• No results found

An investigation of protective formulations containing enzyme inhibitors

N/A
N/A
Protected

Academic year: 2021

Share "An investigation of protective formulations containing enzyme inhibitors"

Copied!
38
0
0

Loading.... (view fulltext now)

Full text

(1)

September 2012

An investigation of protective formulations containing enzyme inhibitors

Model experiments of trypsin Erika Billinger

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

   

A N  INVESTIGATION  OF  PROTECTIVE  

FORMULATIONS  CONTAINING  ENZYME  INHIBITORS .    

MODEL  EXPERIMENTS  ON  TRYPSIN .  

 

E RIKA   B ILLINGER   M ASTER  THESIS    

SPRING   2012  

S VENSKA   C ELLULOSA   A KTIEBOLAGET   U PPSALA   U NIVERSITY  

 

 

 

 

 

 

 

 

 

(3)

 

  3  

A BSTRACT  

This   master   thesis   considers   an   investigation   of   protective   formulations   (ointment,   cream)   containing   enzyme   inhibitors.   Model   experiments   have   been   made   on   the   enzyme   trypsin.   It   is   well   accepted   that   feces   and   urine   are   an   important   causing   factor   for   skin   irritation   (dermatitis)   while   using   diaper.   A   protective   formulation   is   a   physical   barrier   that   separates   the   harmful   substances   from   the   skin.   It   can   also  be  an  active  barrier  containing  active  substances,  which  can  be  active  both  towards  the  skin,  and  the   substances  from  feces  and  urine.  By  preventing  contact  from  these  substances  the  skin  will  not  be  harmed,   at   least   for   a   period   of   time.   A   number   of   different   inhibitors   were   tested   towards   trypsin   and   they   all   showed   good   inhibition,   two   of   the   inhibitors   were   selected   to   be   immobilized   with   the   help   of   NHS-­‐

activated   Sepharose.   Immobilization   of   these   two   inhibitors   leads   to   a   lesser   extent   of   the   risk   of   developing  allergy  and  also  that  the  possible  toxic  effect  can  be  minimized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)

 

P OPULÄRVETENSKAPLIG  SAMMANFATTNING  

Det  är  väl  känt  att  avföring  och  urin  är  en  viktig  faktor  som  ger  upphov  till  irriterad  hud  (dermatitis)  för   barn   som   använder   blöjor.   Tillsammans   med   avföringen   följer   enzymer   från   mag-­‐tarmkanalen   med   och   det  är  dessa  enzymer  som  ”äter”  på  huden  och  ger  upphov  till  dermatitis.  Då  urin  avges  i  blöjan  stiger  pH   vilket  leder  till  en  mer  trivsam  miljö  för  enzymerna  som  i  sin  tur  leder  till  en  ökad  aktivitet  och  resulterar  i   en  större  area  irriterad  hud.  Ytterligare  anledningar  till  dermatitis  är  även  den  fuktiga  miljön  som  skapas   av   stängd   miljö   och   även   friktionen   som   uppkommer   då   rörelser   sker   vid   användning   av   blöjan.   En   skyddande  formulering,  i  form  av  exempelvis  en  salva  eller  kräm,  kan  separera  de  skadliga  ämnena  från   huden.   Man   kan   även   tänka   sig   använda   en   aktiv   barriär   innehållande   aktiva   substanser,   exempelvis   inhibitorer,  som  kan  vara  skyddande  mot  huden  och  samtidigt  aktiv  mot  de  skadliga  ämnena  från  avföring   och   urin.   Inhibitorerna   i   en   salva   eller   kräm   hämmar   då   enzymernas   aktivitet   och   huden   skyddas   och   blöjeksem   undviks.   Genom   att   undvika   hudkontakt   med   de   skadliga   ämnena   kan   huden   skyddas,   åtminstone  under  en  viss  tidsperiod.    

Då  avföringen  innehåller  ett  matspjälkningsenzym  trypsin  har  olika  inhibitorer  mot  enzymet  undersökts.  

För   att   även   minimera   risken   för   både   toxiska   och   allergena   effekter   har   två   av   dessa   inhibitorer   immobiliserats  på  NHS-­‐aktiverad  Sepharose.    

     

 

 

 

 

 

 

 

 

 

 

(5)

 

  5  

T ABLE  OF  CONTENTS  

An  investigation  of  protective  formulations  containing  enzyme  inhibitors.      

Model  experiments  on  trypsin.  

Abstract  ...  3  

Populärvetenskaplig  sammanfattning  ...  4  

Introduction  ...  6  

What  is  an  enzyme  ...  7  

Enzymes  in  feces  ...  7  

Trypsin  ...  8  

Substrate  for  trypsin  ...  9  

Inhibitors  ...  10  

Aprotinin  ...  10  

Soybean  trypsin  inhibitor  ...  11  

α-­‐1-­‐antitrypsin  ...  12  

Leupeptin  ...  12  

Antipain  ...  14  

Immobilization  ...  15  

Schiff  bases  ...  15  

NHS-­‐activated  Sepharose  ...  17  

Materials  &  methods  ...  18  

Aprotinin  ...  18  

Soybean  trypsin  inhibitor  ...  18  

α-­‐1-­‐antitrypsin  ...  18  

Leupeptin  ...  18  

Immobilization  of  α-­‐1-­‐antitrypsin  ...  19  

Coupling  between  NHS-­‐activated  Sepharose  4  Fast  Flow  and  α-­‐1-­‐antitrypsin.  ...  19  

Test  of  immobilization  ...  19  

Immobilization  of  leupeptin  ...  20  

Coupling  between  NHS-­‐activated  Sepharose  4  Fast  Flow  and  Leupeptin  ...  20  

Test  of  immobilization  of  leupeptin  ...  20  

Results  ...  20  

With  each  inhibitor  ...  21  

Experiments  of  immobilized  inhibitor  ...  25  

α-­‐1-­‐antitrypsin  ...  25  

Leupeptin  ...  26  

Discussion  and  conclusions  ...  29  

References  ...  30  

Acknowledgements  ...  32  

Appendix  ...  33  

 

(6)

 

I NTRODUCTION  

It  is  well  known  that  feces  and  urine  are  two  factors  that  affect  the  skin  in  a  negative  way  and  together   they  can  cause  skin  irritation,  dermatitis.  The  biggest  difference  between  an  adult  skin  and  a  baby’s  skin   lies  primarily  in  the  anatomical  differences  in  the  surface  of  the  skin.  The  development  of  the  skin  layers,   distribution   and   size   of   certain   glands,   the   nerve   vessels   development   and   also   the   hair   growth   differs   between  a  baby  and  an  adult.  The  outer  layer  of  the  skin  protects  the  baby’s  skin  from  mechanical  stress   and   temperature   changes   that   makes   the   skin   less   resilient.   The   baby’s   skin   is   20-­‐30%   thinner   and   therefore  less  resistant  than  adult  skin  and  the  baby’s  skin  both  absorbs  and  loses  moisture  more  quickly   than   an   adult   skin.   This   results   in   that   when   urine   and   feces   mix   together   in   the   diaper   the   external   environment   penetrates   the   infant’s   skin   more   easily   as   the   skin   barrier   is   not   equally   developed   as   an   adult.  Also  the  friction  between  the  skin  and  the  diaper  makes  it  easier  for  the  skin  to  become  irritated.    

The   closed   environment   caused   by   the   diaper   results   in   that   very   little   air   reaches   the   skin   under   the   diaper.  This  makes  the  baby’s  skin  warmer  and  moister,  which  leads  to  a  higher  pH.  Excessive  moisture  in   the  skin  makes  it  more  easily  to  be  penetrated  by  irritants  and  also  vulnerable  to  swelling.  When  friction   also   applies   to   this   area   the   moist   skin   can   become   more   exposed   to   irritants   and   constant   wiping   can   facilitate  the  penetration  of  irritating  substances  into  the  skin.  (Williams,  2011).  

What  is  the  biggest  reason  for  skin  irritations?  Well,  the  feces  contain  enzymes  that  may  irritate  the  skin   of  a  baby  such  as  proteases  and  lipases.  In  addition  to  this,  feces  can  contain  organisms  that  may  cause   skin  infection,  as  for  example  different  bacteria.  The  high  urea  content  in  urine  may  be  degraded  by  urease   and  release  ammonia.  This  results  in  a  pH  rise  and  the  enzymes  from  the  feces  become  more  active  due  to   a  friendlier  environment  for  them.  This  may  lead  to  skin  irritation  and  further  on  to  diaper  rash.      

The  purpose  of  this  master  thesis  is  to  study  the  enzyme  trypsin  and  the  possibilities  of  inhibiting  trypsin   both  with  an  inhibitor  alone  but  also  with  an  immobilized  inhibitor.  The  aim  is  to  create  a  model  that  can   be  applicable  to  the  other  enzymes  in  the  human  feces.    

     

     

 

           

(7)

 

  7  

W HAT  IS  AN  ENZYME  

An  enzyme  is  a  protein  that  catalyzes  a  chemical  reaction.  By  catalyze  it  means  that  the  rate  of  the  reaction   will  increase  or  decrease  by  the  help  of  an  enzyme.  In  an  enzymatic  reaction  the  molecules  that  goes  in  to   the  reaction  is  called  substrate  and  the  enzyme  turns  them  into  products.  Almost  all  process  in  the  human   body  needs  enzymes  so  the  reaction  occurs  at  a  speed  that  is  sufficient  for  the  body.  Every  enzyme  binds   the  substrate  to  a  specific  site  that  is  called  the  active  site.  That  is  the  part  of  the  enzyme  that  catalyzes  the   chemical  reaction.    

 The   enzymes   lowers   the   activation   energy   for   reactions,   which   leads   to   that   products   can   form   faster,   and   that   reactions   equilibrium  also  can  be  reached  faster.  Most   of  the  enzymatic  reactions  occur  millions  of   times  faster  than  without  the  enzymes.    Just   like   any   other   catalytic   molecule   the   enzymes   are   not   consumed   during   the   reaction   not   either   do   they   change   the   equilibrium  of  the  reaction,  but  what  differs   the   enzymes   from   other   catalysts   is   that   they  are  much  more  specific.    

The  activity  of  an  enzyme  can  be  affected  of   other   molecules,   for   example   inhibitors.  

Many   pharmaceuticals   are   enzyme  

inhibitors,  as  for  example  ibuprofen  (COX-­‐inhibitor).  

The   activity   can   also   be   affected   by   temperature,  

chemical  environment  as  for  example  pH  and  the  concentration  of  the  substrate.  (Hermanson,  2008)  

E NZYMES  IN  FECES  

Enzymes  may  have  difference  sizes,  ranging  from  ≈60  amino  acids  to  more  than  thousand  amino  acids.  As   proteins,  enzymes  are  long,  linear  chains  of  amino  acids  that  has  folded  itself  to  a  3D-­‐structure.  There  are   a  number  of  different  enzymes  in  the  human  feces  that  come  from  the  gastro  intestinal  tract  and  they  are   called  the  digestive  enzymes.  The  most  common  enzymes  in  feces  are  lipase  and  proteases.  

Lipase   is   an   enzyme   that   breaks   down   fat   in   our   body   so   it   can   be   absorbed   in   the   intestines.   Lipase   is   primarily  produced  in  pancreas  and  is  released  in  duodenum,  but  also  in  our  stomach  (gastric  lipase)  and   mouth  (lingual  lipase,  that  is  released  from  the  von  Ebner  glands  on  the  upper  side  of  the  tongue).  Lipase   cleaves  lipids,  as  for  example  triglycerides.  There  are  also  hepatic  lipase,  lysosomal  lipase  and  endothelial   lipase.  These  enzymes  cleaves  the  body’s  own  lipids.  More  generally,  lipase  hydrolyses  the  ester  linkage   coupling  of  fatty  acids.  (http://www.umm.edu/altmed/articles/lipase-­‐000311.htm,  20120412)  

Proteases  are  a  group  of  enzymes  that  catalyze  degradation  of  linkages  between  amino  acids  in  proteins.  

The   reaction   that   takes   place   is   a  hydrolysis.   At   this   moment   proteases   are   divided   into   six   groups   and   they  fall  into  different  number  of  classes  due  to  the  way  they  cleave  the  molecule:  

1. Serine  proteases   2. Metallo  proteases   3. Cysteine  proteases   4. Aspartic  proteases   5. Treonin  proteases   6. Glutamic  acid  proteases      

Fig.   1   –   The   variation   in   the   energy   for   the   stabilisation   of   the   transition   state   by   an   enzyme   is   shown  as  a  function  of  reaction  coordinate  

(8)

 

The   proteases   fall   into   different   number   of   classes   due   to   that   several   mechanisms   can   be   used   for   fragmenting   the   polypeptide   chain.   Some   proteases   cleave   only   the   peptide   bond   adjacent   to   particular   amino   acid   residues   and   thus   fragment   a   polypeptide   chain   in   a   predictable   and   reproducible   way.  

(Laskowski  (1950)).  

Digestive  proteases  are  mostly  excreted  in  zymogen  form  i.  e.  as  inactive  proenzymes,  in  order  to  prevent   the  proteases  degrading  the  pancreas  or  spread  to  abdomen  and  other  organs.    

Trypsin,   a   serine   protesase,   is   one   of   the   most   important   and   also   most   studied   digestive   proteases.   In   pancreas,   trypsin   is   produced   as   an   inactive   precursor   but   well   in   duodenum   it   is   activated   by   enteropeptidase  and  also  by  already  activated  trypsin  molecules  and  activates  itself  the  other  proenzymes   prochymotrypsinogen,   proelastase   and   procarboxypeptidase   to   the   active   forms   chymotrypsin,   elastase   and  carboxypeptidase  

T RYPSIN  

Trypsin   can   be   found   in   the   gastro-­‐intestinal   tract   where   it   catalyzes   the   hydrolysis   of   proteins.   The   peptides   are   further   hydrolyzed   into   single   amino   acids   by   other   proteases   before   the   amino   acids   can   enter   the   blood   stream.   The   first   step   of   the   hydrolysis,   where   trypsin   acts,   is   very   important   because   proteins  are  generally  to  big  to  be  absorbed  through  the  intestinal  wall.    

Trypsin  belongs  to  the  pancreatic  secretions  and  it  passes  into  the  small  intestine  through  the  pancreatic   duct.  Arrival  of  amino  acids  in  the  upper  part  of  the  intestine  (duodenum)  causes  release  into  the  blood  of   the   hormone   cholecystokinin,   which   stimulates   secretion   of   several   pancreatic   enzymes   with   activity   optima  at  pH  7-­‐8.  The  zymogen  form  (inactive  enzyme  precursor)  of  trypsin  are  synthesized  and  secreted   by   the   exocrine   cells   of   pancreas.   Trypsinogen   is   then   converted   to   its   active   form,   trypsin,   by   enteropeptidase.  

 

The  mechanism  of  the  trypsin  reaction  can  be  compared  to  similar  serine  protease  actions.  The  enzyme   contains  a  catalytic  triad  consisting  of  histidine-­‐57,  aspartate-­‐102  and  serine-­‐195.  The  three  residues  form   a   charge   relay,   which   makes   the   active   site   nucleophilic.   Trypsin   cleaves   at   the   carbonyl   side   of   the   positively  charged  lysine  and  arginine  (if  the  next  residue  is  not  proline).  As  mentioned,  trypsin  catalyzes   the   hydrolysis   of   only   those   peptide   bonds   where   the   carbonyl   group   is   contributed   by   either   lysine   or   arginine   residues,   regardless   of   the   length   or   amino   acids   sequence   of   the   chain.   Trypsin   is   commonly   used  as  a  biochemical  tool  since,  it’s  easy  to  predict  the  number  of  smaller  peptides  produced  by  trypsin   due  to  the  total  number  of  arginine  or  lysine.  (Voet,  2008)  

   

   

                                                       

The  optimal  operating  parameters  for  trypsin  are  a  temperature  of  37  °C  and  a  pH  about  7,5-­‐8,5.  Trypsin   has  to  be  stored  at  -­‐20  °C  to  -­‐80  °C  to  prevent  autolysis.  Trypsin  can  also  be  stored  at  lower  pH,  around  3,   to  prevent  autolysis.  When  the  pH  is  adjusted  back  to  optimal  parameter  the  activity  of  trypsin  returns.  

(Campbell,  2008)  

Fig.  2  –  The  amino  acid  Arginine   Fig.  3  –  The  amino  acid  Lysine  

(9)

 

  9  

Trypsin   can   be   inhibited   by   trypsin   inhibitors,   which   also   are   known   as   serine   protease   inhibitor   (serpins).   They   are   the   largest   and   most   diverse   family   of   protease   inhibitors.   Serpins   control   the   activation  and  catabolism  of  proteins  by  the  inhibition  of  serine  protease  in  vivo.  (Lehninger,  2005)  

S

UBSTRATE  FOR  TRYPSIN

 

During  each  reaction  BAPA  has  been  used  as  a  substrate  for  trypsin.  BAPA  stands   for  N-­‐α-­‐Benzoyl-­‐L-­‐arginine-­‐4-­‐nitroanilide,  which  is  a  chromogenic  substrate  for   trypsin  and  also  for  other  proteolytic  enzymes.    

CAS  Number:  21653-­‐40-­‐7     Molecular  Weight:  434.88  Da    

The  reaction  takes  place  at  the  carboxyl  side  of  arginine  and  the  detection  is  at  410   nm  where  the  formed  4-­‐nitroaniline  product  absorbs  light.  (Hiroyasu  Nakata,   Shin-­‐Ichi  Ishii  (1970)).  

           

                         

Fig.   4   –   4-­‐nitroaniline   is   shown   to  the  left  and  BAPA  to  the  right.  

(10)

 

I NHIBITORS  

The  activity  of  an  enzyme  can  be  prevented  by  the  use  of  inhibitors,  which  prevents  the  enzyme  to  work  in   a  normal  manner.  The  inhibitors  can  be  divided  into  different  groups  due  to  the  way  the  inhibition  works   on  the  enzyme.  The  variety  of  types  of  inhibitors  includes  nonspecific,  irreversible  and  reversible  that  in   turn  can  be  divided  in  different  groups,  such  as  competitive  and  noncompetitive.  As  mentioned  earlier  are   drugs  and  poisons  example  of  inhibitors.  

Nonspecific   inhibitors   affect   all   the   enzymes   in   the   same   way   that   includes   any   physical   or   chemical   changes  that  denatures  the  enzyme  and  are  therefore  irreversible.  For  example,  the  activity  of  the  enzyme   can  be  controlled  by  pH.  As  the  pH  increases  or  decreases,  the  protonation  state  of  the  various  acid  and   amine  groups  on  side  chains  is  altered  with  resulting  changes  in  the  overall  shape  structure  of  the  enzyme.  

In  this  case  it  can  be  hard  to  control  the  pH  in  as  for  example  diapers  when  body  fluids  has  a  certain  pH   when  it  leaves  the  body.    

Specific  inhibitors  act  upon  a  single  enzyme.  Most  of  the  poisons  work  by  specific  inhibition  of  enzymes   and  there  are  also  many  drugs  that  exert  their  effect  on  a  single  enzyme.    

A  competitive  inhibition  is  any  molecule  that  is  similar  in  the  chemical  structure  and  molecular  geometry   of  the  substrate.  As  the  word  “competitive”  indicates  are  the  inhibitors  competing  for  the  same  active  site   as  the  substrate  molecule.  When  the  inhibitor  and  the  enzyme  binds,  the  enzyme  is  prevented  to  function   as  normal  and  the  inhibition  also  prevents  the  substrate  from  reacting  with  the  enzyme.  The  competitive   reaction  can  be  reversible  if  there  is  enough  amount  of  substrate  so  the  inhibitor  can  be  displaced.  This   results   in   that   the   amount   of   enzyme   inhibition   depends   on   the   inhibitor   concentration,   substrate   concentration  and  the  affinities  of  the  inhibitor  and  substrate  for  the  active  site.    

A  non-­‐competitive  inhibitor  is  a  substance  that  interacts  with  an  enzyme  but  usually  not  at  the  active  site.  

The  non-­‐competitive  inhibitor  reacts  on  another  part  of  the  enzyme  then  the  active  site  and  the  net  effect   of  the  inhibition  is  to  impair  the  catalytic  mechanism  itself,  possibly  by  a  small  change  in  the  shape  of  the   enzyme.   Non-­‐competitive   inhibition   is   not   affected   by   the   substrate   concentration   as   the   reversible   competitive  inhibitors  are.    

Irreversible   inhibitor   reacts   with   the   enzyme   and   forms   a   covalent   bond   to   permanently   inhibit   the   enzyme.  The  inhibitor  may  act  near  or  at  the  active  site  of  the  enzyme  but  it  can  also  react  on  other  part  of   the  enzyme  than  at  the  active  site.  Excess  substrate  will  not  displace  the  inhibitor.    

There   are   many   examples   of   natural   trypsin   inhibitors,   such   as   bovine   pancreas   trypsin   inhibitor   (aprotinin),   ovomucoid,   soybean   trypsin   inhibitors   and   lima   bean   trypsin   inhibitor.   They   all   act   as   a   competitive   substrate   analog   and   an   inactive   complex   are   formed.   Trypsin   inhibitors   can   offer   unique   results  depending  on  the  mission.    

Below   there   are   a   few   inhibitors   described   that   were   used   in   this   master   thesis.   There   are   a   numerous   amount  of  other  inhibitors  available  for  trypsin  but  the  ones  below  are  the  ones  that  fell  into  interest  due   to  the  possibilities  of  immobilization.  (Fersht,  1984)  

 

(11)

 

  11  

A PROTININ

 

Molecular  weight:  ~6  511  Da   CAS-­‐number:  9087-­‐70-­‐1   While  aprotinin  and  bovine   pancreatic  trypsin  inhibitor  (BPTI)   are  the  same  protein  sequence,  the   term  aprotinin  is  typically  used  when   describing  the  protein  derived  from   bovine  lung.  Aprotinin  is  a  protein   consisting  of  58  amino  acids  arranged   in  single  peptide  chain  with  three   disulfide  bonds.  A  disulfide  bond  is  a   chemical  bond  between  two  

cysteine’s  thiol  groups.  The  two   cysteines  lose  their  hydrogen  atom   and  together  forms  a  S-­‐S-­‐bond.  These   bonds  are  important  for  the  protein   three-­‐dimensional  structure.  

Aprotinin  is  a  competitive  serine   protease  inhibitor  that  inhibits   chymotrypsin,  kallikrein,  plasmin  and   trypsin.  Aprotinin  forms  a  reversible  

but  strong  complex  with  the  enzyme      

and  blocks  the  enzymes  active  site.      

The  binding  is  reversible  with  most  of      

the  protease-­‐aprotinin  complexes  with  a  dissociation  at  pH  <3  or  >10.  One  trypsin  inhibitor  unit  will   decrease  the  activity  of  two  trypsin  units  by  50  %.  The  effective  concentration  of  Aprotinin  is  equimolar   with  protease.  (Cited  http://www.sigmaaldrich.com/catalog/product/sigma/a1153?lang=en&region=SE,   120312)  

   

   

Fig  5  -­‐  Aprotinin  

Fig.  6  –  Aprotinin  

(12)

 

S OYBEAN  TRYPSIN  INHIBITOR

  Molecular  weight:  ~  20,1  kDa   CAS-­‐number:  9035-­‐81-­‐8  

Soybean   trypsin   inhibitors   (SBTI)   are   found   in   the   seeds   of   soybean.  

Several   trypsin   inhibitors   have   been   identified   and   isolated   from   soybean   with   a   molecular   weight   ranging   from   8,000   to   24,000   and   the   biological   and   physicochemical   properties   have   been   studied.  

(Kuntiz   (1946);   Scung-­‐Ho   (1985))   Kunitz   crystallized   a   soybean   trypsin   inhibitor   with   a   molecular   weight   at   21,500   with   optimal   pH   at   7.0   in   a   complex   with   trypsin   from   porcine   in   1945.   (Kunitz  

(1946);  Scung-­‐Ho  (1985))  The  Kunitz  soybean  inhibitor  consists  of  a  single  polypeptide  chain  crosslinked   by  two  disulfide  bridges.  SBTI  inhibits  trypsin  mole  for  mole  and  also  to  a  lesser  extent  chymotrypsin.  One   mg   will   approximately   inhibit   1.0-­‐3.0   mg   of   trypsin.   SBTI   is   extremely   stable;   in   a   1   %   sterile   filtered  

solution  the  inhibitor  maintained  the  activity  for  over  three   years  

stored  at  a  temperature  at  4-­‐8°C.    

SBTI  forms  a  1:1  stoichiometric  complex  with  trypsin  and  upon  the  complex  formation,  trypsin  may  cleave   a  single  arginine-­‐isoleucine  bond  in  the  inhibitor.  When  the  complex  dissociate  it  may  lead  to  formation  of   the  native  inhibitor.  At  pH  8.0,  which  is  the  optimal  pH,  the  association  constant  is  ≥  10×108.  It  acts  as  an   inhibitor  only  when  it  is  in  its  native  state,  denaturation  of  the  soy  protein  by  heat,  acid  or  alkali  is   accompanied  by  a  loss  in  its  inhibiting  power.  (Scung-­‐Ho,  (1985);    

(Cited:  http://www.sigmaaldrich.com/catalog/product/sigma/t9003?lang=en&region=SE,  120423)   There  are  three  different  types  of  Kunitz-­‐type  trypsin  inhibitors,  Tia,  Tib  and  Tic.  All  the  three  inhibitors   consist  of  181  amino  acids  residues  and  what  differs  them  are  the  sequences  of  the  amino  acids.  Tia  has   the   sequence   of   Pro(60)-­‐Ser(61)   and   Asp(154)-­‐Asp(155)-­‐Gly(156)-­‐His(157)   where   Tib   and   Tic   had   the   sequence  Ser(60)-­‐Pro(61)  and  His(154)-­‐Asp-­‐Asp-­‐Gly(157)  respectively.  (Kunitz  (1946))  

The  mechanism  of  the  reaction  is  the  action  of  SBTI  to  form  an  irreversible  stoichiometric  compound  with   trypsin.  The  combination  is  instantaneous  and  independent,  within  a  wide  range,  of  the  pH  of  the  solution.  

SBTI  inhibits  the  proteolytic  action  of  an  equal  weight  of  crystalline  trypsin  by  combining  with  trypsin  to   form  a  stable  compound.  (Scung-­‐Ho,  (1985))    

 

       

Fig  7  –  Soybean  trypsin  inhibitor  

(13)

 

  13  

α-­‐1-­‐ ANTITRYPSIN

  Molecular  weight:  44,3  kDa   CAS-­‐number:  9041-­‐92-­‐3  

α-­‐1-­‐antitrypsin  is  the  most  abundant  serine  protease  inhibitor  in  the  human  plasma  and  it  is  mainly   produced  in  the  liver  parenchymal  cells.  Normally  an  amount  of  34  mg/kg  in  24  hours  is  produced,  which   will  give  a  normal  plasma  concentration  between  0,9-­‐1,75  g/l  with  a  half-­‐life  on  3-­‐5  days.  5  to  10  mg  of  α-­‐

1-­‐antitrypsin  will  inhibit  1.0  mg  of  trypsin.    

(Cited;  http://www.sigmaaldrich.com/catalog/product/sigma/a6150?lang=en&region=SE,  20120510)   α-­‐1-­‐antitrypsin  protects  tissues  from  degrading  enzymes,  protease,  and  the  most  important  assignment  α-­‐

1-­‐antitrypsin   has   is   to   protect   lung   tissues.   When   the   lung   are   infected   of   or   in   the   presence   of   foreign   substance  (as  for  example  smoking),  white  blood  cells  are  released  in  the  lungs  to  “clean”  the  lungs  from   undesirable   substances.   The   release   of   white   blood   cells   will   lead   to   the   amount   of   a   certain   enzyme,   neutrophil  elastase,  will  increase  and  the  enzyme  kills  bacteria’s  and  cleans  up  dead  lung  tissue.  When  the   foreign  substances  are  gone  α-­‐1-­‐antitrypsin  are  released  to  decrease  the  effect  of  the  destructive  enzyme,   otherwise  healthy  lung  tissue  will  be  attacked.  Some  people  suffer  from  α-­‐1-­‐antitrypsin  deficiency,  which   can  lead  to  that  healthy  lung  tissue  breaks  down  which  in  turn  leads  to  emphysema.  The  lungs  will  lose   their  elasticity  and  it  will  be  harder  and  harder  to  breath.    

 

L EUPEPTIN  

Molecular  weight:  463,01  Da   CAS  number:  24125-­‐16-­‐4  

Leupeptin,  also  known  as  N-­‐acetyl-­‐L-­‐leucyl-­‐L-­‐leucyl-­‐L-­‐

argininal,  is  a  small  peptide  that  is  composed  of  three   linked  amino  acids  and  it  has  some  unusual  attributes.  The   amino  group  of  the  compound  has  an  acetyl  group  on  it;  

also  an  aldehyde  group  replaces  the  terminal  carboxy   group.  

Leupeptin  is  a  protease  inhibitor  that  inhibits  the  proteases  with  

endopeptidase  activity  (plasmin,  trypsin,  papain,  calpain,  and  cathepsin  B)  and  the  soil  bacteria  

Streptomyces  produces  it  naturally.  It  has  an  effective  concentration  of  10-­‐100  µM  (of  course  depending   on  the  concentration  of  the  enzyme)  and  it  inhibits  the  serine  protease  trypsin  with  a  Ki  =  3,5  nM.  

Leupeptin  is  soluble  in  water  (stable  for  about  one  month  at  -­‐20  °C),  ethanol,  acetic  acid  and  DMF.  (Cited:  

http://www.sigmaaldrich.com/catalog/produ ct/sigma/l9783?lang=en&region=SE,  

20120518)  

One  positive  effect  with  Leupeptin  is  that  it   has  very  low  toxicity  towards  humans.  It  has   been  shown  in  research  on  animal  models   that  leupeptin  protects  hair  cells  in  the  ear   from  being  killed  by  loud  noises.  It’s  also   being  widely  used  during  the  first  part  of   protein  purifications  to  keep  the  protease  in   the  tissue  from  breaking  down  the  protein  of   interest.  The  wide  inhibition  potential   leupeptin  has  makes  it  also  very  useful  in    

Figure  9.  Crystal  structure  of  Leupeptin  (silver)  in  the  Trypsin  (green)   binding  pocket.    

Hydrogen  bonds  are  shown  as  yellow  dotted  lines.  

Fig.  8  -­‐  Leupeptin  

(14)

 

biochemical  research  and  in  large-­‐scale  production.  It  is  common  that  leupeptin  is     used  in  so  called  protease  cocktail  due  to  its  potency,  low  toxicity  and  as  mentioned,     activity  on  a  broad  range  of  proteases.    

(Drapalova  (2008);  Stys  (2008);  Lukesova  (2008);  Kopecky  (2008))    

A NTIPAIN

 

Molecular  weight:  604.7  Da   CAS  number:  37691-­‐11-­‐5  

Ki  =  2×10!!𝑀  with  serine  protease  as   substrate.  

 

Synonym:  [(S)-­‐1-­‐Carboxy-­‐2-­‐

phenylethyl]carbamoyl-­‐L-­‐arginyl-­‐L-­‐valyl-­‐

argininal

Antipain  is  an  oligopeptide  that  has  been  isolated  from  actinomycetes       and  it  is  common  to  use  antipain  as  protease  inhibitor,  specifically  for      

trypsin  and  papain.  Antipain  is  a  serine  and  cysteine  reversible  protease  inhibitor  and  besides  trypsin  and   papain  it  also  inhibits  a  small  amount  of  plasmin  to  some  extent.  Antipain  is  mostly  used  to  evaluate  the   role  of  proteases  in  cell  transformation  and  to  help  identify  new  proteases  IC50  for  trypsin  is  

approximately  0.25  µg/mL  and  a  solution  of  10  mM  in  water  or  buffer  is  usually  stable  for  one  week  at  4  

°C  and  one  month  at  -­‐20  °C.  The  activity  of  antipain  can  be  compared  to  the  activity  of  leupeptin  due  to   that  antipains  action  resembles  leupeptins,  but  antipain  inhibits  plasmin  less  and  cathepsin  A  more.    

(Cited:  http://www.sigmaaldrich.com/catalog/product/sigma/10791?lang=en&region=SE,  20120520)   There  are  a  number  of  other  inhibitors  that  has  been  proven  to  have  a  good  inhibiting  effect   towards  trypsin.  For  example  ovomucoids,  fetal  bovine  serum  (FBS)  and  trypsin  inhibitors  from   lima  beans  also  show  a  good  inhibiting  effect.  The  focus  has  been  on  the  five  inhibitors  above  but   the  choice  doesn’t  stop  there.    

               

Fig.  10  -­‐  Antipain  

(15)

 

  15  

I MMOBILIZATION  

Immobilization  of  molecules  to  a  carrier  phase  is  frequently  used  for  e.g.  affinity  chromatography  and   enzyme  reactors.  There  are  many  activated  gel  matrices  available  at  market  and  what  differ  between  them   are  reactive  groups,  the  extent  of  activation,  introduced  spacer  length  and  type,  particle  size  and  also   porosity.  Most  of  the  gel  matrices  are  based  on  beaded  agarose.  

In  one  article  (Sommeren  et.  al.  (1993))  three  different  activated  agaroses  were  compared  in  matters  of   coupling  performance  and  ligand  leakage.  One  of  these  three  was  N-­‐hydroxysuccinimide  agarose  and  the   result  showed  a  very  fast  and  complete  binding  to  the  ligand.    

S CHIFF  BASES  

Aldehydes  and  ketones  can  react  with  primary  and  secondary  amines  to  form  Schiff  bases.  A  Schiff  base  is   a  relatively  labile  bond  that  is  readily  reversed  by  hydrolysis  in  aqueous  solution.  The  formation  of  Schiff   bases  is  enhanced  at  alkaline  pH  values,  but  not  completely  stable  unless  it  is  reduced  to  a  secondary  or   tertiary  amine  linkages.  There  are  a  number  of  reducing  agents  that  can  be  used  to  specifically  convert  the   Schiff  base  into  an  alkylamine  linkage.  Once  the  linkage  is  reduced,  the  bond  is  highly  stable.  The  use  of   reductive   amination   to   conjugate   an   aldehyde   containing   molecule   to   an   amine   containing   molecule   results   in   a   zero-­‐length   crosslink   where   no   additional   spacer   atoms   are   introduced   between   the   molecules.    

The  reduction  reaction  is  best  facilitated  by  the  use  of  reduction  agent  such  as  sodium  cyanoborohydride,   because   the   specificity   of   this   reagent   is   for   the   Schiff   base   structure   and   it   will   not   affect   the   original   aldehyde  groups  to  the  same  extent.  Sodium  borohydride  can  also  be  used  in  this  reaction  but  its  strong   reducing  power  will  and  can  rapidly  convert  aldehydes  that  has  not  reacted  into  non-­‐reactive  hydroxyls,   effectively   eliminating   them   from   further   participation   into   the   conjugation   process.   Borohydride   may   also  affect  the  activity  of  some  sensitive  proteins.  Cyanoborohydride  is  gentler,  successfully  preserving  the   activity  of  some  labile  monoclonal  antibodies.  Cyanoborohydride  has  been  shown  to  be  five  times  milder   than  borohydride  in  reductive  amination  process  with  antibodies  (Peng  et  al.,  1987)  There  have  been  an   investigation   of   other   reductive   agents   that   includes   various   amine   boranes   and   ascorbic   acid.  

(Cabacungan  et  al.,  1982;  Hornsey  et  al.,  1986)    

The   end   result   of   the   reaction   is   a   compound   where   the   C=O   double   bond   is   replaced   by   a   C=N   double   bond  (see  figure  11  below).  This  type  of  compound  is  known  as  an  imine  or  Schiff  base.  

   

Mechanistically,  the  formation  of  the  Schiff  base  involves  two  steps.  At  the  first  step  the  amine  nitrogen   acts  as  a  nucleophile  and  attacks  the  carbonyl  carbon  (figure  12).  This  can  be  compared  to  hemiacetal  and   hemiketal  formation.

Fig.  11  –  Overall  reaction  

(16)

 

   

Based   on   the   mechanism   of   acetal   and   ketal   formation   the   next   step   would   be   the   attack   be   a   second   amine  to  form  a  compound  where  a  carbon  binds  to  two  amines,  but  this  is  not  the  case  here.  The  next   thing  that  happens  is  that  the  nitrogen  is  deprotonated  and  the  electrons  from  the  N-­‐H  bond  “push”  the   oxygen  off  the  carbon,  leaving  a  C=N  double  bond,  an  imine,  and  a  water  molecule.  

   

The  conversion  of  an  imine  back  to  an  aldehyde  or  ketone  is  a  hydrolysis  and  the  reverse  formation  of  the   imine.    

 

   

Immobilization   by   reductive   amination   of   amine-­‐containing   biological   molecules   onto   aldehyde-­‐

containing   solid   supports   has   been   used   for   quite   some   time   and   the   reaction   proceeds   with   excellent   efficiency  (Sanderson  and  Wilson,  1971;  Domen  et  al.,  1990).  The  optimum  pH  for  the  reaction  is  alkaline   although  a  good  yield  can  be  given  by  the  pH  range  from  7  to  10.  At  the  higher  end  of  pH  is  the  formation   of  the  Schiff  base  reaction  more  efficient  and  the  yield  of  the  immobilization  can  be  increased.  (Hornsey  et   al.,  1986).  

Fig.  12  –  Nitrogen  acts  as  a  nucleophile  

Fig.  13  –  Nitrogen  deprotonates,  a  C=N  bond  is  left.  

Fig.  14  –  The  reverse  formation  of  the  imine  

(17)

 

  17  

The  introduction  of  aldehyde  functional  groups  into  proteins  and  other  molecules  can  be  accomplished  by   a   number   of   methods.   Glycoproteins   may   be   oxidized   at   their   carbohydrate   residues   using   sodium   periodate  or  specific  sugar  oxidase.  Amine  groups  may  be  modified  to  produce  a  formyl  group  by  reacting   with  NHS-­‐aldehydes  or  p-­‐nitrophenyl  diazopyruvate.  (Hermanson,  2008)  

 

NHS-­‐ ACTIVATED   S EPHAROSE  

Pre-­‐activated   agarose   matrix   increases   the   choice   of   coupling   chemistries.   NHS-­‐

(N-­‐hydroxysuccinimide)-­‐esters   of   introduced   carboxylate   groups   allow   the   formation   of   chemically   stable   amide   bonds   with   ligands   containing   primary   amino   groups.   NHS-­‐activated   Sepharose   provides   a   spacer   arm   and   is   therefore   particularly  suitable  for  immobilizing  small  protein  and  peptide  ligands.  The  NHS-­‐

activated   Sepharose   is   a   bead-­‐formed,   highly   crosslinked   pre-­‐activated   matrix   prepared   by   coupling   Sepharose   4   fast   flow   with   6-­‐aminohexanoic   acid   via   a   spacer   arm.   The   terminal   carboxyl   group   is   activated   by   esterification   with   N-­‐

hydroxysuccinimide.  Ligands  containing  primary  amino  groups  couple  directly  to   this  active  ester  to  form  a  chemically  very  stable  amide  linkage.  A  pH  between  6  and  

9   are   normally   used   due   to   higher   pH   can   lead   to   premature   hydrolysis   of   the   NHS-­‐ester   groups.  

(Hermanson,  2008,  GE  Life  Science  20120611).    

Medium  characteristics    

Mean  particle  size   90  µm  

Particle  size  range   45  to  165  µm  

Bead  structure   Highly  crosslinked  4  %  agarose,  spherical  

Linear  flow  velocity   150  cm/h  at  100  kPa  

Ligand  density   16  to  23µmol  NHS/ml  drained  medium  

pH  stability,  long  term1   3  to  13   pH  stability,  short  term1   2  to  13  

Table  1  –  Characteristics  of  the  medium  

1Depends  on  the  ligand.  Tested  with  lysine  as  ligand  with  single-­‐point  attachment.  

 

             

Fig.  15  -­‐  NHS  

(18)

 

M ATERIALS   &  METHODS  

 

Enzyme  and  inhibitors  

The  enzyme  trypsin  and  the  four  inhibitors  aprotinin,  soybean  inhibitor,  leupeptin  and  alfa-­‐1-­‐antitrypsin   were  obtained  from  Sigma  Aldrich.  NHS-­‐activated  Sepharose  was  obtained  from  GE  Healthcare  and   ethylenediamine  (99%)  was  obtained  from  Kebo  lab  (EC  no  203-­‐468-­‐6).  

All  the  inhibitors  were  dissolved  in  to  a  solution  consisting  of  following:  

-­‐ 50  µL  BAPA  (substrate  for  trypsin)   -­‐ 100  µL  NH4HCO3  

-­‐ x  µL  inhibitor   -­‐ distillated  water  

To  each  inhibitor  solution  a  certain  volume  of  trypsin  solution  was  added.  Different  amount  of  inhibitor   was  added  to  each  solution,  depending  on  the  molar  ratio.  Following  that  the  resulting  activity  of  trypsin   was  measured.      

All  the  reactions  were  measured  with  UV-­‐visible  spectrophotometer,  Shimadzu,  UV-­‐1601  at  410  nm  for   180  and  700  seconds.    

A PROTININ

 

A1153  SIGMA,  Aprotinin  from  bovine  lung,  lyophilized  powder    

A  aprotinin  solution  of  66,6  µM  and  a  trypsin  solution  of  2,69  µM  were  used.  In  the  first  experiment  the   molar  ration  2:1  (aprotinin:trypsin)  and  in  the  second  experiment  a  ratio  of  3:2  (aprotinin:trypsin)  were   used.    

S OYBEAN  TRYPSIN  INHIBITOR  

T9003  SIGMA,  Trypsin  inhibitor  from  Glycine  max  (soybean),  Type  I-­‐S,  lyophilized  powder.  

 

A  soybean  trypsin  inhibitor  solution  of  35,1  µM  and  a  trypsin  solution  of  2,25  µM  were  used.    Different   experiments  with  different  mole  ratios  were  tested.  The  mole  ratio  that  were  tested  were  1-­‐6:1  (soybean   trypsin  inhibitor:trypsin).  

 

α-­‐1-­‐ ANTITRYPSIN

 

A6150  SIGMA  α1-­‐Antitrypsin  from  human  plasma,  salt-­‐free,  lyophilized  powder    

A  α-­‐1-­‐antitrypsin  inhibitor  solution  of  35,5  µM  and  a  trypsin  solution  of  2,25  µM  were  used.  Different   molar  ratio  (0,79-­‐8,94)  between  α-­‐1-­‐antitrypsin:trypsin  were  tested.    

L EUPEPTIN  

L9783  SIGMA,  Leupeptin  hydrochloride,  microbial,  ≥90%  (HPLC)    

A  leupeptin  inhibitor  solution  of  100  µM  and  a  trypsin  solution  of  54,53  µM  were  used.  The  molar  ratio   1:1,  2:1  and  3:1  (leupeptin:trypsin)  were  tested.  

 

 

(19)

 

  19  

I MMOBILIZATION  OF   α-­‐1-­‐ ANTITRYPSIN  

C

OUPLING  BETWEEN  

NHS-­‐

ACTIVATED  

S

EPHAROSE  

4

 

F

AST  

F

LOW  AND  

α-­‐1-­‐

ANTITRYPSIN

.

 

   

NHS-­‐activated  Sepharose  is  supplied  as  a  suspension  in  100%  isopropanol  with  ligand  density  16-­‐23  µmol   NHS/ml  drained  medium.  In  order  to  retain  maximum  binding  capacity  of  the  pre-­‐activated  medium  prior   to  the  coupling  step,  cold  (0°C  to  4°C)  solutions  was  used.  Also  the  time  interval  between  all  the  steps  was   minimized,  because  of  that,  all  of  the  solutions  were  prepared  before  the  coupling  started.  (GE  Life   Science)  

1. Coupling  solution  was  prepared,  a  standard  buffer  of  0.2M  NaHCO3,  0.5M  NaCl  at  pH  8.3  was  used.  

Normally  pH  between  6  and  9  are  used,  higher  pH  can  lead  to  premature  hydrolysis  of  the  NHS-­‐

ester  groups.  

 

2. The  NHS-­‐activated  Sepharose  4  Fast  Flow  was  washed  with  10  medium  volumes  of  cold  1  mM  HCl   immediately  before  use.  

 

3. α-­‐1-­‐antitrypsin  (A1AT)  was  dissolved  the  appropriate  buffer  (0.2M  NaHCO3,  0.5M  NaCl,  pH  8.3).  A   ligand  concentration  of  20  µM  was  made.  The  washed  medium  and  coupling  solution  was  mixed   and  allowed  to  react  selected  times.  A  volume  ratio  of  0.5:1  with  coupling  solution  and  the   medium  was  used.  

 

Time  of  mixing  (min)   Amount  A1AT  (ml)   Amount  NHS  (ml)  

15   0.25   0.5  

30   0.25   0.5  

60   0.25   0.5  

120   0.25   0.5  

 

4. After  the  coupling  was  completed  the  medium/mixture  was  kept  in  0.1M  Tris-­‐HCl,  pH  8.5  for   about  one  hour  in  order  to  block  any  non-­‐reacted  groups.  The  medium  was  after  that  washed   with  the  same  buffer  three  times  and  to  prevent  microbial  contamination,  the  four  mixtures  were   left  in  20%  ethanol  in  4°C.    

T

EST  OF  IMMOBILIZATION  

 

For  each  immobilized  α-­‐1-­‐antitrypsin  according  to  the  mixing  times,  except  for  trypsin,  immobilized  α-­‐1-­‐

antitrypsin  was  added  and  then  3  µL  of  50  µM  trypsin  solution  was  added  and  during  the  experiment  15   µL  more  50  µM  trypsin  solution  was  added.  So  to  explain  the  experiment,  3  µL  of  50  µM  trypsin  solution   was  added  at  time  0  sec.  At  about  300  sec  additional  15  µL  50  µM  trypsin  solution  was  added.  A  total  of  18   µL  50  µM  trypsin  solution  was  added.  

 

I MMOBILIZATION  OF  LEUPEPTIN  

C

OUPLING  BETWEEN  

NHS-­‐

ACTIVATED  

S

EPHAROSE  

4

 

F

AST  

F

LOW  AND  

L

EUPEPTIN

 

 

NHS-­‐activated  Sepharose  is  supplied  as  a  suspension  in  100%  isopropanol.  In  order  to  retain  maximum   binding  capacity  of  the  pre-­‐activated  medium  prior  to  the  coupling  step,  cold  (0°C  to  4°C)  solutions  should   be  used.  Also  the  time  interval  for  all  the  steps  must  be  minimized,  because  of  that,  all  of  the  solutions   were  prepared  before  the  coupling  started.  (GE  Life  Science)  

Table  2  –  Amount  and  time  of  mixing  

(20)

 

1. Coupling  solution  was  prepared,  a  standard  buffer  of  0.2M  NaHCO3,  0.5M  NaCl  at  pH  8.3  was  used.    

 

2. The  NHS-­‐activated  Sepharose  4  Fast  Flow  was  washed  10  medium  volumes  of  cold  1  mM  HCl   immediate  before  use.  A  1:1  solution  of  the  1M  ethylenediamine  is  added  and  left  for  60  minutes.  

Different  volumes  of  1M  ethylenediamine  were  tested:  

− 10  µL  

− 20  µL  

− 30  µL  

− 40  µL    

3. Before  Leupeptin  was  added,  10  µL  of  concentrated  NaBH3CN  (99%)  was  added  to  each  test  tube.    

 

4. Leupeptin  was  dissolved  in  the  appropriate  buffer  (0.2M  NaHCO3,  0.5M  NaCl,  pH  8.3).    

 

5. The  washed  medium  and  coupling  solution  was  mixed  and  left  for  60  minutes.  A  volume  ratio  of   1:0,5  with  coupling  solution  and  the  medium  was  used.    

 

6. After  that  the  coupling  time,  the  medium  was  kept  in  0.1M  Tris-­‐HCl,  pH  8.5  for  about  one  hour  to   block  any  non-­‐reacted  groups.  The  medium  was  after  that  washed  with  the  same  buffer  three   times  and  to  prevent  microbial  contamination,  the  four  mixtures  were  left  in  20%  ethanol  in  4°C.    

 

T

EST   OF  IMMOBILIZATION  OF  LEUPEPTIN

 

Trypsin  was  incubated  in  the  presence  of  different   molar  ratios  of  immobilized  leupeptin  and  with  four  different  amounts  of  ethylenediamine.  The  first   experiment  was  with  the  presence  of  immobilized  leupeptin  1:1  (leupeptin:trypsin)  and  the  second   experiment  was  2:1  (leupeptin:trypsin)  for  each  volume  of  ethylenediamine.  Calculations  for  each   experiment  can  be  found  in  the  appendix.  A  solution  of  substrate,  buffer  and  immobilized  leupeptin  was   mixed  and  just  before  the  measurement  started  trypsin  was  added.    

 

       

Time  of  mixing  (min)   Amount   Leupeptin  (ml)  

Amount     NHS  (ml)    

Amount   NaBH3CN  (µl)  

Amount  1M  

Ethylendiamine  (µl)  

60   1   0.5   10   10  

60   1   0.5   10   20  

60   1   0.5   10   30  

60   1   0.5   10   40  

Table  3  –  Amount  and  time  of  mixing  

(21)

 

  21  

R ESULTS  

The  effect  of  each  inhibitor  on  trypsin  is  shown  below  in  diagrams.  The  blue  curve  always  represents   trypsin  that’s  not  inhibited.  Different  mole  ratios  between  the  inhibitor  and  trypsin  are  shown  in  each   diagram.  The  absorbance  was  measured  at  λ  =  410  nm.  

 

W ITH  EACH  INHIBITOR

 

  Aprotinin  was  tested  at  different  molar  ratios.  The  blue  line  represents  the  degradation  of  BAPA  without   the  inhibitor.  The  red  line  represents  the  experiment  at  1:1  molar  ratio  inhibitor  to  trypsin.  The  green  line   represents  the  experiment  at  2:1  molar  ratio  inhibitor  to  trypsin.  

Inhibition  ratio  1:1  →  41  %  of  trypsin  is  inhibited   Inhibition  ratio  1:2  →  79  %  of  trypsin  is  inhibited    

y  =  0,0095x  +  0,2571   R²  =  0,99164  

y  =  0,0056x  +  0,0963   R²  =  0,99761  

y  =  0,002x  +  0,0315   R²  =  0,99867   0  

0,5   1   1,5   2   2,5  

0   20   40   60   80   100   120   140   160   180   200  

Absorbans,  410  nm  

Time  (sec)  

Trypsin  inhibited  by  Aprotinin  

Trypsin   1:1   1:2  

(22)

 

  Soybean   trypsin   inhibitor   (STI)   was   tested   at   different   molar   ratios.   The   blue   line   represents   the   degradation  of  BAPA  in  absence  of  the  inhibitor.  The  other  lines  show  the  degradation  of  the  present  of   STI   at   different   molar   ratios.   (All   of   the   equations   are   not   shown   in   the   diagram   due   to   crowding,   see   appendix  for  all  the  linear  fits).    

Inhibition  ratio  1:2  →  42  %  of  trypsin  is  inhibited   Inhibition  ratio  1:6  →  67  %  of  trypsin  is  inhibited    

   

y  =  0,0043x  +  0,0692   R²  =  0,99546  

y  =  0,0025x  +  0,0291   R²  =  0,99874  

y  =  0,0014x  +  0,0256   R²  =  0,99937  

0   0,1   0,2   0,3   0,4   0,5   0,6   0,7   0,8   0,9  

0   20   40   60   80   100   120   140   160   180   200  

Absorbans,  410  nm  

Time  (sec)  

Trypsin  inhibited  by  STI  

Trypsin   1  till  1   2  till  1   3  till  1   4  till  1   5  till  1   6  till  1  

(23)

 

  23  

 

α-­‐1-­‐antitrypsin  was  tested  with  different  molar  ratios.  The  blue  line  represents  the  degradation  of  BAPA   without  the  inhibitor.  The  red  line  represents  the  experiment  at  0,8:1  molar  ratio  inhibitor  to  trypsin.  The   green  line  represents  the  experiment  at  1,6:1  molar  ratio  inhibitor  to  trypsin,  and  the  purple  3,2:1  molar   ratio  inhibitor  to  trypsin.  The  light  blue,  orange  and  grey  all  shows  the  same  inhibition  even  though  there   are  different  molar  ratio  for  the  three.      

Inhibition  ratio  1:0,8  →  8  %  of  trypsin  is  inhibited   Inhibition  ratio  1:1,6  →  20  %  of  trypsin  is  inhibited   Inhibition  ratio  1:3,2  →  28  %  of  trypsin  is  inhibited   Inhibition  ratio  1:6,3  →  52  %  of  trypsin  is  inhibited   Inhibition  ratio  1:7,9  →  52  %  of  trypsin  is  inhibited   Inhibition  ratio  1:8,9  →  52  %  of  trypsin  is  inhibited    

y  =  0,0025x  +  0,0271  

R²  =  0,99861   y  =  0,0023x  +  0,0304   R²  =  0,99867   y  =  0,002x  +  0,0271  

R²  =  0,99792   y  =  0,0018x  +  0,0278  

R²  =  0,99649   y  =  0,0012x  +  0,0384  

R²  =  0,98811  

0   0,1   0,2   0,3   0,4   0,5   0,6  

0   20   40   60   80   100   120   140   160   180   200  

Absorbans,  410  nm  

Time  (sec)  

Trypsin  vs  α-­‐1-­‐antitrypsin    

Trypsin   1:0,8   1:1,6   1:3,2   1:6,3   1:7,9   1:8,9  

(24)

 

  The  blue  line  represents  the  degradation  of  BAPA  in  absence  of  the  inhibitor.  The  red  line  represents  the   experiment  at  1:1  molar  ratio  inhibitor  to  trypsin.  The  green  line  represents  the  experiment  at  2:1  molar   ratio  inhibitor  to  trypsin.  

Inhibition  ratio  1:1  →  60  %  of  trypsin  is  inhibited   Inhibition  ratio  1:2  →  98  %  of  trypsin  is  inhibited    

                     

y  =  0,0013x  +  0,064   R²  =  0,9932  

y  =  0,0005x  +  0,039   R²  =  0,99469  

y  =  0,0002x  +  0,0336   R²  =  0,97158   0  

0,2   0,4   0,6   0,8   1   1,2  

0   100   200   300   400   500   600   700   800  

Absorbans,  410  nm  

Time  (sec)  

Trypsin  vs  Leupeptin  

Trypsin   Leupeptin  1:1   Leupeptin  2:1  

References

Related documents

Since the conditions of a specific acquisition are unique, real cases often differ from the rationalized cases described in M&amp;A- theory, conducted by Angwin (2007), Haspelagh

The numerical thermal human model will be integrated with the model of heat and moisture transfer in clothing materials and in the external environment to simulate the heat and

For carbon steel exposed to 1 M NaCl solution with and without added inhibitor, electrochemical measurements including electrochemical impedance spectroscopy (EIS),

In my work I have taken care of how the light affects the space and how it also can create new ways of experiencing the same site when describing it through different qualities. If

The adjustment of exchange rate to nominal interest differentials between countries can come about either directly through flow of capital across international money markets,

Probiotics, gel formulation, Prodentis Drops, Lactobacillus reuteri, viscosity, bacterial survival, phase separation, beeswax, silica, hydrogenated rapeseed

Att redogöra för orsaker till avbrott och/eller avhopp från distansutbildningen ”Magisterutbildning i pedagogiskt arbete” vid Linköpings universitet (LiU), motiven att

This thesis looks into which broadcasting protocol to use when trying to optimize the energy con- sumption and startup delay while receiving a video from a transmitting source