• No results found

Investigation of robustness for supercritical fluid chromatography separation of peptides: Isocratic vs gradient mode

N/A
N/A
Protected

Academic year: 2022

Share "Investigation of robustness for supercritical fluid chromatography separation of peptides: Isocratic vs gradient mode"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal of Chromatography A

jou rn al h om ep a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h r o m a

Investigation of robustness for supercritical fluid chromatography separation of peptides: Isocratic vs gradient mode

MartinEnmarka,b,EmelieGlennea,MarekLe´skoa,c,AnnikaLangborgWeinmannd, TomasLeeke,KrzysztofKaczmarskic,MagnusKlarqvistd,JörgenSamuelssona,∗, TorgnyFornstedta,∗

aDepartmentofEngineeringandChemicalSciences,KarlstadUniversity,SE-65188Karlstad,Sweden

bPharmacognosy,DepartmentofMedicinalChemistry,UppsalaUniversity,BiomedicalCentre,Box574,SE-75123Uppsala,Sweden

cDepartmentofChemicalandProcessEngineering,RzeszówUniversityofTechnology,PL-35959Rzeszów,Poland

dEarlyProductDevelopment,PharmaceuticalSciences,IMEDBiotechUnit,AstraZeneca,Gothenburg,Sweden

eMedicinalChemistry,Respiratory,InflammationandAutoimmunity,IMEDBiotechUnit,AstraZeneca,Gothenburg,Sweden

a r t i c l e i n f o

Articlehistory:

Received27April2018

Receivedinrevisedform1July2018 Accepted5July2018

Availableonline10July2018

Keywords:

SFC Peptide Gramicidin Robustness Methodtransfer Water

a b s t r a c t

Weinvestigatedandcomparedtherobustnessofsupercriticalfluidchromatography(SFC)separations ofthepeptide gramicidin,usingeitherisocraticorgradientelution.Thiswas doneusingdesignof experimentsinadesignspaceofco-solventfraction,watermassfractioninco-solvent,pressure,and temperature.Thedensityoftheeluent(CO2-MeOH-H2O)wasexperimentallydeterminedusingaCorio- lismassflowmetertocalculatethevolumetricflowraterequiredbythedesign.Forbothretentionmodels, themostimportantfactorwasthetotalco-solventfractionandwatermassfractioninco-solvent.Com- paringtheelutionmodes,wefoundthatgradientelutionwasmorethanthreetimesmorerobustthan isocraticelution.Wealsoobservedarelationshipbetweenthesensitivitytochangesandthegradient steepnessandusedthistodrawgeneralconclusionsbeyondthestudiedexperimentalsystem.

Totesttherobustnessinapracticalcontext,boththeisocraticandgradientseparationsweretransferred toanotherlaboratory.Thegradientelutionwashighlyreproduciblebetweenlaboratories,whereasthe isocraticsystemwasnot.Usingmeasurementsoftheactualoperationalconditions(notthesetsystem conditions),theisocraticdeviationwasquantitativelyexplainedusingtheretentionmodel.Thefindings indicatethebenefitsofusinggradientelutioninSFCaswellastheimportanceofmeasuringtheactual operationalconditionstobeabletoexplainobserveddifferencesbetweenlaboratorieswhenconducting methodtransfer.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The separation of therapeutic peptides has long been an important application area for chromatography, particularly reversed-phaseliquidchromatography(RPLC)[1].Withgrowing interest in supercritical fluid chromatography (SFC) for analyz- ingandpurifyingsmallmolecules(i.e.molecularweights<1kD) [2,3],severalauthorsfrombothacademiaandindustryhavealso startedtoinvestigatehowSFCcouldbeusedtoanalyzeandpurify peptides[4–13]. Whilethequality-by-design(QbD)paradigmis firmlyestablishedinliquidchromatography[14],itisnotsimilarly

∗ Correspondingauthors.

E-mailaddresses:Jorgen.Samuelsson@kau.se(J.Samuelsson), Torgny.Fornstedt@kau.se(T.Fornstedt).

establishedinSFC,probablybecauseSFCislessrobustthanliquid chromatography[3].Somestudieshaveinvestigatedtherobust- nessofSFCseparationmethodsinthecontextofmethodtransfer andbyinvestigatingtherobustnessinadesignspace[15].

Thesmallbut growingbody ofstudiestreating theSFC sep- aration of peptides [4–13] has investigated a limited number of peptides, for example, gramicidin D [6,12,13], leucine- enkephalin[4–6,10],methionine-enkephalin[4–6,10],angiotensin I [4], angiotensin II [4–6], cyclosporin analogs [7], beta- methylphenylalanine [11], oxytocin [10], bradykinin [4,10], Pro-Leu-Glyamide[4],sauvagine[4],leupeptide[4],urotensinII [4],sulfomycin[8],cyclicpeptides[16],andcustomacidicandbasic linearuncappedpeptides[9].

Most studies have used traditional liquid chromatographic stationary phases suchas silica [7,7,9], diol [8,9], C18 [4,9], 2- ethylpyridine[4,5,9], cyano [6], and various chiral phases [11],

https://doi.org/10.1016/j.chroma.2018.07.029

0021-9673/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

Table1

Propertiesofthegramicidinisoformspartiallyseparatedinthestudy.

Gramicidinspecies formyl-X-Gly-Ala-Leu- Ala-Val-Val-Trp-Leu-Y- Leu-Trp-Leu-Trp- ethanolamine

Mw[gmol−1] X Y Specifiedpurity

Val-A 1881 Val Trp 80–85%*

Ile-A 1895 Ile Trp Unknown**

Val-B 1842 Val Phe 6–7%*

Ile-B 1856 Ile Phe Unknown**

Val-C 1858 Val Tyr 5–14%*

Ille-C 1872 Ile Tyr Unknown**

* Specifiedbyvendor.

** Notspecifiedbyvendor.

as well as polymer-based phases such as divinylbenzene [10]

or poly(styrene–divinylbenzene) [12,13]. Eluents are typically CO2 modified with acetonitrile/water [5,8], acetonitrile [4,11], methanol[4,6–9,11],ethanol[7,11],andisopropylalcohol[7,11]

towhichacidicorbasicadditivessuchastrifluoroaceticacid(TFA) [4,5,9],2,2,2-trifluoroethanol(TFE)[6],ammoniumacetate[4,6], aceticacid[6],andisopropylamine[6,8]areadded.Severalstudies haveinvestigatedthemodificationofco-solventswithwater,and founditsadditionnecessarytoachieveresolutionortoimprove peakshape[4,6,9].Moststudieshaveusedgradientelution,but somehavealsoinvestigatedtheisocraticelutionmode[11].

Duetothesmallchemicalspaceinvestigated,itisdifficultto drawgeneralconclusionsastothefeasibilityofusingSFCforpep- tideanalysisandpurification.However,severalofthementioned studiesdid investigatethe effects of thestationary phase, elu- ent,andotheroperationalconditions,suchasbackpressureand temperature[7].Clearly,amechanisticunderstandingofpeptide separationinSFCislackingcomparedwithourunderstandingof themuchmorematureRPLCtechnique[17–19].

Robustness is “a measure of ... [an analytical procedure’s]

capacitytoremainunaffectedbysmall,butdeliberatevariationsin methodparametersandprovidesanindicationofitsreliabilitydur- ingnormalusage”[20].Itiswellknownthatdeliberatevariations inoperatingconditionsinSFCcangreatlyaffectseparation[21,22]

whichisanadvantageofSFCascomparedtoLCforimprovingselec- tivity;however,thisalsoaffecttherobustness.However,itisless knownandunderstoodthatunintentionalvariationscanalsohave amajorimpact,forexample,whenoperatingSFCinhighlycom- pressibleregionsorwhengeneralretentionmechanismsarepoorly understood.Studyingtherobustnessofseparationsconductedin thehighco-solventregimeofSFC,technicallyinsubcriticalcondi- tions[23]cangivevaluableinsightintoareastypicallynotstudied inSFCwhere theeluent ismoreLClikebecausethefluidcom- pressibilitydecreaseswithincreasingco-solventintheeluent.Most studiesindicatethatworkingwithalargefractionofco-solventis necessarytoelutepeptides.

Beyazetal. [24] systematically studiedtheeffects of differ- ent instrumental and operating conditions on the precision of retentiontimesforalargesetofsoluteselutedonC18usingace- tonitrile/buffer/water.Theyconcluded,forexample,thatisocratic elutionwasmoresensitivethanwasgradientelutionwhenstudy- ingtheeffectsofvariationinthemobilephasecomposition.No similarinvestigationhasbeendoneforSFC.

Theaimofthisstudyistoinvestigateandcomparetherobust- nessofpeptideseparationsconductedunderisocraticandgradient conditions in SFC. As a model compound, we studied the lin- earunchargedpentapeptidegramicidinseparatedonapH-stable hybridsilicacolumnusinganeluentcontainingCO2,water,and methanol.Therobustnesswasinvestigatedbyevaluatingthevari- ationin theretentionfactor usingdesign ofexperiments (DoE) by perturbing the most important operational conditions, i.e.

varyingthetotal orinitialgradientfractionofco-solvent,water massfractioninco-solvent,pressure,andtemperature.Secondly, simulationsbasedontheexperimentaldata,butwithdifferentsen- sitivitiestotheperturbations,wereperformedinordertoreveal howtherobustnesswouldvaryforhypotheticalsolutesingradi- entseparationsofdifferentgradientslopes.Finally,thepractical consequencesoftheobserveddifferencesinrobustnessbetween gradientandisocraticseparationswerequantifiedbytransferring theisocraticandgradientmethodstoadifferentlaboratory.

2. Materialandmethods

2.1. Chemicals

The mobile phase consisted of CO2 (99.99%) from AGA Gas AB(Lidingö,Sweden),HPLC-grademethanolfromVWR(Radnor, PA, USA), and water with conductivity of 18.2Mcm from a Milli-QPlus185waterpurificationsystemfromMerckMillipore (Darmstadt,Germany).Gramicidin(CAS#1405-97-6)fromBacillus aneurinolyticuswasobtainedfromSigma-Aldrich(St.Louis,MO, USA).Thislinearpeptidehasthesequenceformyl-X-Gly-Ala-Leu- Ala-Val-Val-Trp-Leu-Y-Leu-Trp-Leu-Trp-ethanolamine, where X canbeeitherValorIleandYeitherTrp(GramicidinA),Phe(Gram- icidinB),orTyr(GramicidinC)[25],andisthereforereferredto ascomprisingtheX–Yisoformsofgramicidin(Table1).AllGram- icidinsamplesweredissolvedinneatMeOHtoaconcentrationof 1mgmL–1.

2.2. Instrumentation

Inthisstudy,twodifferentanalyticalSFCsystems,ofthesame modelandmanufacturerwereused,butattwodifferentlocations:

KarlstadUniversity(denotedLaboratory1)andatAstraZenecain Gothenburg(Laboratory2).TheLaboratory1systemwasaWaters UPC2(WatersCorporation,Milford,MA,USA)equippedwithaPDA detector.TheLaboratory 2systemwasalso aWaters UPC2 but connectedviaapassivesplitter(UPC2MSsplitter)toaPDAdetec- toranda Waterssingle-quadrupolemassspectrometer(Waters SQD2)usingelectrosprayionizationinpositivemode.Bothselected ionmonitoringandscan mode(800–1000m/z;833Das−1)were used,respectively.InLaboratory1theUPC2instrumenthadasin- glestackconfigurationfrombottomtotopofpump,autosampler, convergencemanager(backpressureregulator),columnmanager andPDAdetector.InLaboratory2,theUPC2inLaboratory2had atwo-stackconfigurationwithpump,autosampler,convergence managerinthefirststackandmake-uppump,columnmanager andPDAdetectorinthesecondstack.Theinnerdiameterofthe stainlesssteeland PEEKtubingfrominjectortocolumntoPDA toconvergencemanagerwas0.18mmatbothlaboratoriesexcept fromthesplittertoconvergencemanageratLaboratory2werethe innerdiameterwas0.25mm.ThePDAflowcellvolumewas8.4␮L atbothlaboratories.

Themobilephaseflowtothemassspectrometerwassplitwith apassivesplitteranddilutedwitha0.2mLmin–1mixtureof95/5%

(v/v)methanol/10mMammoniumformate.Theextracolumnvol- umewas measuredfrom the retention time of an injectionof 1mgmL–1gramicidinwithazero-dead-volumeunioninplaceof thecolumninbothsystems.Thedifferencewascompensatedfor incomparisonsbetweenthetwosystems.Pressurewasmeasured usingtwomodelEJX530Aabsolutepressuretransmitters(Yoko- gawaElectricCorporation,Tokyo,Japan)connectedtothecolumn inletandoutletusingatee.AdataloggerfromPicoTechnology(St.

Neots,UK)wasusedtorecordthepressure.

Thetotal andco-solventmassflows weremeasureddirectly afterthemobilephasemixerandbetweentheco-solventpump

(3)

andtheventvalve,respectively,usingaminiCORI-FLOWM12low- flowCoriolismassflowmeter(BronkhorstHigh-TechB.V.,Ruurlo, Netherlands),hereafterdenoted“CFM.”Thecolumnsusedwerea 2.5-␮mKromasil SFC-2.5-XT(100×3.0mm)(AkzoNobel,Bohus, Sweden) and a 1.7-␮m Waters 2-picolylamine (100×3.0mm) (WatersCorporation).

2.3. Procedure

2.3.1. Designofexperiments

A three-level, four-factor, central composite face-centered experimentaldesignwiththreecenterpointswasusedtoinves- tigatehow the logarithmic valueof the retention factor ofthe Val-Aisoformofgramicidinvarieswithtotalco-solventfraction (MeOH+water),watermassfractioninco-solvent,pressure,and temperaturefortheisocraticandgradientelutions,respectively.

OnlytheKromasil SFC-2.5-XTcolumnwasinvestigated.Thelog transform of the retention factor wasused because the reten- tion generally hasa logarithmic relationship with the fraction ofco-solventusedintheseparation[26].Thecentralcomposite face-centeredexperimentaldesignmodelwasselectedinorderto achievegood predictivepowerinthedesign space[27]as well astoinvestigatepotentialquadratictermsandinteractionterms betweenfactors.Intheisocraticelutionexperiments,thetotalco- solventfractionwasidenticaltotheisocraticcomposition,andin thegradientelutionexperiments,thetotalco-solventfractionindi- catedtheconditionatthestart(andend)ofthegradient.Theset designwasasfollows:thetotalco-solventfractionduringtheiso- craticexperiments was30, 33,and 35 v/v%and theco-solvent gradientwas28.3–61.3,30.0–65.0, and31.7–68.7 v/v%in5min whentheretentiontimeswerefoundtobereasonable.Aftereach changeofeluentcomposition,thesystemwasequilibratedforat leastonehour.Thewatermassfractioninco-solventwas1.2,5, and8.7w/w%.Theset,backpressurewas110,130,and150bar.

Thetemperaturewas30,45,and60C.Duetothenatureofmixing abinaryco-solvent[28,29]withCO2,thesetvolumetricfraction ofco-solventwasnotusedbutratherthemeasuredmassfraction [30].The design wasrescaled for theactualandmeasuredval- uesoftheco-solventfraction,watercontent,andpressure.2␮L injectionsof1mgmL–1 gramicidininneatMeOHweremadeat leastinduplicateforeachexperimentalcondition.Chromatograms wererecordedat220nm.Retentiontimeswereestimatedfrom peakapexandnormalizedtoretentionvolumesusingthemea- suredmassflowanddensity(seesection2.3.2).Thevoidtimewas obtainedfromtheinitialbaselinedisturbanceandwasalsonormal- izedtovoidvolume.Theaverageofallvoidvolumeswasusedin calculatingeachretentionfactor.Multiplelinearregressionsofthe log10-transformedretentionfactorswereperformedusingMODDE 11(Umetrics,Umeå,Sweden)witha95%confidencelevelandnon- significantfactorsweremanuallyremoved.

2.3.2. Characterizingtheexperimentalconditions

Asfactorsfortheexperimentaldesign,thetotalco-solventmass fraction,watermassfractioninco-solvent,columntemperature, andaveragecolumnpressurewereused.Theco-solventfractions weremeasuredusingtheCFM.Thearithmeticmeanofthecolumn inletandoutletpressuresforeachisocraticandgradientcondition wasusedasthepressurefactor.Theinstrumentsettemperature wasusedasinputtotheexperimentaldesign,asseveralof our studieshaveindicatedthatourinstrumentsettemperatureisvery accurate[22,30].ThemassfractionofwaterinMeOH,takenfrom thegravimetricpreparationofco-solvents,wasusedasinputtothe experimentaldesign.

Tocalculatethevolumetricflowrate,thedensityoftheeluentis required.However,toourknowledgeitisimpossibletoaccurately calculatethedensityoftheternaryCO2-MeOH-H2Ofluidusedhere.

Therefore,directdensitymeasurementusingtheCFMwaseval- uatedandperformed.Themainchallengewasthatthepressure andtemperatureinsidetheCoriolisflowcellmustbeidenticalto thoseinsidethecolumn.Thiswasachievedbyremovingthecol- umnandsettingtheback-pressureregulatorsothatthecolumn averagepressureswereachievedintheCFM.Thetemperaturewas adjustedbysimultaneouslyincreasingtheflowrateandthesetcol- umnoventemperatureuntilthedesiredtemperatureintheCFM wasobtainedandstabilized.TubingfromtheUPC2totheCFMwas insulatedtominimizeheatloss.

To plotcontourplots and calculate densities otherthan the experimentalmeasureddatapoints,seeSupplementaryDataTable S1; theexperimentaldatawerefitted toa second-ordermulti- polynomialequationwithinteractiontermsusingMODDE11.

Theaccuracyofthesedensitymeasurementswasfirstevalu- atedbycomparingtheoreticalandmeasureddensitiesusingpure CO2atthreesetbackpressures(110,130,and150bar)andthree temperatures(30,45,and60C)at3mLmin−1.Thetheoreticalden- sitywascalculatedusingNISTReferenceFluidThermodynamicand TransportpropertiesDatabaseversion9.1(REFROP)[31]withthe measuredarithmeticmeanpressureandmeasuredtemperatureas inputs,seeSupplementaryDataTableS2.

Allpressureanddensitymeasurementswereconductedsepa- ratelytominimizeextracolumnvolumes.

2.3.3. Methodtransferexperiments

Thesame2.5-␮mKromasilSFC-2.5-XTusedfortheDoEinLab- oratory1wasinstalledinLaboratory2andthesamesetmethod conditionswereusedaswhenrunningtheexperimentaldesigns center-pointexperimentsintheisocraticandgradientelutions.The totalmassflow,co-solventmassflowandaveragecolumnpressure weredeterminedatbothsites.

3. Resultsanddiscussion

TheretentionbehaviorinSFCofthemainisoformofgramicidin, Val-A,wasinvestigatedintheisocraticandgradientelutionmodes usingamixtureofMeOHandwaterasco-solventsatdifferenttem- peraturesandpressures.Thegoalwastouseaquantitativemodel oftheretentionfactortocomparetherobustnessoftheseparation systemineitherelutionmodewithinthedefineddesign space.

Experimentaldatawerealsoextrapolatedtogivegeneralinsight intotherobustnessoftheisocraticand gradientelutionsepara- tionsystems.Tocalculatetheretentionvolumeintheexperimental space,theeluentdensitywasdeterminedusingtheCFM.Finally, theseparationsystemwastransferredtoadifferentlaboratoryto evaluatethepracticalimplicationsoftransferringamoreorless robustseparationsystem.

3.1. Retentioncharacteristicsofgramicidin

Thegoalofthescreeningwastofindasatisfactoryseparation systemandtofindsuitableboundariesfortheexperimentaldesign.

Initialscreeningofthechromatographicbehaviorofgramicidin anditsisoformswasdoneonhybridsilicaand2-picolylaminesta- tionaryphasesusingMeOH/waterastheco-solvent.Fig.1presents thechromatogramfroma2-␮Linjectionof1.0mgmL–1gramicidin separatedonthehybridsilica(Fig.1a)and2-picolylamine(Fig.1b) columns.Frommassspectrometricdata,theretentionorderonthe hybridsilicaphasewasfoundtobeIle-B,Val-B,Ile-C/Ile-A,andVal- C/Val-A(Fig.1c)andonthe2-picolylaminephasetobeIle-B/Val-B, Ile-C/Val-C,Ile-A,andVal-A(Fig.1d).The2-picolylaminestation- aryphasemanagedtoresolveeacharomaticisoformbutnotthe aliphaticforms,exceptforIle-AandVal-A.Thehybridsilicasta- tionaryphase,ontheotherhand,managedtoresolvethealiphatic isoformsbutwaslessabletodifferentiatebetweenthearomatic

(4)

Fig.1. Analyticalinjectionsofgramicidin(a,c)onthehybridsilicacolumn(KromasilSFC-2.5-XT)using5.00-mingradientelutionof28–62v/v%at110barand60Cand (b,d)onthe2-picolylaminecolumnusing5.00-mingradientelutionof23–57v/v%at110barand60C.Toprowshows220-nmUVtracesof2-␮Linjectionsof1mgmL–1 gramicidin.Bottomrowshowsselectiveiontracesofallgramicidinisoformsfor[M+2H]2+fragments.

forms.Theseresultsareasexpectedconsideringthenatureofthe hybridsilicaandthe2-picolylamineligand.Furtherstabilityexper- imentsusingthe2-picolylaminecolumnrevealedanon-reversible retentiondriftwhenvaryingtheamountofwater,sothiscolumn wasnotusedinfurtherstudies(datanotshown).

Addingwatertothemethanolco-solvent[32,33], wasfound tosignificantlyaffecttheretentionandpeakshapeinthecaseof gramicidin(Fig.2).Toinvestigatewhetheraddingwater tothe eluentresultedinacontinuousordiscontinuouschangeinreten- tionand/orpeakshape,thefirstinjectionswereperformedwith neatmethanolonnewcolumnsusingtheisocratic(Fig.2a,b)and gradient(Fig.2c,d)elutionmodes.Followingtheneatmethanol experiments,injectionsweredoneat1.2,5,and8.7w/w%water addedtotheco-solvent.WhilethesolubilityofwaterinneatCO2in supercriticalconditionsisgenerallybelowamolarfractionof0.01 [34],itissignificantlyhigherwhenthewaterisaddedtogetherwith methanol[35].Byincreasingthewatercontentoftheeluent,the apparenttailingofthemainpeakdecreasesinsemi-analyticalcon- ditions(Fig.2a,c)andisconsiderablyreducedinsemi-overloaded conditionsinboththeisocraticandgradientelutions(Fig.2b,d).

Toconclude,wefoundtheretentiononthehybridsilicacol- umntobereproducible andabletoseparatealiphaticforms of gramicidin.Wealsofoundthatwaterreducedtheretentionfactor and considerably reduced the peak tailing, especially in semi- overloadedconditions.Addingwater totheeluentinthis range didnotinduceanydiscontinuousorunexpectedbehaviorsinthe retentionorpeakshape.

3.2. Measurementofdensitytoestimatevolumetricflow

ToevaluatetheestimationofdensityusingtheCFM,theden- sityofneat CO2 wasmeasuredovertherange of 30–60C and 134–175bar,inwhichtheCO2densityvariesfrom530to871kg m−3(SupplementaryDataTableS2).Comparingthemeasuredand

calculated(REFPROP)densitiesshowedthattherelativedifference neverexceeded0.4%.ThisindicatesthatCFM shouldbeableto accuratelymeasuretheeluentdensity.

BecauselittleisknownofthepropertiesoftheCO2-MeOH-H2O eluentsusedhere,thedensitywasmeasuredatallexperimental conditions(SupplementaryDataTableS1).Thesedatawerethen fitted toa second-order multi-polynomial equationwith inter- actionterms tointerpolatedensitiesin otherconditions.It was possibletofindanacceptablecorrelation(R2=0.79atthe95%con- fidencelevel)betweenthefactorsandthemeasureddensity.

Fig.3a–cplotsthedensityvariationasafunctionoftempera- tureandpressureforaco-solventfractionof31.5w/w%with1.3 (a),5 (b),and 8.7 (c) w/w% water intheco-solvent. Ascanbe seen,thedensityvariesonlyslightlywithpressureandtemper- ature,andaddingwatertotheeluentonlyslightlyincreasesthe densityofthemobilephase.Thismeansthat,fromadensityper- spective,thesystemisratherinsensitivetochangesintemperature, pressure,andthefractionofwateraddedtotheeluent.Littleis knownofthesysteminvestigatedhere,sowe cancomparethe resultsusingacalculatedCO2-MeOHmixturewithahighMeOH fractionintheeluent.ThedensityofaCO2-MeOHfluidatthecen- terpoint(68.5/31.5w/w%co-solventfraction,5w/w%H2O,45C, and163.3bar)wasmeasuredtobe844±8kgm−3,whileitwas calculatedtobe843kgm−3usingREFPROP,indicatingthatwater haslittleeffectonthedensityoftheeluent.

Fromthecorrelationof pressuretodensityatconstanttem- peratureand constant fractionsof co-solventandwater, it was alsopossibletodeterminehowdensityvariedinsidethecolumn duringaseparation.Fig.3dplotsthedensityvariationalongthe column assuminga linear pressuredrop at thecenter point in theexperimentaldesign.Thedensityalongthecolumnvariedby approximately1.5%fromcolumninlettocolumnoutlet(Fig.3d), meaningthatitisreasonabletousetheaveragedensitytodeter- minetheaveragevolumetricflowrate.

References

Related documents

The returns of potential investments are interesting for every investor. In this thesis we compared two financial models that are often used to predict expected returns of portfolios

Looking at it from a public sector perspective the social service center in Angered has moved from step one in the Public Sector Design Ladder (Design Council 2013) in the first

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton &amp; al. -Species synonymy- Schwarz &amp; al. scotica while

• För klasser som använder medlemspekare till dynamiskt allokerat minne blir det fel...

Neglecting spontaneous emission and using the CGC from figure 2.7 to evaluate equation 2.12, we see that the potentials are no longer scalar expressions.. Here, the matrix for

To calculate the retention factor and selectivity, the void volume (void time multiplied by the volumetric flow) of the col- umn [94] must be determined. The volumetric flow rate

Chapter 2 Literature review has been done to recognise the current state of knowledge concerning integral abutment bridges around the world with a special interest in

There is a cluster of negatively charged amino acids localized N-terminal to these three cleavage sites, which could potentially form electrostatic complementarity