN  SOLVENTS   37  

3.2   SOLUBILITY  EXPERIMENT   38  

3.3   VISCOSITY  OF  LIGNIN  SOLUTIONS   41  

3.4   BUFFER  CAPACITY  OF  BLACK  LIQUOR   44  

3.5   LOWERING  ASH  CONTENT   45  

3.6   METHANOL  FRACTIONATION  OF  LIGNIN   48  

3.6.1   Lignoboost  Lignin   48  

3.6.1.1   RHEOLOGICAL  ANALYSIS   50  

3.6.1.2   SEC  ANALISYS   51  

3.6.2   Aspa  Lignin   54  

3.7   MBO  EXTRACTION  OF  LIGNIN   55  

3.8   VISCOSITY  EXPLAINED  BY  SEC  RESULTS   57  

3.9   HYDROGENATION  EXPERIMENT  RESULTS   58  

4   CONCLUSIONS   60  

5   ACKNOWLEDGEMENTS   61  

6   REFERENCES   62  

 

(4)

Abstract  

 

The   solubility   of   Lignoboost   lignin   was   compared   with   softwood   lignin   precipitated   from   filtered   black   liquor   and   explained   by   Hilebrand   as   well   as   Hansen  solubility  parameters  theory.  

The  ability  to  dissolve  efficiently  lignin  rises  as  the  hydrogen  bonding  capacities   together   with   the   polarity   of   the   solvents   increases;   similarly,   their   solubility   parameter,   according   to   Hildebrand,   lay   within   the   range   between   twelve   and   fourteen.  

Lower   molecular   weight   lignin   obtained   by   ultrafiltration   is   definitely   more   soluble   than   lignin   obtained   by   Lignoboost   process,   especially   at   higher   concentration.  

 

In   addition,   viscosity   measurements   show   that   solutions   obtained   from   low   molecular  weight  lignin  are  always  less  viscous  than  Lignoboost  solutions.  The   gap  in  viscosity,  between  two  lignins,  becomes  even  higher  at  high  concentration.  

The   relationship   between   molecular   weight   of   lignin   and   viscosity   has   been   demonstrated   by   SEC   analysis   and   application   of   Mark–Houwink–Sakurada   equation.  

 

By   ash   content   evaluation   it   has   been   possible   to   find   out   the   most   efficient   conditions  to  lower  salts  formation  when  lignin  is  burnt.  Several  washes  carried   on  with  cold  and  acidic  water  have  decreased  the  amount  of  ash  to  a  value  lower   than  0,5%  of  dry  weight.    

 The  effect  of  methanol  fractionation  on  the  molecular  weight  and  its  distribution   of  Lignoboost  lignin  has  been  investigated  showing  phase  separation.  The  heavy   and  high  lignin  content  fraction  shows  a  pseudoplastic  behaviour;  however,  its   viscosity   at   low   shear   rate   is   too   high   to   be   interesting   in   a   fuel   production   context  and  because  the  high  volatility  of  methanol.  

 

   

(5)

1. Introduction  

1.1 THE  NEED  OF  BIOREFINERY    

A  biorefinery  is  a  facility  able  to  produce  materials,  fuels,  power,  heat  and  value   added  chemicals  separating  and  modifying  biological  raw  materials  in  order  to   obtain  a  spectrum  of  valuable  half  products.  Efficiency,  logistic  and  know  how  of   petrochemical   refinery   must   be   transferred   into   this   “greener”   conversion   process  so  that  a  complete  use  of  the  biomass  feedstock  and  integration  of  pre   existing   equipment   can   be   carried   oni.   The   concept   of   to   use   renewable   raw   materials   improves   our   technical   culture   and   knowledge   in   terms   of   sustainability  and  it  can  be  seen  as  the  real  answer  to  environmental  and  social   issues  which  are  concerning  our  society.  

Firstly,   the   depleting   stocks   of   fossil   fuels   is   increasing   the   demand   of   new   oil   deposits  leading,  for  instance,  to  worldwide  war  as  it  has  happened  in  Iraq,  one   decade  ago,  or  in  Kuwait  in  ‘90s.  Furthermore,  burning  fossil  fuels  is  increasing   the  emission  of  CO2  and  greenhouse  gases,  which  causes  global  warming  as  well   as  serious  climate  changes.    

On  the  other  hand,  producing  renewable  liquid  fuel  for  transportation  engine,  is   a   great   challenge   in   biofuels   area   since   requires   sustainably   managed   source   materials  with  no  adverse  socio  economic  side  effects.  From  a  technical  point  of   view,   the   liquids   products   have   to   be   fully   compatible   with   the   existing   fuel   technology   and   to   supply   infrastructure,   which   demands   unpolar,   low   viscous   liquids  with  relatively  low  oxygen  content.      

 

1.2 LIGNIN:  structure  and  properties  of  an  underutilized  resource    

Lignin   is   an   amorphous   3D   web   polymer   built   on   by   end   wise   polymerization   (Figure   1)   in   which   the   monolignols   form   covalent   bonds   (C-­‐O-­‐C   or   C-­‐C)   combining   each   other,   first,   by   radical   coupling   and   afterwards   by   either   rearrangement  or  nucleophilic  attack  on  the  electrophilic  α carbon.  

 

Figure  1:  Suggested  lignin  structure.ii    

(6)

Figure   2   shows   the   structure   of   the   most   common   monolignols   and   their   composition  in  different  Phylum  of  plants.    

As  can  be  seen,  these  propyl  phenol  derivates  cumaryl  alcohol,  coniferyl  alcohol   and   sinapyl   alcohol,   respectively,   vary   upon   the   number   of   methoxy   groups   attached   to   the   aromatic   ring   in   ortho   position.   The   lignin   content   in   wood   decreases   with   the   following   order:   softwood>hardwood>grasses.   In   conifers   lignin   is   mostly   formed   by   coniferyl   alcohol   (guaiacyl   structure),   whilst   proportions  from  almost  equal  amounts  of  coniferyl  alcohol  and  sinapyl  alcohol   (syringyl   structure)   to   three   times   higher   levels   of   the   latter,   constitutes   hardwood   lignin.   Grasses   contain   a   mixture   of   all   three   main   monolignols   in   different  proportion.  

 

 

Figure  2:  Lignin  content  and  chemical  structures  of  the  three  primary  lignin  monomers  of  woodiii.  

Lignin  basically  consists  of  a  variety  of  C-­‐C  “condensed”  and  C-­‐O  “ether”  linkages   irregularly  distributed.  Typically,  more  than  two  thirds  of  the  linkages  in  lignin   are  ether  bonds.  The  most  frequent  coupling  link  in  the  lignin  network  is  the  β-­‐O-­‐

4  bond  which  accounts  for  at  least  half  of  all  inter  monolignol  bonds  and  it  is  the   most   easily   broken   by   chemical   pulping.   4-­‐O-­‐5   connects   two   aromatic   rings   whereas   the   C-­‐C   bonds   such   as   β−β, β−5   and   5-­‐5   are   more   chemically   stable   (Figure  3).    

Figure  3:  Most  common  intermonolignols  linkages  in  lignin:  β-­‐O-­‐4,  5-­‐5,  α-­‐O-­‐4,  β-­‐5,  β−β,  4-­‐O-­‐5,  β-­‐1.     iv  

Softwood   27-­‐33   <5   >95   None  

Hardwood   18-­‐25   0-­‐8   25-­‐50   46-­‐75  

Grasses   17-­‐24   5-­‐33   33-­‐80   20-­‐54  

(7)

The   different   composition   of   monolignols   in   hardwood   and   softwood   explains   why  delignification  time  of  conifers  is  longer.    

In   softwood,   for   instance,   the   availability   of   position   5   on   the   ring   (only   one   methoxy   group   is   present   in   coniferyl   alcohol   at   position   3)   creates   the   possibility  to  form  more  condensed  bonds  in  comparison  with  hardwood  where,   instead,   β-­‐O-­‐4   links   are   more   common   and,   as   has   been   told,   easily   to   cleave.    

However,   differences   in   the   chemical   structure   of   hemicellulose   between   hardwood   and   softwood   can   be   as   well   a   reason   for   different   time   of   delignification   required.   Looking   at   Lignin   Carbohydrate   Complexes   (LCC),   the   totally   dominating   xylan   bonded   to   lignin   in   hardwood   has   lower   content   of   condensed  bonds  differently  from  glucomannan  in  softwood  where,  instead,  C-­‐C   linkages  prevail.v    

On   the   contrary,   in   order   to   defibrillate   hardwood   fibers,   the   delignification   process   must   be   carried   on   to   higher   degree   of   delignification   than   softwood.  

This   is   because   lignin   in   the   middle   lamella   of   hardwood   consists   mostly   of   coniferyl   alcohol.     Therefore,   differently   from   the   homogeneous   lignin   composition   of   softwood,   the   “glue”   of   hardwood   fibers   (e.g.   middle   lamella),   consists   of   more   condensed   network.   Because   of   that,   it   is   required   a   delignification  to  a  lower  residual  content  in  order  to  obtain  defibrillation.  

 

Roughly   80%   of   lignin   can   be   found   in   secondary   cell   wall   even   if   the   concentration  is  higher  in  the  middle  lamella  where  lignin  acts  as  glue  between   the  fibers.  Due  to  presence  of  aromatic  rings,  lignin  is  hydrophobic  and  seems  to   play  an  extremely  important  role  in  the  water  transportation  along  the  plant.  

Furthermore,   lignin   stiffens   the   cell   wall   providing   the   typical   mechanical   properties  of  a  woody  plant;  as  a  demonstration  of  this,  non  woody  plants  such   as  Herbs  are  soft  and  flexible  since  the  lignin  content  is  low.  Lignin  is  thought  to   provide   resistance   to   microbial   attack.   The   higher   degree   of   branching,   due   to   impossibility   of   close   packing   and   formation   of   crystals,   makes   lignin   optically   inactive  and  very  amorphous.  This  last  property  explains  the  ability  of  lignin  to   act  as  interface  between  the  cellulose  and  hemicellulose  filling  up  all  the  cavities.  

The   3D   network   of   lignin,   exactly   the   α   carbon,   is   covalently   linked   either   through   esther   or   ether   bond   or   by   phenyl   glycoside   bond   to   different   polysaccharides.   The   curing   effect   of   LCC   avoids   swelling   and   increase   the   stiffness  of  wood.vi  

Lignin,   being   one   of   the   three   main   components   of   woody   plants,   it’s   the   third   most  common  biopolymer  on  Earth  after  cellulose  and  chitin.  Moreover,  lignin  is   the   largest   renewable   source   of   aromatics   on   Earth   with   quite   high   specific   energy   content   due   to   more   reduced   carbons   (redox   number   ≈   -­‐0.4).vii  than   carbohydrates   (redox   number:   0-­‐1)   Furthermore,   pulp   and   paper   industries   generate  enormous  amounts  of  lignin  as  by-­‐product,  which  is  mostly  utilized  as  a   low  grade  boiler  fuel  to  provide  heat  or  power  in  the  pulp  process.    

On  the  one  hand,  looking  at  the  chemical  structure  of  lignin  it  can  be  seen  that,  if   it   could   be   broken   into   smaller   molecular   units,   it   might   be   a   good   source   of   valuable   fuels.  On   the   other   hand,   the   hydrophobic   complex   3D   structure   covalently  crosslinked  mostly  to  the  hydrophilic  hemicellulose  makes  impossible   to  extract  lignin  as  it  is  in  nature.  Therefore,  pretreatments  as  chemical  pulping   or  steam  explosion  are  condicio  sine  qua  non  to  fractionate  lignin  even  if  chemical   modifications  make  it  dramatically  different  from  the  native.  Furthermore,  poor   product   selectivity   of   biorefinery   process,   formation   of   a   more   condensed  

(8)

structure  during  thermochemical  process  and  ease  of  use  as  a  solid  fuel  thanks  to   new   technology   (i.e.   Lignoboost)   are   some   of   the   biggest   obstacle   in   the   development  of  lignin  as  raw  material  of  biorefining  technologiesviii.  

Finally,   most   of   the   biorefinery   processes   are   more   focused   on   utilizing   easily   convertible  and  more  profitable  fractions  such  as  cellulose  and  hemicelluse  (i.e   generation  of  ethanol  by  fermentation)  rather  than  unremunerative  lignin  which,   at  present  state  of  art,  is  still  underutilized.  

 

1.3 CHEMICAL  PULPING:  different  ways  to  isolate  lignin      

Lignin  can  be  isolated  from  wood  by  broadly  two  main  methods:  

-­‐ Solubilisation   of   hemicellulose   and   cellulose   with   precipitation   of   lignin   as   insoluble   residue   (i.e.   Klason   lignin   or   byproduct   lignin   produced   from   ethanol  process  in  a  biorefinery,  e.g.  EPL).  

-­‐ Dissolution,   removal   and   recovery   of   lignin   leaving   most   of   cellulose   and   hemicellulose   as   insoluble   residue.   This   happens   during   chemical   pulping   where  depolymerisation,  increasing  lignin  solubility  and  breaking  of  LCCix  are   the  main  steps  adopted.    

The  amount  of  lignin  obtainable  from  Kraft  pulping  is  the  highest  ever,  since  it   accounts  for  about  90%  of  the  world  production  capacity.x    

In  addition  to  that,  technical  lignin  recovered  is  one  of  the  most  interesting  as  a   fuel   source   being   less   oxidized   than   lignin   obtained   from   bleaching   but,   on   the   other  hand,  it  is  not  water  soluble  as  lignosulfonates  derived  from  sulfite  pulping.  

Therefore,  the  main  methods  of  chemical  pulping  as  isolation  method  of  lignin  is   going   to   be   further   discussed,   underlining,   from   a   chemical   point   of   view   the   different  processes.  

 

1.3.1 Kraft  Pulping    

The   key   reaction   in   alkaline   condition   (initial   pH>13)   and   high   temperature   (>160°C)   of   Kraft   pulping   is   the   cleavage   of   non   phenolic   β-­‐O-­‐4   bonds   with   formation  of  phenolic  residues.  This  step  is  important  also  in  soda  pulping  which   is   mostly   used   for   non   woody   plants   (low   lignin   content)   and   therefore   not   interesting   in   this   dissertation.   During   this   relatively   slow   reaction,   due   to   alkaline   condition,   ionization   of   α   hydroxyl   occurs   (α   alcohol   is   more   reactive   than   alcohol   in   γ   position   since   it   is   a   secondary   alcohol).   Nucleophilic   attack   in β   electrophilic   carbon   with   formation   of   epoxide   leads   to   depolymerisation   due  to  the  cleavage  of  a  new  phenolic  group  from  β position  (Figure  4).  

 

Figure  4:  Alkali  depolymerisation  of  non  phenolic  β-­‐O-­‐4  bondsxi.    

(9)

The  phenolic  lignin  cleaved  up  is  the  starting  point  of  the  next  peeling  reaction   where  mono  lignol  residues  are  cut  one  by  one.  This  step  is  faster  and  is  strongly   dependent   on   concentration   of   sulfide   so   that   the   selectivity   and   efficiency   of   delignification  is  strongly  affected  by  concentration  of  HS-­‐.  After  deprotonation   of   phenolic   end   groups   and   due   to   the   presence   of   LCC   in   α   position,   the   zwitterion  quinone  methide,  as  intermediate  resonance  form,  is  created.  Sulfide   ion   performs   nucleophilic   attack   on   α   position,   deprotonates   and   episulfide   is   formed  between  α  and  β  carbon.  Last,  elementary  sulfur  is  released  forming  an   unsaturation  on  the  aliphatic  chain  of  the  mono  lignol  structure  (Figure  5).  

 

Figure  5:  Peeling  reaction  of  monolignol  units  from  phenolic  end  groupsxii.    

However,   during   final   delignification   when   the   concentration   of   sulfide   ions   is   low,  unfavourable  side  reactions  leading  to  “dead  ends”  become  more  and  more   common,  decreasing  the  selectivity  of  process.  Both  enol  ether  formation  with   formaldehyde   as   leaving   group   and   condensation   by   radical   coupling   stop   the   delignification   process   making   it   impossible   to   remove   all   of   the   lignin   from   a   fiber.  Last  but  not  least,  it  has  been  shown  that  LCC  is  the  biggest  problem  for   complete  delignification  since  some  of  them  are  strong  enough  to  survive  Kraft   cookxiii.    

The   reaction   described   in   figure   5   has   the   same   mechanism   during   anthraquinone   and   polysulfide   pulping   where   one   of   the   main   differences   regards   the   reactive   species:   respectively   dehydroanthraquinone   and   polysulfide,  both  strong  nucleophilic  attacking  α  position  in  phenolic  lignin.  On   one   hand,   both   pulping   methods   are   more   efficient   as   well   as   selective   than   Kraft  one  since  are  able  to  oxidize  the  reducing  end  of  polysaccharides  slowing   down  the  peeling  reaction  of  carbohydrates.  Furthermore,  “dead  end”  stable  in   Kraft   pulping   as   enol   ethers   can   be   to   some   extent   cleaved   in   presence   of   polysulfide.    

Nevertheless,   the   former   has   been   discovered   to   be   carcinogenic   whereas   the   latter  is  less  doable  in  practice  than  it  is  theoretically.  

 

1.3.2 Sulfite  pulping    

The   importance   of   sulfite   pulping   has   dramatically   decreased   in   the   last   years   compared  to  Kraft  one  and  only  about  10%  of  the  pulp  is  currently  produced  by   this  methodxiv.  

During   acidic   sulfite   pulping   wood   is   heated   in   presence   of   HSO3-­‐   anion   with   calcium,   magnesium   or   sodium   as   counter   ion.   Lignin   is   removed   by   introduction  of  sulfonic  acid  (sulfonation)  to  the  α  carbon,  which  subsequently   leads  to  solubilisation.  Differently  from  Kraft  lignin,  which  is  only  soluble  at  pH   higher   than   10,   lignosulfonates   are   soluble   over   almost   the   whole   pH   range.  

(10)

However,  the  introduction  of  charged  groups  together  with  an  amount  of  sulfur   accounting   for   4-­‐8   wt.%,xv  twice   as   much   as   the   amount   in   Kraft   lignin,   makes   lignosulfonate   soluble   in   cooking   liquor   when   reach   markedly   higher   average   molecular   weight   than   Kraft   lignin.   Therefore,   the   high   content   of   sulfonate   groups   incorporated   in   the   sulfite   lignin,   needs   more   intense   flue   gas   purification  when  burning  sulphite  lignin.    

Lastly,  it  must  be  noticed  that  average  molecular  weight  of  lignosulfonates  from   softwood  (≈60kDa)  is  significantly  higher  than  lignosulfonates  from  hardwood   (≈12kDa)xvi.   The   amphiphilic   structure   made   by   hydrophobic   aromatic   group   and   hydrophilic   propane   unit   makes   this   biorefinery   product   widely   used   as   industrial   binder,   dispersing   agent   in   oil   drilling   and   additive   to   concrete   and   asphalt.  Finally,  it  must  be  mentioned  that  softwood  lignosulfonates  are  the  raw   materials  for  synthesis  of  vanillin.  

 

1.3.3 Organosolv  pulping    

The  key  concept  is  to  increase  the  solubility  of  the  hydrophobic  lignin  by  using   organic  solvents  such  as  ethanol,  methanol,  acetic  or  formic  acid  with  ≈50%  of   water.  Pulping  can  be  carried  out  in  alkaline  as  well  as  acidic  catalyst  condition.  

In  the  first  case,  the  chemical  reactions  are  identical  as  those  explained  in  Kraft   pulping   whilst   at   low   pH,   LCC   linked   by   α   ethers   are   broken   by   solvolysis   combined  with  hydrolysis.  Lignin  is  cleaved  up  at β  position  where  C-­‐O  bounds   are   present.   Using   methanol   as   a   solvent,   methylated   lignin   is   created   with   therefore  more  hydrophobic  behaviour  than  Kraft  lignin.  

Finally,  it  is  important  to  point  out  that  the  organosolv  lignin  is  one  of  the  most   suitable  types  of  technical  lignin  for  further  conversion  and  valorisation  thanks   to  its  sulfur  free  composition.  

In  spite  of  these  advantages,  organosolv  pulping  has  not  been  yet  widely  adopted   in   a   production   scale   mill   due   to   expensive   and   difficult   recovery   of   organic   solvents,  which  affects  the  sustainability  of  the  processxvii.    

 

1.4 PRECIPITATION  OF  TECHNICAL  LIGNIN  

 Black  liquor  is  obtained  as  by-­‐product  of  chemical  pulping.  It  mostly  consists  of   inorganic   elements   (sodium  and   sulphur)   as   well   as   a   mixture   of   organic   compounds   such   as   dissolved   lignin,   extractives   (volatile   and   hydrophobic   compounds)   and   hydroxyl   acids   with   acetate   ions   originating   from   unwanted   peeling  reactions  and  alkaline  hydrolysis  of  carbohydrates.    

However,   the   proportion   of   the   organic   and   inorganic   components   in   black   liquor   varies   from   mill   to   mill   due   to   the   natural   variations   of   the   organic   constituents  in  wood  species  and  the  cooking  conditions  of  each  particular  mill.    

 One   important   property   of   black   liquor   is   that   it   contains   several   chemical   species   that   act   as   buffers,   such   as   OH-­‐,   CO32-­‐  (pKa2   ≈   10.2),   phenolic   groups             (pKa   9.4–10.8),   HS-­‐   (pKa1  ≈   7)   and   carboxylic   groups   (pKa   ≈   4.4)   on   lignin   together  with  other  organic  acidsxviii.  

Nowadays,  the  majority  of  the  mills  burn  the  organic  content  of  black  liquor  in   recovery  boilers  for  the  production  of  electricity  and  steam  and  very  few  Kraft   mills  (2%)xix  make  commercial  lignin  for  sale.  However,  lignin  must  be  seen  as  an  

(11)

added  value  of  chemical  pulping  and  should  be  therefore  recovered  for  at  least   two  reasons:  

• It  has  very  high  value  as  energy  source  (about  26  MJ/kg)xx.  

This   is   the   main   reason   making   lignin   the   best   alternative   to   fossil   oil   based   fuels,   which,   together   with   beck   oils,   are   conventionally   used   in   kraft  mill  lime  kilns.  

• When   increasing   production   of   existing   chemical   pulping   mills   leads   to   increased   chemical   recovery   demand   in   the   evaporation   plant   and   recovery  boiler.  Nowadays,  the  recovery  boiler  is  limited  by  the  heat  load   and   many   mills   run   their   boiler   close   to   its   maximum   limit.   Hence,   removing  lignin  from  black  liquor,  which  stands  for  approximately  35%  of   the   dry   solids   content   and   has   the   highest   energy   value,   prior   to   combustion  could  be  an  effective  solution.  In  this  way  the  overall  heating   value   of   black   liquor   together   with   the   demand   on   the   recovery   boiler   decreases.   This   means   that,   at   unchanged   availability,   the   flow   of   black   liquor  can  be  increased  and  therefore  also  the  pulp  production.xxi  

 Kraft  lignin  can  be  recovered  by  acidification  of  the  black  liquor  in  high  yields.  

Being  soluble  in  basic  condition,  lignin  precipitates  at  low  pH  due  to  protonation   of   phenols   first   and   carboxylic   groups   afterwards   with   consequent   losing   of   charges   and   thus   solubility.   Lignin   starts   to   precipitate   at   pH   of   approximately   11.5,   with   the   yield   increasing   to   approximately   60%   of   the   original   lignin   content  at  pH  10.  (Figure  6)  

 

Figure  6:  Yield  of  softwood  lignin  precipitated  with  CO2  and  H2SO4  at  80ºC  at  various  pH.  BL1  and    

BL2  are  different  batches  of  black  liquor  from  the  same  softwood  kraft  millxxii    

The   most   common   way   to   create   acidic   environment   in   black   liquor   is   either   adding  sulfuric  acid  or  reacting  with  CO2,  which,  in  turn,  creates  carbonic  acid.    

The   last   method   is   more   sustainable   since   the   remaining   liquid,   after   lignin   precipitation,  can  be  used  in  the  chemical  recovery  system  in  order  to  regenerate   white  liquor  without  affecting  the  sodium  to  sulphur  relationship.  Conversely,  it   has  been  reported  that  lignin  precipitation  by  the  addition  of  a  weak  acid  as  CO2  

gives  slightly  lower  yield  than  precipitation  with  H2SO4.    

Precipitated   lignin,   wet   and   dirty,   must   be   afterwards   washed   and   filtered.  

However,  filtration  is  not  so  easy  to  perform  since  lignin  can  dissolve  again  due   to  lowering  of  ion  strength  and  excessive  pH  gradient  between  washing  liquors.  

Both   effects   form   gels   that   clog   the   filter   matrix   and/or   the   filter   media.  

Furthermore,   the   case   of   more   or   less   complete   plugging,   consisting   in   an   extremely  low  flow  of  washing  liquor  through  the  cake,  results  in  very  high  levels  

(12)

of  impurities  in  the  lignin.  

Lignoboost  process  has  solved  this  issue  by  resuspending  the  initial  filter  cake  in   acidified   water.   Thus,   the   right   values   of   pH   and   ionic   strength   are   created   so   that  the  precipitate  is  stable  enough  to  be  re  filtered  and  lastly  washedxxiii.  The   clogging   problem   can   be   also   avoided   by   ultrafiltration   process   since   ceramic   filters   are   not   affected   by   temperature   and   pH   variation.   Depending   on   pore   sizes,   lignin   with   same   molecular   weight   and   more   homogeneous   composition   can  be  separated  in  a  cheaper  way  than  Lignoboost.  

 

1.5 CONVERSION  TO  LIQUIDS  FUELS    

Besides  the  widespread  generation  of  energy  by  burning,  lignin  can  be  converted   by  thermochemical  processes  into  liquid  fuels  for  transportation  engines.  

However,   due   to   the   complex   structure   of   lignin   and   the   poor   selectivity   of   conversion,  these  processes  must  be  tailored  by  presence  or  absence  of  solvents,   chemical   additives,   reaction   condition   and   catalysts.   Yields,   composition   of   degradation  products  and  severity  factor  are  important  parameters  that  vary  on   the  process  type  and  the  condition  applied.    

 

Figure  7:  H/C  and  O/C  ratio  for  several  solid  fuels  (Van  Krevelen  diagram)xxiv.  The  ratio  of  technical    

lignin  are  showed  by  the  black  arrow      

Van   Krevelen   diagram   plots   the   Hydrogen/Carbon   molar   ratio   over   Oxygen/Carbon  molar  ratio.  The  target  of  thermochemical  process  is  to  reach  the   composition  of  ideal  hydrocarbon  which,  having  a  content  of  H  twice  as  much  as   C  and  no  presence  of  O,  lays,  in  the  diagram,  at  the  top  of  left  corner.  As  can  be   seen  in  figure  7,  values  of  O/C  in  lignin,  varying  between  0,3  and  0,4  for  coniferyl   and   sinapyl   structure   respectively,   shows   a   definitely   higher   content   of   O   than   the   desired   one.   Moreover,   the   presence   of   aromatic   rings   in   lignin   structure   lowers   the   molar   ratio   of   H/C   in   comparison   with   aliphatic   hydrocarbons   to   a   value  of  approximately  of  1,2.  Consequently,  during  conversion  of  lignin  to  liquid   fuels,   deoxygenation   as   well   as   hydrogenation   must   be   carried   on.   The   former   may  be  done  thermally  since  CO2  and  H2O  are  released  with  heat;  the  latter  needs   special  chemical  condition  as  reducing  agents  or  hydrogen  donors  such  as  formic   acidxxv.   Furthermore,   depolymerisation   of   the   modified   lignin   resulting   from   chemical  pulping  is  a  condicio  sine  qua  non  for  the  conversion  into  liquid  fuels.  

Bond  cleavages  at  the  α  aromatic  ring  bondxxvi  and  β-­‐O-­‐4  are  the  most  probable   pathways   that   occur   prior   to   demethylation   of   aryl   methoxyl   groupsxxvii,   either  

(13)

directly,  or  after  α−β  dehydration.  Lastly,  C-­‐C  bonds  in  the  “dead  ends”  such  as   enol   ethers   and   stillbenes   created   by   alkaline   pulping   must   be   cleaved   off   in   order  to  increase  the  yield  of  conversion.  

 

1.6 DISSOLUTION  OF  LIGNIN  

1.6.1 Termodynamical  Background    

A  solution  is  generally  defined  as  a  homogeneous  blend  consisting  of  one  phase   containing   more   than   one   component   evenly   distributed.   This   might   be   a   polymer  and  a  solvent  or  two  different  polymers.    

Thermodynamically  speaking,  to  fulfil  the  requirement  of  miscibility  and  to  have   a   spontaneous   solution   process,   the   change   in   free   energy   ΔGmix   upon   mixing   must  be  negative  as  shown  in  equation  1.  

 

∇𝐺!"# = ∇𝐻!"#− 𝑇∇𝑆!"# < 0    

Equation  1:  Free  enegy  Gibbs  of  mixing  

∇𝐺!"#  is   the   change   in   Gibbs   free   energy   on   mixing,  ∇𝐻!"#  is   the   enthalpy   of   mixing   whereas  ∇𝑆!"#  is   the   entropy   of   mixing.   Lastly,   T   is   the   temperature   in   Kelvin.  T∇𝑆!"#is  always  positive  since,  by  mixing,  there  is  always  an  increase  in   entropy,  therefore  the  sign  of  ∇𝐺!"#depends  not  only  on  how  large  ∇𝑆!"#  is,  but   also  on  the  magnitude  of  the  enthalpy  of  mixing  ∇𝐻!"#.  Obviously,  the  higher  is   the  mixing  temperature  the  more  negative  is  ∇𝐺!"#.  

However,   equation   1   is   a   necessary   but   not   sufficient   condition   for   solubility   since  the  miscibility  of  a  polymer  in  solution  also  depends  on  the  molar  fraction   of   the   two   components   (𝑣!"#$%&', 𝑣!"#$%&'),   the   number   of   monomers  𝑥  in   the   polymer   being   dissolved   and  𝑋!"  which   is   Flory-­‐Huggins   parameter   interaction   between  polymer  and  the  specific  solvent.  (Equation  2)  

This   last   parameter,   estimated   from   solubility   parameters   is   not   always   concentration   independent   but,   as   a   rule,   an   amorphous   and   linear   polymer   is   soluble  if  𝑋!"is  lower  than  0,5.  Lastly,  R  stands  for  the  gas  constant.    

  ∇𝐺!"#

𝑁 = 𝑅𝑇𝑋!"𝑣!"#$𝑣!"#+ 𝑅𝑇(𝑣!"#$𝑙𝑛𝑣!"#$+  𝑣!"#

𝑥 𝑙𝑛𝑣!"#) < 0    

Equation  2:  Flory-­‐Huggins  model  for  a  polymer  in  solution  

In  equation  2,  which  is  the  Gibbs  free  energy  of  mixing  for  mole,  the  temperature   dependence  of  a  polymer  in  solution  cannot  be  easily  predicted  as  it  happens  for   small   molecules   in   solution.   This   is   because   polymers   show   both   upper   and   lower  critical  temperature  solution  and  often  an  increase  in  temperature  leads  to   lower  solubility.  Looking  at  equation  2  this  can  be  explained  by  the  presence  of   the  factor  T  (absolute  temperature)  also  in  the  enthalpic  term.  

Moreover,  a  crucial  role  for  the  solubility  of  a  polymer  is  played  by  its  degree  of   polymerization  expressed  by  the  term  𝑥.  Differently  from  low  molecular  weight   substances,  the  entropy  decreases  with  !!  making  its  contribute  very  small.  

(14)

Similarly,  the  longer  is  the  polymer’s  chain,  the  lower  is  the  entropic  term,  which   means  that  the  enthalpic  term  must  be  either  close  to  zero  or  negative  to  obtain  

∇!!"#

!  < 0.  

 

1.6.2 Hildebrand  Solubility  Parameters    

The  solubility  of  a  mixture  of  a  polymer  as  lignin  in  solution  can  be  explained  by   Hildebrand  solubility  parameter  theory.  One  of  the  simplest  notion  in  chemistry  

“like  dissolves  like”  or,  to  be  more  scientific,  the  prediction  of  solubility  can  be   explained  qualitatively  by  the  similarity  in  chemical  groups  between  solvent  and   polymer  whilst  quantitatively  by  Gibbs  free  energy  (equation  2).  

As  reported  by  Schuerchxxviii,  the  ability  of  a  solvent  to  dissolve  lignin  is  upon  to   the  cohesive  energy  density  (CED)  and  molar  volume,  according  to  equations  3-­‐5.    

 

𝛿 = 𝐶𝐸𝐷 = (𝐸 𝑉)!!    

Equation  3:δ  Hildebrand  value  calculation  

 

where:  

𝐸 = ∆𝑒!

!    

Equation  4:  Energy  vaporization  value  

𝑉 = ∆𝑣!

!    

Equation  5:  Molar  volume  value  

E  and  V  are  obtained  by  the  sum  of  atomic  and  functional  group  contributions  for   the   energy   of   vaporization   at   zero   pressure   and   molar   volume,   respectively,   of   the  molecule.  

To  put  it  in  other  words,  δ  is  a  measure  of  the  intermolecular  attraction  forces  in   a   material   provided   by   the   cohesive   energy.   Denoting   FAA   the   attraction   forces   between  the  molecules  of  material  A  (for  instance  lignin),  FBB  the  forces  between   the   molecules   of   another   material   (solvent);   FAB   represents,   indeed,   the   attraction  between  A  and  B.  A  homogenous  solution  will  result  if  FAB  >FAA  and  FAB  

>  FBB.  According  to  Schuerchxxix  it  is  possible  to  calculate  the  δ  value  also  for  low   molecular  weight  solvents  by  equation  6:  

 

𝛿 = [ ∇𝐻 − 𝑅𝑇 𝜌

𝑀! ]!!      

Equation  6:  δ  Hildebrand  value  calculation  for  solvents  

What  is  more,  δ  value  of  an  organic  solvent  water  system  can  be  calculated  by   empirical  method  described  by  the  following  equation:  

 

(15)

𝛿! = 𝑥!𝛿! =

!

!

𝑥!𝛿!+ 𝑥!𝛿!+ ⋯    

Equation  7:  δ  value  for  solvents  mixture  

Were  𝛿!  is   the   δ  value  of  water  solvent  mixture,  𝑥!  is   the   volume   fraction   of   ith   solvent  and  𝛿!  is  the  δ  value  of  the  ith  solvent.    

ΔH  is  the  vaporization  heat  in  cal/mol,  T  is  the  boiling  point  in  K,  ρ  the  density  in   g/cm3  and  Mw  the  molecular  weight  in  g/mol.    

Finally,  a  good  solvent  for  a  certain  solvent  must  have  a  Hilderbrand’s  solubility   parameter  as  close  as  possible  to  that  of  solute  (Equation  8).    

 

𝛿!"#$%&−  𝛿!"#$%&' ≤ 1    

Equation  8:  Solubility  condition  by  Hildebrand  

If   different   solvents   have   the   same   value,   the   higher   is   the   capacity   to   form   hydrogen   bonding,   the   better   is   the   ability   to   dissolve   lignin.   Despite   this,   the   biggest  limitation  of  Hildebrand’s  theory  regards  the  pertinence  for  only  apolar   and  slightly  polar  systems.xxx  

 

1.6.3 Hansen  Solubility  Parameters      

The  breakthrough  of  Hansen  solubility  theory  consists  in  the  fact  that  the  total   cohesive   energy   (CED)   of   a   solvent   or   polymer   is   split   in   three   major   intermolecular  interactions:    

 

• 𝛿!  (nonpolar)  dispersion  forces  

• 𝛿!  (polar)  permanent  dipole–permanent  dipole  forces  

• 𝛿!  (polar)  hydrogen  bonding    

The  nonpolar  cohesive  energy  𝛿!  derives  from  induced  dipole  or  van  der  Waals   forces,   which   are   also   called   atomic   or   dispersion   interactions.   All   molecules   contain  these  attractive  forces.    

Conversely,  𝛿!  is   the   polar   cohesion   energy,   which   results   from   inherently   molecular  interactions  and  is  essentially  found  in  polar  (non  centrosymmetric)   molecules.   The   molecular   dipole   moment   is   the   most   important   parameter   accounting   for   this   value.   The   last   third   and   major   cohesive   energy   source,  δ!,   takes   into   account   the   hydrogen   bonding   ability   which,   according   to   a   modern   definition,   deals   with   “attractive   interactions   between   a   hydrogen   atom   from   a   molecule  or  a  molecular  fragment  X–H  in  which  X  is  more  electronegative  than  H   and   an   atom   or   a   group   of   atoms   in   the   same   or   a   different   molecule   in   which   there  is  evidence  of  bond  formation”xxxi.    

Therefore,  as  explained  before,  the  energy  of  vaporization  can  be  split  into  three   individual  energies  that  makes  it  up  (Equation  9):  

 

𝐸 = 𝐸!+ 𝐸!+ 𝐸!    

Equation  9:  Contributions  to  energy  of  vaporization  according  to  Hansen  

(16)

Dividing   the   heat   of   vaporization   by   the   molar   volume   is   obtained   the   square   value   of   Hildebrand   solubility   parameter,   which   is   expressed   as   the   sum   of   Hansen’s  components  (Equation  10):  

  𝐸

𝑉 = 𝐸! 𝑉 +𝐸!

𝑉 +𝐸!

𝑉 = 𝛿! = 𝛿!!+ 𝛿!! + 𝛿!!      

Equation  10:  Relationship  between  Hansen  and  Hildebrand  solubility  parameters  

According   to   Hansen   theory,   any   molecular   substance   can   be   represented   by   a   point  in  a  tridimensional  space,  whose  orthogonal  axes  are  δ!,  δ!, δ!.  

Within   Hansen   space,   a   polymer   is   represented   not   only   by   their   axes,   as   with   solvents,   but   also   by   an   interaction   radius   (R0).   Thus,   a   solubility   sphere   is   created  whose  centre  coordinates  are  δ!,  δ!, δ!.  All  good  solvents  for  a  polymer   should  stay  within  this  sphere  whereas  the  poor  ones  should  be  outside.    

A   useful   parameter   for   comparing   two   substances   is   the   solubility   parameter   distance   (RA):   it   is   based   on   respective   Hansen   components   of   polymer   P   and   solvent  S:  

 

𝑅!! = (2𝛿!,! −  2𝛿!,!)!+ (2𝛿!,!−  𝛿!,!)!+ (2𝛿!,!−  𝛿!,!)!    

Equation  11:  Solubility  parameter  distance  by  Hansen  

Obviously,  so  that  a  solvent  could  stay  inside  the  Hansen  solubility  sphere  of  the   polymer,   the   condicio  sine  qua  non   is   that   the   solubility   parameter   distance   RA  

must   be   smaller   than   R0   or,   in   other   words,   their   ratio,   the   Relative   Energy   Difference  (RED),  should  be  less  than  a  unit.  

 

𝑅𝐸𝐷 =𝑅!

𝑅! < 1    

Equation  12:  Condition  of  solubility  by  Relative  Energy  Difference  definition  

 

1.6.4 Lignin  Solvents    

Regarding   lignin,   it   is   markedly   known   the   ability   to   dissolve   lignin   of   basic   solvents   as   ammonia   or   sodium   hydroxide,   no   wonder   if   this   latter   is   used   in   Kraft   and   soda   pulping.   However,   the   presence   of   non   organic   elements   as   sodium,  would  increase,  even  more  in  the  case  of  Kraft  lignin,  its  presence  in  the   composition   of   the   mixture   solvent   lignin.   As   a   result   of   this,   the   ash   content   resulting  after  combustion  of  the  lignin  fuel  will  be  quite  high  due  to  formation  of   sodium  salts.  What  is  more,  differently  from  organosolv  process,  Kraft  lignin  has   a  lower  purity  due  to  the  presence  of  organic  sulphur:  covalent  and  strong  bonds   between  lignin  and  sulphur,  created  in  pulping  condition.    

Likewise,  dissolving  lignin  in  ammonia,  even  if  successful  in  terms  of  solubility,   would   be   meaningless   in   a   fuel   context   due   to   the   production   of   toxic   mono   nitrogen  oxides  NO  and  NO2  well  known  as  NOX  

Since  lignin  is  slightly  hydrophobic,  water  is  obviously  a  poor  solvent  at  least  at   room   temperature   and   when   lignin   is   protonated.   However,   it   has   been   investigate   that   low   molecular   weight   lignin   can   form   a   homogeneous   solution  

(17)

with  quite  acceptable  viscosity  at  60°C.  Temperature  of  roughly  140°C  is  needed   to   obtain   a   quite   similar   liquid   and   homogenous   solution   from   water   and   unfiltered   lignin.   Therefore,   quite   harsh   conditions   as   well   as   pressurised   environment   are   needed   for   high   molecular   weight   lignin.   Furthermore,   it   is   commonly  recognized  that  if  water  is  used  as  solvent  in  fuel  production,  although   costless   and   always   available,   will   definitely   lower   the   heating   value   of   the   mixture.    

 

1.6.4.1 METHANOL    

Firstly,  methanol  must  be  considered  from  a  biorefinery  point  of  view  since  is  a   byproduct  of  the  evaporation  plant  in  a  pulp  mill  during  the  rise  of  dry  content  of   black  liquor.  Secondly,  it  is  relatively  cheap.  

Moreover,   it   has   been   reported   that   methanol   is   not   only   a   good   solvent   for   efficient   purification   and   fractionation   of   lignin   but   also   that   repeated   MeOH   fractionations   of   softwood   Kraft   lignin   successfully   remove   the   low   molecular   weight   fractions.   Remaining   high   molecular   weight   lignin   shows   a   Tg   and   char   formation   much   higher   than   original   lignin.   Conversely,   the   MeOH   soluble   fractions  show  a  much  lower  molecular  weight  and  Tg  than  the  referencexxxii.   Last   but   not   least,   it   is   well   known   that   methanol   is   used   as   an   additional   chemical   in   sulphite,   Kraft   and   soda   pulping   and,   together   with   ethanol,   is   the   most  common  solvent  used  in  organosolv  pulping.  

On   the   other   hand,   the   toxicity   and   the   low   vapour   pressure   of   methanol                           (Tb   =63°C)   are   undoubtedly   seen   as   cons   in   a   fuel   production   and   use.   For   instance,  pressurized  and  thick  wall  pipes  are  needed  in  order  to  handle  the  high   pressure  created  inside  at  high  temperature.  

 

1.6.4.2 MBO      

Another   interesting   solvent   found   in   literature   is   MBO,   which   stands   for   2-­‐

methyl  3-­‐buthene  2-­‐ol  whose  molecular  structure  is  shown  in  figure  8.  

 

Figure  8:  MBO:2-­‐methyl  3-­‐butene  2-­‐ol  

As  reported  by  Guayxxxiii,  MBO  is  a  special  lignin  solvent  due  to  its  advantages  in   comparison  to  other  organic  solvent  as  ethanol  or  methanol  since  it  is  not  only   biologically   produced   but   also   has   chemical   properties   more   suited   to   fuel   production  and  use.    

To   be   more   specific,   speaking   about   the   production   of   fuels   from   black   liquor   where   protonated   lignin   is   dissolved   in   aqueous   solution,   if   ethanol   is   used   to   dissolve  lignin,  being  miscible  with  water  and  not  very  volatile,  requires  energy   intensive  distillation  to  be  recovered.    

On   the   other   hand,   MBO   is   more   volatile   and   has   a   density   less   than   water         (0,824  g/ml),  making  its  separation  less  energy  intensive  or  just  by  gravity.  More   specifically,  the  water,  being  denser  than  the  solvent,  naturally  separates  under   the  influence  of  gravity  from  the  MBO  lignin  mixture  greatly  reducing  the  energy  

References

Related documents

aromatic monomers; biorefinery; catalysis; kraft lignin; lignin depolymerization; lignin valorization; microbial conversion; renewable chemicals; techno-economic

Acetoacetyl reductase, 3; PHA polymerase, where cofactors and other substrates are not shown.. 6 As with many other genetic pathways, the genes from C. necator for

Besides the advantage of being easily recycled from a system using a magnet, magnetic biochars/bio-activated carbons, which are produced by adjusting biochar / bio-activated

From experiment performed in 4.3, it is known that the food waste liquid fraction is limited on nitrogen sources and therefore it was of our interest to investigate similar

Among the different fuels assessed by S-LCA in this study, various fossil fuels and renewable bio- fuels displayed high or very high risks of negative social impacts. Thus,

Det prov med högst andel löst lignin valdes från varje pH-värde för att ta vidare till steg 2, vilka är prov 4, 9 och 12.. Efter att ytterligare kemikalier tillsatts till de

[r]

With his concept in mind, we have through thematization, planning, interviewing, data reduction, analysis, verification and final reporting (1997; 85, 213, 214) been