• No results found

Introductory physics students' conceptions of algebraic signs used in kinematics problem solving

N/A
N/A
Protected

Academic year: 2022

Share "Introductory physics students' conceptions of algebraic signs used in kinematics problem solving"

Copied!
47
0
0

Loading.... (view fulltext now)

Full text

(1)

Examensarbete  C,  15  hp     Juni  2014   Uppsala  universitet  

 

Introductory physics

students’ conceptions of algebraic signs used in

kinematics problem solving

Moa Eriksson

                     

Supervisor: Cedric Linder Subject reader: John Airey

Divisions of Physics Education Research, Department of Physics and Astronomy

(2)
(3)

Abstract

The  ways  that  physics  students’  conceptualize  –  the  way  they  experience  –  the  use  of  algebraic   signs   in   vector-­‐kinematics   has   not   been   extensively   studied.   The   most   comprehensive   of   these   few  studies  was  carried  out  in  South  Africa  15  years  ago.  This  study  found  that  the  variation  in   the   ways   that   students   experience   the   use   of   algebraic   signs   could   be   characterized   by   five   qualitatively  different  categories.  The  consistency  of  the  nature  of  this  experience  across  either   the  same  or  different  educational  settings  has  never  given  further  consideration.  This  project  sets   out  to  do  this  using  two  educational  settings;  one  similar  to  the  original  South  African  one,  and   one   at   the   natural   science   preparatory   programme   known   as   basåret   at   Uppsala   University   in   Sweden.    

The  study  was  carried  out  under  the  auspices  of  the  Division  of  Physics  Education  Research  at   the   Department   of   Physics   and   Astronomy   at   Uppsala   University   in   collaboration   with   Nadaraj   Govender,  University  of  KwaZulu-­‐Natal,  who  performed  the  original  study  while  completing  his   PhD  at  the  University  of  the  Western  Cape,  South  Africa.    

This  study  is  situated  in  the  kinematics  section  of  introductory  physics  with  participants  drawn   from   the   natural   science   preparatory   programme   at   Uppsala   University   and   physical   science   preservice   teachers’   programme   at   the   University   of   KwaZulu-­‐Natal,   South   Africa.   The   participating   students   completed   a   specially   designed   questionnaire   on   the   use   of   signs   in   kinematics  problem  solving.  A  sub-­‐group  of  these  students  was  also  purposefully  selected  to  take   part  in  semi-­‐structured  interviews  that  aimed  at  further  exploring  their  experiences  of  algebraic   signs.  The  students’  descriptions  and  answers  were  categorized  using  Nadaraj  Govender’s  set  of   categories,   which   had   been   constructed   using   the   phenomenographic   research   approach.   This   approach  is  designed  to  enable  finding  the  variation  of  ways  people  experience  a  phenomenon.  

The  process  of  sorting  the  data  was  grounded  in  this  phenomenographic  perspective.  From  this   categorization   it   was   possible   to   identify   four   of   the   original   five   categories   amongst   the   participating  students.    

The   results   suggest   that   these   four   categories   remain   educationally   relevant   today   even   if   the   context   is   not   the   same   as   the   one   for   the   original   findings.   Although   one   of   the   original   five   categories   was   not   found,   the   analysis   cannot   be   taken   to   definitely   eliminate   this   from   the   original   outcome  space   of   results.   A   more   extensive   study   would   be   needed   for   this   and   thus   a   proposal  is  made  that  further  studies  be  undertaken  around  this  issue.  

The   study   ends   by   suggesting   that   physics   teachers   at   the   introductory   level   need   to   obtain   a   broader   understanding   of   their   students’   difficulties   and   develop   their   teaching   to   better   deal   with  the  challenges  that  become  more  visible  in  this  broader  understanding.    

(4)

Sammanfattning

På   vilka   sätt   fysikstudenter   föreställer   sig   och   förstår   användandet   av   algebraiska   tecken   i   vektorkinematik   har   endast   studerats   i   mindre   utsträckning.   Den   mest   omfattande   av   dessa   få   studier   genomfördes   i   Sydafrika   för   15   år   sedan.   Denna   studie   upptäckte   att   variationen   av   de   sätt  studenter  upplever  användandet  av  algebraiska  tecken  på  kunde  karaktäriseras  genom  fem   kvalitativt   olika   kategorier.   Hur   solida   dessa   upplevelser   är   i   en   liknande   eller   helt   annan   utbildningsmiljö  har  däremot  inte  studerats  vidare.  Detta  projekt  ämnar  till  att  göra  detta  genom   att   använda   två   olika   studentgrupper;   en   liknande   den   ursprungliga   gruppen   i   Sydafrika,   samt   det  tekniskt-­‐naturvetenskapliga  basåret  vid  Uppsala  universitet,  Sverige.    

Studien   har   genomförts   med   stöd   från   avdelningen   för   fysikens   didaktik   vid   institutionen   för   fysik   och   astronomi   vid   Uppsala   universitet   i   samarbete   med   Nadaraj   Govender,   University   of   KwaZulu-­‐Natal,   Sydafrika,   som   genomförde   den   ursprungliga   studien   under   sin   doktorandutbildning  vid  University  of  the  Westen  Cape,  Sydafrika.  

Denna  studie  är  begränsad  till  den  del  av  den  grundläggande  fysiken  som  behandlar  kinematik   och   innefattade   deltagare   från   det   tekniskt-­‐naturvetenskapliga   basåret   vid   Uppsala   universitet   samt   tredje   års   studenter   vid   physical   science   preservice   teachers’   programme,   University   of   KwaZulu-­‐Natal,   Sydafrika.   De   deltagande   studenterna   genomförde   ett   specialdesignat   frågeformulär  kring  användandet  av  algebraiska  tecken  för  att  lösa  kinematiska  problem.  En  del   av  dessa  studenter  valdes  sedan  ut  för  att  delta  i  semi-­‐strukturerade  intervjuer  som  syftade  till   att  vidare  utforska  deras  upplevelser  kring  algebraiska  tecken.  Studenternas  beskrivningar  och   svar  kategoriserades  med  hjälp  av  Nadaraj  Govenders  fem  kategorier  som  tagits  fram  genom  ett   fenomenografiskt   tillvägagångssätt.   Detta   tillvägagångssätt   är   framtaget   för   att   kunna   hitta   variationen   av   hur   människor   upplever   ett   fenomen.   Sorteringsprocessen   grundades   i   detta   fenomenografiska  perspektiv.  Från  denna  kategorisering  var  det  möjligt  att  identifiera  fyra  av  de   fem  ursprungliga  kategorierna  bland  de  deltagande  studenterna.    

Fyra  av  de  fem  ursprungliga  kategorierna  som  föreslagits  av  Govender  återfanns  genom  denna   studie  varför  dessa  kategorier  föreslås  förbli  relevanta  idag  även  om  utbildningsmiljön  skiljer  sig   från   den   ursprungliga.   Trots   att   den   femte   kategorin   inte   hittades   kan   denna   inte   definitivt   exkluderas  från  det  outcome  space  som  beskriver  studenters  upplevelser  för  algebraiska  tecken.  

Det  föreslås  att  vidare  studier  undersöker  förekomsten  av  denna  kategori.    

Studien  avslutas  med  att  föreslå  att  fysik  lärare  på  grundnivå  behöver  få  en  bättre  förståelse  för   sina  studenters  svårigheter  samt  att  de  behöver  utveckla  sin  undervisning  för  att  bättre  kunna   hantera  dessa  svårigheter  och  på  så  sätt  göra  undervisningen  mer  anpassad  för  mångfalden  av   studenterna.    

(5)

Acknowledgements

To   my   mother   and   father   for   believing   in   me   and   encouraging   me   to   fulfill   my   studies   and   doing   what  I  believe  in.      

I  would  like  to  express  my  deepest  appreciations  to  my  supervising  professor,  Cedric  Linder,  for   his   continuous   interest,   guidance   and   engagement   in   the   development   of   this   study.   All   your   encouragement   throughout   this   project   has   been   invaluable   and   has   helped   me   complete   my   thesis!  I  would  also  like  to  thank  Dr.  Nadaraj  Govender  for  his  feedback  on  my  study  design,  his   encouragement   and   for   his   valuable   support   as   my   external   collaborator   during   the   project.  

Special   thanks   goes   to   Jonas   Forsman   for   his   interest   and   guidance   from   the   very   start   of   my   project,  which  helped  me  to  quickly  progress.    

I  would  further  like  to  thank  all  members  of  the  Division  of  Physics  Education  Research  at  the   Department  of  Physics  and  Astronomy  at  Uppsala  University,  especially  Anne  Linder,  for  making   me  feel  truly  welcome  as  a  part  of  your  group.      

(6)

Table of contents

 

1   INTRODUCTION  ...  1  

1.1   Problem  setting  ...  1  

1.1.1  Research  question  ...  2  

1.2   Object  ...  2  

1.3   Goal  ...  2  

2   BACKGROUND  ...  3  

3   METHODOLOGY  ...  5  

3.1   Theory  ...  5  

3.2   Method  ...  6  

3.2.1  Ethics  ...  6  

3.2.2  Validity  and  reliability  ...  7  

3.2.3  Questionnaire  ...  7  

3.2.3.1   Design  ...  8  

3.2.3.2   Pilot  studies  ...  9  

3.2.3.3   Translation  ...  9  

3.2.4  Interviews  ...  9  

3.2.4.1   Design  ...  10  

3.2.4.2   Pilot  interview  ...  10  

3.2.4.3   Transcriptions  ...  10  

3.2.5  Analysis  ...  10  

4   RESULTS  ...  11  

4.1   Summary  of  findings  ...  12  

4.2   Evaluation  ...  13  

4.3   Description  of  categories  ...  13  

5   DISCUSSION  ...  17  

5.1   Identified  challenges  ...  18  

6   RECOMMENDATIONS  ...  20  

7   CONCLUSIONS  ...  20  

REFERENCES  ...  22  

APPENDIXES  ...  24  

Appendix  1  ...  24  

Appendix  2  ...  28  

(7)

1 Introduction

Mathematically,   when   using   vector   notation   the   choice   of   an   appropriate   sign   is   largely   an   arbitrary  decision,  however,  in  physics  problem  solving,  a  set  of  conventions  that  have  a  strong   conceptual   base   usually   guide   their   use.   For   example,   in   problems   involving   the   direction   an   object  is  moving  when  restricted  to  one  dimension,  a  range  of  possible  temperatures,  the  sign  of   an   electric   charge,   and   the   gain   or   loss   of   energy   from   a   specified   system.   All   of   these   use   algebraic   signs,   which   have   distinct   conceptual   meanings   as   a   function   of   their   context.   Thus,   getting   to   appropriately   understand   how   to   conceptualize   the   use   of   algebraic   signs   across   contexts  and  phenomena  is  an  important  aspect  of  learning  in  introductory  physics.  

From  an  early  stage,  throughout  school,  students  meet  the  use  of  the  algebraic  signs  “plus”  and  

“minus”   across   different   contexts.   However,   these   appear   to   become   understood   procedurally   without   an   accompanying   comprehensive   and   appropriate   conceptual   anchoring.   Such   procedural   knowledge   has   limited   sustainability   in   introductory   university   physics   and   little   value  for  the  study  of  more  advanced  physics.  As  students  go  from  one  problem  solving  context   to  another  a  lack  of  conceptual  grounding  can  easily   generate  challenges  both  for  introductory   problem  solving  and  for  more  advanced  problem  solving.  For  example,  at  the  introductory  level  -­‐

6   may   be   considered   to   be   mathematically   smaller   than   -­‐4,   yet   a   velocity   of   -­‐6   m/s   may   be   considered  to  be  larger  than  a  velocity  of  -­‐4m/s,  and  making  sense  of  the  sign  convention  for  the   basic  Dirac  equation  using  applications  of  the  Minkowski  metric  can  be  challenging.    

When   dealing   with   vectors   in   introductory   university   physics   the   issue   of   appropriately   understanding   the   signs   that   get   used   becomes   more   problematic.   For   example,   students   often   have  not  been  introduced  to  the  use  of  vectors  in  more  than  one  way  and  they  get  to  think  about   component  vectors  in  vector  terms  rather  than  scalar  terms.  When  this  happens  the  sign  used  is   often  taken  to  denote  direction  and  basic  scalar  additions  become  convoluted  with  perceptions  of   vector  direction.  A  further  example  is  that  students  may  want  the  sign  conventions  to  continue  to   fit   the   conceptualization   of   the   meaning   that   they   have   already   constructed.   For   example,   a   negative   velocity   may   be   taken   to   mean   “slowing   down”   rather   than   designating   the   labelling   being   used   from   the   establishment   of   a   coordinate   system   and   the   direction   within   one   dimension  of  that  coordinate  system.  

1.1 Problem setting

This   project   builds   upon   previous   research   that   will   be   further   described   in   the   Background   section   below.   Only   a   few   studies   have   investigated   students’   use   of   algebraic   signs   in   physics   problem  solving  (for  example,  Viennot  2004;  Hayes  &  Wittmann  2010).  The  most  comprehensive   of  these  are  the  studies  carried  out  by  Govender  (1999;  2007).  Govender  (1999)  used  his  analysis   to   generate   qualitatively   different   categories   of   description   of   the   experience   of   using   signs   in   kinematics   problem   solving.   Later   Govender   (2007)   expanded   upon   these   results.   In   both   studies,   Govender   drew   on   a   phenomenography   framing   (Marton   &   Booth   1997)   to   provide   details   of   the   outcome   space   for   the   qualitatively  different  ways   students   experience   signing   in   introductory  physics.  This  outcome  space  consisted  of  five  different  categories  each  reflecting  the   variation   in   the   ways   that   signs   get   conceptualized   in   introductory   kinematics   physics.   The   outcome  space  together  with  Govender’s  original  study  can  be  found  in  appendix  2.      

Govender’s  studies  were  carried  out  in  a  very  different  socio-­‐economic  setting  to  that  of  Sweden   but  with  a  programme  that  has  many  similarities  to  the  natural  science  preparatory  programme   in  Sweden  known  as  basåret.  The  data  set  that  Govender  used  is  now  nearly  15  years  old  and  the   changing  educational  experience  in  physics  internationally  (Henderson,  Dancy  &  Niewiadomska-­‐

Bugaj  2012),  could  reasonably  be  expected  to  affect  the  current  applicability  of  the  results  that   Govender  obtained.  Using  this  as  a  starting  point,  the  following  research  question  was  developed.  

(8)

 

1.1.1 Research question

For  Swedish  and  South  African  student  populations  who  are  enrolled  in  a  physics  introductory   course   which   has   a   similar   approach   to   that   of   the   natural   science   preparatory   programme   in   Sweden  known  as  basåret,  the  specific  research  question  for  this  study  is  the  following:  

How  relevant  are  Govender’s  (1999;  2007)  results  for  the  variation  in  ways  that  the  use   of  algebraic  signs  are  experienced  for  one-­‐dimensional  kinematics  problem  solving  for   students  in  the  natural  science  preparatory  programme  at  Uppsala  University,  Sweden,   and  the  third  year  physical  science  preservice  teachers’  programme  at  the  University  of   KwaZulu-­‐Natal,  South  Africa?  

1.2 Object

To   achieve   a   good   quality   of   physics   education,   teachers   must   be   aware   of   the   challenges   that   students   experience   when   being   introduced   to   the   use   of   vectors.   If   teachers   can   attain   this   awareness  they  will  be  able  to,  in  a  better  way,  address  the  diversity  of  the  student  group.  The   study   performed   by   Govender   (1999)   shows   in   what   different   ways   introductory   physics   students  in  KwaZulu-­‐Natal,  South  Africa,  experience  the  use  of  algebraic  signs  in  one-­‐dimensional   kinematics   problem   solving.   However,   no   further   research   has   been   carried   out   to   study   if   the   results  can  be  generalized  for  use  in  explaining  the  understanding  of  signs  among,  for  example,   introductory  physics  students  in  Uppsala,  Sweden.    

Thus,   the   object   of   this   project   is   to   study   the   different   ways   students   in   the   natural   science   preparatory   programme   in   Uppsala,   Sweden,   and   physical   science   preservice   teachers   at   the   University  of  KwaZulu-­‐Natal,  South  Africa,  experience  the  sign  conventions  used  for  describing   three  fundamental  concepts  in  Newtonian  mechanics  (displacement,  velocity  and  acceleration).  

These   experiences   will   be   categorised   using   Govender’s   (2007)   categories   in   order   to,   in   the   future,  make  it  easier  for  teachers  to  address  the  variation  of  physics  students’  experiences  when   learning  algebraic  signs.    

Since  Govender’s  (1999)  study,  there  has  been  no  further  research  in  the  particular  area  of  trying   to   categorise   students’   different   ways   of   understanding   the   sign   conventions   used   in   vector   kinematics.  Many  studies  have  been  made  investigating  students’  understanding  of  vectors  and   sign   conventions   in   physics   (see,   for   example,   Aguirre   1988;   Hayes   &   Wittmann   2010;  

McDermott   1984),   however   no   one   has   further   tried   to   generalise   Govender’s   discovered   categories  in  the  area  of  kinematics.  Thus,  it  is  of  great  interest  to  perform  a  study  where  the  five   qualitatively  different  ways  students  experience   the  use  of  signs  in  vector  kinematics  found  by   Govender  (2007)  are  reviewed  to  investigate  their  generalizability.    

1.3 Goal

The   goal   of   this   project   is   to   investigate   how   introductory   level   physics   students   at   Uppsala   University   conceptualize   the   way   they   use   signs   in   physical   problem   solving   in   the   area   of   kinematics,  and  to  use  this  analysis  to  compare  and  contrast  results  obtained  at  the  University  of   KwaZulu-­‐Natal   in   South   Africa.   This   comparison   will   be   used   to   identify   generalizable   learning   challenges   in   this   area   in   order   to   inform   the   development   of   associated   physics   education.  

Knowing   the   nature   of   the   identified   generalizability   would   provide   a   powerful   platform   to   inform  the  teaching  and  learning  of  kinematics  in  ways  that  better  accommodate  the  diversity  of   student  population  found  in  the  introductory  level  of  physics  education  in  Sweden  today.  

   

(9)

2 Background

Different   challenges   that   students   face   when   learning   physics   have   been   investigated   in   many   studies  over  a  long  period  of  time.  For  example,  research  has  shown  that  students  have  difficulty   understanding   negative   velocities   and   how   to   link   them   to   a   physical   situation   (Goldberg   &  

Anderson   1989;   Testa,   Monroy   &   Sassi   2002).   When   presented   with   a   velocity-­‐time   diagram   many  students  failed  to  recognise  the  motion  of  an  object  when  the  diagram  showed  a  negative   velocity  and  could  not  with  certainty  draw  a  diagram  of  the  motion  by  themselves.  This  difficulty,   understanding  the  meaning  of  negative  velocity,  could  stem  from  the  fact  that  students  often  are   only  exposed  to  vectors  in  one  way.  For  example,  students  are  used  to  describing  vectors  through   equations  and  drawing  vector  arrows  in  a  coordinate  system,  where  a  negative  velocity  usually  is   directed  to  the  left.  However,  by  just  drawing  vector  arrows,  students  fail  to  experience  the  link   between  the  vector  and  a  physical  situation.    

It   has   further   been   argued   in   the   literature   that   the   difficulties   in   understanding   the   use   of   algebraic  signs  that  are  commonly  used  in  kinematics  problems  can  often  be  traced  back  to  the   misuse  of  the  correct  signs  in  physics  textbooks  (for  example,  see  Brunt  1998).  When  deciding  on   a  sign  for  a  quantity  in  physics  problem  solving  there  are  some  rules,  which  have  to  be  followed,   that  textbook  writers  frequently  do  not  follow  or  perhaps  are  not  aware  of  (Brunt  1998).  Such   lack  of  coherence  and  systemization  can  easily  generate  ambiguities  in  what  meanings  are  being   signified  in  the  ways  the  signs  get  used.  In  order  to  avoid  such  problems  emerging,  Brunt  (1998;  

242)   proposes   that   teachers   of   physics   incorporate   two   simple   guidelines   into   their   teaching   practice  when  teaching  at  the  introductory  level:  (1)  when  deriving  an  equation  always  “draw  a   diagram   with   all   variables   in   a   chosen   positive   direction”,   and   (2)   to   “never   substitute   a   sign   unless  substituting  a  number,  or  its  algebraic  equivalence”.    

The  first  of  these  two  guidelines  proposes  that  one  should  first  decide  on  a  positive  direction  in   order  to  draw  an  appropriate  coordinate  system  to  situate  the  needed  diagram.  This  is  verified  in   a  study  (Viennot  2004)  that  argues  that  one  often  has  to  decide  on  an  axis  of  reference  in  order  to   assign   the   appropriate   sign   to   a   quantity.   However,  this  does  not  mean  that  the  quantity  has  an   inherent  positive  or  negative  attribute.   Viennot   (2004)   further   states   that   people   often   want   to   just   put   the   sign   in   front   of   the   quantity   instead   of   assigning   it   a   positive   or   negative   sign   according   to   a   chosen   coordinate   system.   An   example   of   this   can   be   seen   in   studies   (Viennot   2004;  Rebmann  &  Viennot  1994)  where  students  were  asked  to  write  the  equation  for  the  force   of  a  spring  being  contracted.  In  this  example,  students  often  “make  up  for”  the  contraction  in  the   derived  equation  ending  up  with  the  incorrect  equation  𝐹 = +𝑘𝑥  (Figure  1).    

Figure  1:  Presented  with  this  image,  students  were  asked  to  write  the  equation  for   the  force  of  the  spring  in  the  three  last  pictures.  Students  noted  that  the  force  was   directed   to  the   right  in   cases   2   and   4   and   incorrectly   put   a   +   sign  in   front   of  the  

(10)

Another  example  of  the  complexity  in  signing  at  the  introductory  level  of  physics  is  in  two  body   problems   where   the   motion   is   in   different   directions,   for   example   Atwood   Machine   type   problems.  Figure  2  illustrates  the  type  of  approach  that  Brunt  (1998)  is  critical  of  because  it  fails   to  systematically  use  paired  coordinate  systems  to  establish  the  assigned  signs.  Instead  a  derived   rule  of  “bigger  force  minus  smaller  force  =  ma”  is  used.  

From   these   examples   it   is   possible   to   understand   how   students   may   not   always   have   an   appropriate  conceptualization  of  the  signs  they  are  using,  although  their  application  of  some  rule   may  lead  them  to  the  correct  answer!    

In   the   area   of   kinematics   there   have   been   specific   studies   conducted,   apart   from   the   above   mentioned,  with  the  aim  of  identifying  difficulties  students  experience  trying  to  understand  the   physical  concepts  and  how  to  connect  this  to  real  world  phenomenon.  For  example,  Trowbridge   and   McDermott   (1980;   1981)   investigated   students’   understanding   of   the   concepts   of   velocity   and   acceleration   through   interviews   with   introductory   physics   students   and   came   to   the   conclusion   that   students   often   confuse   position   with   velocity   and   velocity   with   acceleration.   It   has   further   been   reported   (Bowden   et   al.   1992)   that   a   seemingly   correct   interpretation   of   concepts  during  undergraduate  physics  courses  is  not  a  guarantee  that  students  understand  the   underlying   principles.   Bowden   et   al.   found   that   the   level   of   conceptual   understanding   often   decreased  as  the  problems  students  face  become  easier  to  solve.  This  tells  us  that  students  often   are  missing  the  conceptual  understanding  of  physics  in  introductory  courses,  which  becomes  a   large  obstacle  to  overcome  when  learning  more  advanced  physics.    

Another  challenge  students  encounter  with  introductory  physics  emerges  when  being  introduced   to  the  use  of  vectors.  For  example,  Aguirre  (1988)  discusses  students’  preconceptions  in  vector-­‐

kinematics  that  often  remain  with  the  students  for  a  long  time.  The  study  investigated  students’  

preconceptions  of  vectors  that  often  are  not  discussed  by  instructors  because  they  are  argued  to   be  obvious.  Aguirre  suggests  that  simply  telling  the  students  the  correct  way  of  thinking  will  not   change   their   beliefs   but   the   instructor   needs   to   be   aware   of   the   different   understandings   of   vector  conceptions  students  already  have.    

To   address   such   learning   challenges   as   described   in   the   paragraphs   above   a   physics   teacher   needs  to  have  insight  into  the  variation  of  perception  that  they  can  expect  to  find  in  their  classes.  

This  study  aims  to  contribute  to  understanding  this  variation.    

     

Figure   2:   An   illustrative   Atwood   Machine   type   problem   taken   from   an   online   AP   Physics   B   lessons   (onlearningcurve   2012).   In   this   solution   no   coordinate   system   is   directly  used.  

(11)

3 Methodology

When   planning   and   conducting   a   project   of   any   kind,   the   methodology   is   an   important   part   to   consider.  This  section  will  describe  the  theory  behind  the  method  used  for  this  project  as  well  as   the  implementation  of  the  theory.    

3.1 Theory

Govender’s  original   two  studies  used   a  research  approach   called  phenomenography  in   order   to   find   the   qualitatively   different   ways   in   which   students   experience   the   use   of   algebraic   signs   in   vector-­‐kinematics.   The   sorting   of   the   data   for   this   project   took   on   this   phenomenographic   perspective.  Phenomenography  is  a  research  tool  that  aims  to  describe  the  qualitatively  different   ways   individuals   experience   various   phenomena   or   aspects   in   the   world   around   them   (for   example,  see,  Trigwell  2000;  Marton  1981;  Marton  &  Booth  1997).  It  should  be  emphasized  that   phenomenography   is   not   a   research   theory,   nor   is   it   a   method   even   though   it   uses   aspects   of   both.   Instead,   Marton   and   Booth   (1997;   111)   refer   to   phenomenography   as   “a   way   of   –   an   approach   to   –   identifying,   formulating   and   tackling   certain   sorts   of   research   questions,   a   specialization  that  is  particularly  aimed  at  questions  of  relevance  to  learning  and  understanding   in  an  educational  setting”.    

Phenomenography   seeks   to   find   the   variation   in   ways   that   people   experience   a   specific   phenomenon,   and   aims   to   sort   the   experiences   into   categories   that   are   qualitatively   different   from  each  other.  This  is  done  in  order  to  find  the  limited  number  of  qualitatively  different  ways  a   phenomenon  is  experienced.    The  experiences  of  a  specific  phenomenon  are  called  categories  of   description   and   are   “the   fundamental   results   of   a   phenomenographic   investigation”   (Marton   &  

Booth   1997;   122).   Further,   the   categories   of   description   can   be   listed   in   a   hierarchical   way   to   form  what  is  called  the  outcome  space  of  the  phenomenon  (Trigwell  2000).  What  characterizes   phenomenography  is  this  ranking  of  the  understandings  of  a  particular  phenomenon  (Bowden  et   al.  1992),  where  a  high  ranking,  indicates  a  better  understanding  of  the  phenomena.    

The   perspective   of   a   phenomenographic   study   is   of   the   second   order,   meaning   that   the   researcher  will  report  the  experiences  as  described  by  others  (Marton  1981).  This  approach  is   different   to   a   first-­‐order   perspective   where   the   researcher   describes   the   phenomenon   as   experienced   by   themselves.   It   is   important   to   remember   that   when   having   a   second-­‐order   perspective,  the  researcher  may  not  always  agree  with  the  experience  of  the  phenomenon,  but   the   experience   is   still   “recorded   as   a   valid   experience”   (Trigwell   2000;   6).   In   this   study,   the   second-­‐order  perspective  will  be  maintained  through  using  the  students’  experiences  as  the  base   of  analysis,  regardless  of  how  much  we  agree  with  them.    

Trigwell   (2000;   3)   gave   an   excellent   summary   of   the   phenomenographic   research   approach   as   follows:  

it  takes  a  relational  (or  non-­‐dualist)  qualitative,  second-­‐order  perspective,  that   it   aims   to   describe   the   key   aspects   of   the   variation   of   the   experience   of   a   phenomenon   rather   than   the   richness   of   individual   experiences,   and   that   it   yields   a   limited   number   of   internally   related,   hierarchical   categories   of   description  of  the  variation.    

To   investigate   how   relevant   Govender’s   original   outcome   space   is   for   current   introductory   physics   students,   a   phenomenographic   perspective   is   used   to   sort   experiences   of   the   usage   of   algebraic  signs  in  vector-­‐kinematics  from  students  in  Sweden  and  South  Africa.    

   

(12)

3.2 Method

The  data  that  was  used  for  this  study  was  collected  through  both  a  questionnaire  and  discussion   based   interviews.   The   questionnaire   was   given   to   students   in   the   natural   science   preparatory   programme   (basåret)   at   Uppsala   University,   Sweden,   as   well   as   to   third   year   students   in   the   physical   science   preservice   teachers’   programme   at   the   University   of   KwaZulu-­‐Natal,   South   Africa.   The   main   part   of   the   data   was   collected   through   the   questionnaires   whereas   the   interviews  focused  on  obtaining  a  deeper  understanding  of  some  of  the  answers  received  from   the  questionnaires.    

The  total  number  of  students  who  were  registered  on  the  Physics  2  course  in  basåret  in  Uppsala   was  120,  of  which  60  answered  the  questionnaire.  Unfortunately  we  have  no  data  on  how  many   students   were   actually   present   at   the   time   when   the   questionnaires   were   handed   out,   hence   there  can  be  no  statistics  showing  the  actual  response  rate  of  the  participating  Swedish  students.  

However,   as   50   %   of   the   total   students   enrolled   in   the   Physics   2   course   answered   the   questionnaire,  it  can  be  seen  that  a  significant  number  of  students  from  basåret  did  take  part  in   the  study.  Among  the  South  African  students  the  response  rate  was  78  %;  a  total  of  32  students   were   on   the   Physical   Method   2   course   of   which   24   students   answered   the   questionnaire.   This   gave  us  a  total  of  84  students  completing  the  questionnaire.    

Five   Swedish   students   were   selected   to   take   part   in   semi-­‐structured   follow-­‐up   interviews.   The   five  were  chosen  from  the  28  students  that  provided  their  e-­‐mail  address  and  thereby  accepted   being   contacted   to   take   part   in   this   interview.   In   total   14   Swedish   students   were   contacted,   however  only  five  responded.  Among  the  South  African  students,  six  were  selected  to  take  part  in   an   interview.   The   selection   was   made   by   Govender   and   aimed   at   interviewing   students   from   different  races  common  in  the  KwaZulu-­‐Natal  province,  to  ensure  equity  and  representativity  of   the  student  population.  The  distribution  among  the  races  was:  one  white  student,  one  Indian  and   four  black  students.    

To   conduct   this   study,   the   method   was   divided   into   several   phases   where   the   first   phase   consisted   of   a   literature   review   of   previous   research   done   with   students’   conceptualizations   when  working  with  signs  in  physics.  The  second  phase  involved  the  creation  of  an  appropriate   ethical  agreement  to  be  used,  which  was  based  on  the  ethical  guidelines  set  up  by  the  Swedish   Research   Council   (Vetenskapsrådet   2002).   In   the   third   phase,   the   work   by   Govender   (1999;  

2007)   was   considered   in   order   to   design   a   validated   questionnaire   to   give   to   the   targeted   Swedish   and   South   African   students.   The   fourth   and   final   phase   involved   conducting   semi-­‐

structured  follow-­‐up  interview  discussions  (Kvale  1996)  with  purposeful  samples  (Patton  1990)   of  participating  students.    

To  be  able  to  perform  a  scientific  study  of  this  kind,  it  is  important  to  be  familiar  with  the  area  of   research   and   aware   of   any   previous   research   that   has   been   done.   Thus,   a   detailed   literature   review   was   conducted   in   the   beginning   of   the   project   to   obtain   a   full   background   for   the   particular   area   of   study.   A   thorough   background   in   issues   involved   in   performing   qualitative   research   was   also   extremely   important   in   order   to   be   able   to   design   the   questionnaire   and   interviews  in  a  suitable  way.  Before  the  questionnaire  and  interviews  could  be  carried  out  many   aspects   had   to   be   considered   to   make   sure   that   the   data   being   collected   was   appropriate   for   answering   the   research   question.   Govender   agreed   to   act   as   an   external   expert   to   validate   the   questionnaire.    

3.2.1 Ethics

When   performing   scientific   research   it   is   important   to   consider   the   ethics   of   the   study.   To   maintain   the   physical   and   psychological   well   being   of   the   individuals   being   part   of   a   scientific   research   in   the   area   of   humanities   and   social   sciences,   the   Swedish   Research   Council   has   four  

(13)

main   requirements   that   must   be   considered   for   conducting   research   of   this   kind   (Vetenskapsrådet  2002).  The  four  ethical  requirements  of  the  Swedish  Research  Council  are:  

1. The   requirement   for   information   states   that   the   researcher   has   to   inform   the   participants  of  the  aim  of  the  study.  

2. The  requirement  for  approval  means  that  the  participating  individuals  have  to  decide   for  themselves  if  they  agree  to  be  a  part  of  the  study.  

3. The  requirement  for  confidentiality  tells  the  researcher  that  he  or  she  has  to  handle   all   personal   information   from   the   participating   individuals   in   a   way   that   others   cannot  access.  

4. The  requirement  for  usage  states  that  the  information  obtained  during  the  study  will   only  be  used  for  research  purposes  and  may  not  be  used  for  non-­‐research  purposes.      

All  of  these  demands  were  met  through  the  information  given  on  the  questionnaire  and  during   the  interviews.    

3.2.2 Validity and reliability

In  order  to  argue  that  the  result  of  this  study  would  be  of  scientific  value,  the  method  used  had  to   have  a  well-­‐established  credibility,  meaning  that  the  method  had  to  provide  a  valid  and  reliable   result.    

Validity  of  the  method  means  that  the  method  used  will  provide  the  result  that  is  wanted  for  this   study.  The  result  wanted  for  this  study  was  answers  from  students  explaining  their  experiences   of   the   sign   conventions   used   in   kinematic   problem   solving.   Thus,   the   method   chosen   for   this   study   had   to   provide   these   kinds   of   answers.   To   obtain   validity   of   the   method   used,   Govender   agreed  to  review  the  questionnaire,  as  well  as  the  questions  used  for  the  interviews,  during  all   the  design  stages,  thus  the  validity  of  the  method  is  argued  to  be  satisfied.      

Reliability  of  the  study  means  that  the  result  of  the  study  will  have  to  be  able  to  be  obtained  again   if  the  study  is  repeated  using  the  exact  same  method  under  the  same  conditions.  In  qualitative   research,   difficulties   can   arise   when   arguing   for   the   reliability   of   the   method.   For   example,   Merriam  (1995;  2009)  reminds  the  reader  of  the  high  improbability  that  one  will  obtain  the  exact   same   results   twice,   due   to   the   qualitative   research   being   based   on   the   experiences   of   human   beings.   Thus,   Lincoln   and   Guba   (1985)   replace  the  term  reliability  with  the  term  dependability.  

The  question  to  be  asked  is  therefore  that  of  “whether  the  results  are  consistent  with  the  data   collected”  (Merriam  2009;  221).  This  means  that  from  the  data  collected,  the  result  obtained  will   have  to  make  sense.  In  this  report  I  provide  a  clear  and  full  account  of  the  research  process  so   that  the  dependability  of  the  study  can  be  assessed  and  show  how  the  research  decisions  were   made  and  implemented.      

3.2.3 Questionnaire

The   main   data   that   was   collected   for   this   study   was   collected   through   a   specially   designed   questionnaire  that  was  given  to  basår  students  at  Uppsala  University,  Sweden,  and  to  students  in   the   third   year   of   the   physical   science   preservice   teachers’   programme   at   the   University   of   KwaZulu-­‐Natal,   South   Africa.   The   questionnaire   can   be   found   in   appendix   1.   Since   the   time   for   this  project  was  limited  to  ten  weeks,  this  had  to  be  considered  when  designing  the  method  for   data  collection.  With  the  use  of  a  paper  based  questionnaire  many  responses  would  be  able  to  be   collected   in   a   relatively   short   period   of   time   and   thus   this   method   was   argued   to   be   the   most   suitable   to   use.   In   order   to   have   good   data   for   the   comparison   with   Govender’s   categories,   a   special  effort  was  made  to  attract  as  many  students  as  possible  to  participate  in  the  study.  The   design  of  the  questionnaire  was  of  extreme  importance  in  order  to  maintain  a  good  quality  of  the   collected  data  and  leave  room  for  as  little  personal  evaluation  as  possible  (Robson  2002).    

To  act  as  the  foundation  for  the  study,  the  data  collected  from  the  questionnaire  should  provide  a  

(14)

large  amount  of  different  explanations  of  how  students  use  algebraic  signs  in  vector-­‐kinematic   problem  solving..  To  limit  the  possibility  of  the  questionnaire  evoking  cognitive  overload  and/or   generating  reluctance-­‐to-­‐complete,  the  number  of  questions  had  to  be  limited.  The  questionnaire   thus   consisted   of   two   problems,   each   containing   a   number   of   questions,   to   get   the   students   to   reveal   how   they   conceptualize   the   way   they   use   algebraic   signs   in   kinematic   problem   solving.  

Govender  agreed  to  act  as  an  external  expert  to  validate  the  questionnaire  and  took  part  in  all  the   design   stages.   Pilot   studies   were   done   as   a   pre-­‐test   of   the   questionnaire   (van   Teijlingen   &  

Hundley  2001)  to  help  evaluate  the  adequacy  of  the  chosen  research  method,  and  where  found  to   be  necessary,  modify  the  questionnaire  outline  (see  Section  3.2.3.2).    

The   distribution   of   the   questionnaires   among   the   Swedish   students   was   done   by   the   author,   whilst  Govender  distributed  the  South  African  questionnaires.    

3.2.3.1 Design

To   obtain   the   desired   data,   the   design   of   the   questionnaire   was   critical.   In   order   to   be   able   to   make   a   qualitative   comparison   with   Govender’s   five   categories,   the   problems   included   in   the   questionnaire  were  chosen  to  be  similar  to  the  problems  used  in  Govender’s  original  study.  Two   problems,  which  were  based  on  the  type  of  problems  included  in  Govender’s  study,  were  used  for   the   questionnaire.   The   problems   each   consisted   of   several   questions   exploring   how   students   apply   algebraic   signs   across   a   set   of   one-­‐dimensional   kinematics   problems   dealing   with   displacement,  velocity  and  acceleration.    

The  design  of  the  questionnaire  was  based  on  the  following:  

time  for  completion;  

complexity  of  questions;    

possibility  to  obtain  theoretical  result.    

When   administrating   a   self-­‐completion   questionnaire   there   are   some   aspects   that   have   to   be   considered  in  order  to  obtain  the  best  result  (Robson  2002).  The  length  of  a  questionnaire  of  this   kind  is  a  critical  factor  and  should  be  kept  short.  Hence,  a  range  of  15-­‐20  minutes  for  completing   the  questionnaire  was  striven  for.  Since  there  was  no  or  little  possibility  to  clarify  the  questions   after  the  questionnaire  had  been  distributed,  the  questions  had  to  be  clearly  stated.  Because  of   this  no  problems  containing  calculations  were  included  because  this  might  scare  some  students   off.  Also,  the  questionnaire  had  to  be  designed  in  a  way  that,  theoretically,  it  would  be  possible  to   find  all  five  categories  in  the  answers  obtained.    

The   first   problem   dealt   with   a   small   ball   rolling   on   a   smooth   surface.   After   rolling   a   certain   distance  the  ball  hit  a  barrier  and  returned  to  its  original  position.  There  was  no  frictional  force   acting  on  the  ball  as  well  as  no  energy-­‐loss  in  the  collision.  Hence,  the  students  should  focus  on   the   kinematics   of   the   problem   instead   of   dealing   with   the   energy   conservation   of   the   collision.  

The  students  were  asked  to  describe  the  displacement,  distance,  speed,  velocity  and  acceleration   of  the  ball  (speed  and  distance  were  included  to  provide  differential  aspects  for  the  analysis,  if   needed).   They   were   also   asked   to   describe   the   motion   of   the   ball   and   explain   if   there   was   any   difference  in  the  motion  of  the  ball  before  and  after  it  hit  the  barrier.  In  all  questions  they  were   asked  to  explain  the  meaning  of  any  algebraic  signs  they  may  have  used.  This  was  a  critical  aspect   of   the   questionnaire   since   the   study   sought   to   understand   the   ways   that   students   experience   signs,  and  not  if  the  students  were  right  or  wrong.    

The   second   problem   involved   describing   the   velocity   and   acceleration   of   a   police   car   chasing   another  car.  The  students  were  asked  to  sketch  the  velocity  and  acceleration  for  the  police  car,   using  signs  and/or  arrows,  in  five  different  parts  of  the  sequence  described,  which  involved  the   police  car  speeding  up  and  slowing  down  as  well  as  driving  at  a  constant  velocity.  The  problem   dealt   with   the   motion   in   two   opposite   directions   with   the   aim   of   investigating   if   the   students   showed  any  difference  in  their  use  of  signs  in  the  two  different  directions.  As  in  the  first  problem,  

References

Related documents

In this work we investigate whether it is possible to synthesize the control law for a discrete event dy- namic system, using a polynomial representation of the system and

A number of different ef- fective field theories predict the branching ratio for this decay, and a precise measurement can be used to test their accuracy.. The asymmetry parameter

[r]

I also used Murphy and Whitelegg’s (Murphy and Whitelegg 2006a, 2006b) review of the research on the participation of girls aged 11-16 years in science. Whereas I, in the

In this thesis three strategies are considered to handle the pre-solving of sub- models containing the same constraints: either each sub-model is solved separately, called the

In the same vein, ideally the epistemological mindsets of individual students towards what it means to understand an equation would involve all of these components in

In this study, we have focused on investigating the relation between university students’ personal characteristics (prior knowledge and beliefs) and perceived emotions and their

In previous research the map equation has been used in networks to show the flow of information within the scientific community by studying cross citations of