• No results found

SJ ¨ALVST ¨ANDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

N/A
N/A
Protected

Academic year: 2021

Share "SJ ¨ALVST ¨ANDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET"

Copied!
31
0
0

Loading.... (view fulltext now)

Full text

(1)

SJ ¨ ALVST ¨ ANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

The Sato-Tate Conjecture

av Johan Frisk

2012 - No 9

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

(2)
(3)

The Sato-Tate Conjecture

Johan Frisk

Sj¨alvst¨andigt arbete i matematik 15 h¨ogskolepo¨ang, grundniv˚ a Handledare: Torsten Ekedahl/Rikard B¨ogvad

2012

(4)
(5)
(6)

Np Zp

y2= x3+ 2x + 3

|E(C)|

(7)

Np

y2= x3+ Ax + B 4A3 27B26= 0

F p p

A B

4A3 27B2= 0

Np

[p + 1 2pp, p + 1 + 2pp]

Np

Np p

1960

(8)

0 1 2 3 4 5 6 7 8 9 10

x

0 1 2 3 4 5 6 7 8 9 10

y

y2= x3+ x + 3 (mod 11)

17 y2 = x3+ x + 3

x y 11 p = 11

[6, 18]

19 20

p = 19 [11, 27]

A

B p

(G,⇤) G ⇤

a, b2 G a ⇤ b G

(a⇤ b) ⇤ c = a ⇤ (b ⇤ c) a, b, c2 G e 2 G

e⇤ a = a ⇤ e a2 G

a2 G a 1

a a⇤ a 1= a 1⇤ a = e

(9)

a⇤ b = b ⇤ a a, b2 G G

G G

|G|

(G,⇤) H G H

G H

G

F + ·

(F, +) 0

(F\{0}, ·) 16= 0

a· (b + c) = a · b + a · c a, b, c2 F

a2 F +

· ( a)

a 1

+, ,⇤, /

/ a b = a + ( b) a/b = a⇤ b 1

(G,⇤) a, b, c2 G a⇤ c = b ⇤ c ) a = b

a⇤ b = a ) b = e a⇤ b = e ) b = a 1

+ ·

a2 F a· 0 = 0 a· b = 0 ) a = 0 b = 0

f (x) F n

c 2 F f (c) = 0 x c f (x)

f (c) = 0 , f(x) = (x c)g(x) g(x) n 1

f (x) n

n

(10)

t p > 2

Zt Zp t p

(Zt, +) 0

Zp

0 1

a b > 0 q, r

a = bq+r, 0 r < b q r

a b

t t

Zt={0, 1, . . . , t 1}

a, b c = a + b

5 c c = tq + r

0 r < t r2 Zt

⇤ a⇤ b a + b t

(a + b) + c = a + (b + c)

t 0

a⇤ 0 = 0 ⇤ a = a + 0 = a Zt ⇤ 0

0

(1, t 1), (2, t 2), ... (a, b) a + b = t a⇤ b = b ⇤ a = 0 b = a 1 a = b 1

(Zt,⇤) (Zt, +)

p

⇥ Zp\{0} 1

Zp a⇥ b

a· b p

a 2 Zp\{0}

gcd(a, p) a p p

a, b gcd(a, b) = 1

m, n ma + nb = 1

a2 Zp\{0} m

ma + np = 1 q, r

a = bq + r a kq = b(q k) + r k2 Z a

a kq b p

ma = ma + np np 1

o = m + lp l2 Z oa = ma + mlp = ma + (ml)p

oa 1 p

l 0 < o = m + lp < p) o 2 Zp\{0}

(11)

a 1= o a

⇥ a 1⇥ a = a ⇥ a 1= 1

ax3+ bx2y + cxy2+ dy3+ ex2+ f xy + gy2+ hx + iy + j = 0 y2 = x3+ ax2+ bx + c

Zp p > 3

y2= x3+ Ax + B ab + by + c = 0 ax2+ bxy + cy2+ dx + ey + f = 0

C(F ) F

(x, y)

y2= x3+ ax2+ bx + c 4A3 27B26= 0 a, b, c2 F

F

R

4A3 27B26= 0 x2 R

4A3 27B26= 0 x3+ Ax + B

C E(C)

O

A, B, x2 R

(12)

-2 -1 0 1 2 3 x

-3 -2 -1 0 1 2 3

y

P

Q

P+Q R

-2 -1 0 1 2 3

x -3

-2 -1 0 1 2 3

y

P

-P

P Q

R

P + Q R

R = (x, y) P + Q = (x, y) = (x, y) R

R

P Q

R O

O

C O

O O

P + ( P ) =O P +O

P O P

P +O = ( P ) = P

P = (x1, y1), Q = (x2, y2)

x1= x2 P Q

O

P + Q + R =O x16= x2

R P + Q O

O P + Q + R =O

P + ( P ) +O = 0

P = Q P + P + Q =O

P Q

R R R 1

(13)

P + P = Q P + P + Q =O

R

O

P = (x, y) C P = (x, y)

C y2= x3+ Ax + B, ( y)2 = x3+ Ax + B Fp

P = (x1, y2), Q =

(x2, y2) C R C

4A3 27B26= 0 x3+Ax+B 3

x1, x2, x3 x3+Ax+b = (x x1)·(x x2)·(x x3)

y = kx+l y1= kx1+l

y2= kx2+ l k = y2 y1

x2 x1 l = kx1+ y1

R P

Q y

(kx + l)2= x3+ Ax + B

x3 k2x2+ (A 2kl)x + (B k2) = 0

x1 x2 x3

x3 k2x2+ (A 2kl)x + (B k2) = (x x1)· (x x2)· (x x3)

x3 k2x2+(A 2kl)x+(B k2) = x3 (x1+x2+x3)x2+(x1x2+x1x3+x2x3)x x1x2x3 x2

x1+ x2+ x3= k2) x3= k2 x1 x2

x = x3 (x3, kx3+l) = (x3, kx3 kx1+

y1) C F

P + Q = R P = (x1, y1) Q = (x2, y2) R = (x3, (kx3 kx1+ y1)) x3

P + P

C F y2 = x3+

Ax + B P = (x1, y2) Q = (x2, y2) C

O P + Q6= O S = P + Q

(14)

S = (x3, y3) x3= k2 x1 x2

y3= k(x1 x3) y1

k = 8>

<

>: y2 y1 x2 x1

P6= Q 3x21+ A

2y1

P = Q

k P Q

P

y2= x3+ 3x + 7 Z11 Z11

(1, 0), (5, 2), (5, 9), (8, 2), (8, 9), (9, 2), (9, 9), (10, 5), (10, 6)

O

y2= x3+ 3x + 7 F11 O

O O

O

O O

O O

O O

O O

E(C)

y2= x3+ Ax + B |E(C)| = Np+ 1

|E(C)| = 9 + 1 = 10

|E(C)|

(15)

p > 2 x > 0

x p y2 Zp y2⌘ x (mod p)

p > 2 a 0

✓a p

✓a p

= 8>

<

>:

0 a⌘ 0 (mod p) 1

1 p + 1

2 Zp

x2= y2 (x + y)(x y) = 0 x =±y 1

(Zp, +) p 1

2 x, x x6= x

0 p 1

2 + 1 =p + 1 2

Np 1 =

p 1X

x=0

✓ 1 +

✓x3+ Ax + B p

◆◆

= p +

p 1X

x=0

✓x3+ Ax + B p

y y2⌘ x3+ Ax + B (mod p) y y

y6= 0 y = 0

Np p 1 =

p 1X

x=0

✓x3+ Ax + B p

p { 1, 0, 1}

Y =

p 1X

i=0

Xi

pXi(x)

A, B, x

p p + 1

2 Zp

f (x) = x3+ Ax + B x = 0, 1 . . . , p 1 Zp

(16)

f (x) P [Xi= 1] =

p+1 2

p ⇡ 1

2 i p

P [Xi= 1] + P [Xi= 0] = 1 P [X = 1]⇡ 1 0.5 = 0.5

4 f (x) = 0 3

P [Xi= 0] 3

p p

pXi(x)

pX(x) = 8>

<

>:

0.5 x = 1 0.5 x = 1

0 x = 0

i

x3+ Ax + B x

Zp

{0, 1, . . . , p 1} p

z = f (x) x2 Zp z

p f (x)

A, B, p

A, B, p y[p]

squares[p]

i = 1 . . . p y[i] 0 squares[i] 0

i = 0 . . . p 1

index i2 + 1 squares[index] 1

x = 0 . . . p 1

index x3+ Ax + B p + 1 y[index] y[index] + 1

p 1, 2, . . . , p

(17)

Pp

i=1y[i]· squares[i]

p

f (x) = x3+ Ax + B p pX(1) x3 2x + 7

x3+ 45x 22 x3+ 45x 22 x3 5x + 19 x3+ 8x 13 x3 4x + 8 x3+ 25x + 2

PX(1) 0.5

A B p

pY(x) Y =

p 1X

i=0

Xi

Y p ±1

Xi Y

pp

P [|Y | > 2pp] > 0 Y Xi

0

[1 2pp, 1 + 2pp]

pY(x) Zp

X FX:= P r[X x] 1 < x < 1 fX(x) FX(x) =

Z x 1

fX(x) dx X

fX(x) X

(18)

cdf pdf

300000 Zp p

p

p + 1 2pp Np p + 1 + 2pp

2pp Np (p + 1) 2pp

1Np (p + 1)

2pp  1

ap:= Np (p + 1) cp:= ap

2pp= Np (p + 1) 2pp

Np cp

N

p

Z

p

S ={(x, y) | x, y 2 Zp} p2 y2= x3+ Ax + B

Np O(p2) S

n + 1

2 y2 Zp

1

0 O(p) O(p)

x = 0, . . . , x 1

z = x3+ Ax + B z

1 0 z z = 0

(x, 0) z6= 0 y y

y2= ( y)2= z (x, y) (x, y)

z 0 y

(x, y)

O(p)

(19)

O(p) A, B, p

squares[p]

Np 0 i = 1 . . . p squares[i] 0

y = 0 . . . p 1 index y2 (mod p) squares[index + 1] 1

x = 0 . . . p 1

z x3+ Ax + B (mod p) squares[z + 1] = 1

z = 0 Np Np+ 1 Np Np+ 2

Np

y

2

= x

3

+ 2x + 3

y2= x3+ 2x + 3 (mod p)

300000 Np Zp

p 300000 p 44773

cp 5 L

300000 X

FX(x) fX(x)

100

(20)

X100 i=1

m(i) = 300000 m(i) =|bi|

bi={x 2 L| 1 + (i 1)h < x 1 + ih}

h =1 ( 1) 100 = 2

100

M (i) = Xi j=1

m(j)

i = 1, . . . , 100

(21)

fX FX

cp

pr(i) = M (i) 300000

xi xi= 1 + ih , i = 1, . . . , 100 F˜X(xi) = P r(X xi) = M (i)

300000 FX(xi)

(22)

fX FX

fX(x) = d

dxFX(x) = lim

a!0

FX(x + a) FX(x) a

X(x) FX(x) x1, . . . , x100

FX(xi+ a) FX(xi)

a ⇡ F˜X(xi+ a) F˜X(xi) a

a = h = 2 100 d

dxFX(xi)⇡ F˜X(xi+ h) F˜X(xi)

h =F˜X(xi+1) F˜X(xi)

h =

M (i+1) 300000

M (i) 300000

h =

M (i+1) M (i) 300000

h =

m(i+1) 300000

h = m(i + 1) 300000 ·100

2 = m(i + 1) 6000

cp

cp [ 1, 1] cp

p2 [0, ⇡] cos ✓p= cp

p

cp

3 fX(x)

(23)

2 2

f(✓) = XN n=0

ancos n✓

fX(x)

2

{x1, ˜F (x1)), . . . , (x100, ˜F (x100))} F(✓) = Z

0

f(˜✓) d˜✓

F(✓) = Z

0

XN n=0

ancos n˜✓ d˜✓ =h a0✓˜i

0+ an

XN n=1

"

sin n˜✓ n

#

0

=

= a0✓ + XN n=1

an

n sin n✓

F(⇡) = 1 ) a0⇡ + 0 + . . . = 1 ) a0= 1

F(✓) = ✓

⇡+ XN n=1

bnsin n✓

{x1, ˜F (x1)), . . . , (x100, ˜F (x100))}

xii2 [0, ⇡]

i = ⇡ cos 1(xi)

F N = 12 12

b1, . . . , b12

x = [✓1, . . . , ✓100]T y =h

F (x˜ 1), . . . , ˜F (x100)iT

(24)

X = 2 66 66 64

sin (1· ✓1) sin (2· ✓1) . . . sin (12· ✓1) sin (1· ✓2) sin (2· ✓2) . . . sin (12· ✓2)

sin (1· ✓100) sin (2· ✓100) . . . sin (12· ✓100) 3 77 77 75

1

⇡x + Xb = y z = y 1

⇡x

b Xb = z

b

kz Xbk2

(XTX)b = XTz (28)

b = 2 66 66 66 66 66 66 66 66 66 4

0.00019087087 0.1594348064 0.00015471255 0.00013657114 0.00011571785 0.0000360403 0.0002155770 0.00005559181 0.0000210021 0.00007706562 0.0001150259 0.0000778209

3 77 77 77 77 77 77 77 77 77 5

b2

F(✓) = ✓

⇡ 0.1594348064 sin (2✓) = 1

⇡(✓ 0.5008792165 sin (2✓))

F(✓) = 1

✓ sin (2✓) 2

2

(25)

dF

d✓ = 1

⇡(1 cos 2✓) = 1

⇡(1 (cos2✓ sin2✓)) = 2

⇡sin2✓ fX(x)

dF

dx = dF

d✓

d✓

dx

✓(x) = ⇡ cos 1(x) d✓

dx= 1 p1 x2

fX(x) = 2

⇡sin2✓(x)d✓

dx

sin ✓(x) = sin (⇡ cos 1(x)) = sin ⇡· cos (cos 1(x)) sin (cos 1(x))· cos ⇡ =

= 0· x sin (cos 1(x))· ( 1) = sin (cos 1(x))

sin2✓(x) = sin2(cos 1(x)) = 1 cos2(cos 1(x)) = 1 x2

fX(x) = 2

⇡sin2✓(x)dx d✓ = 2

⇡ 1 x2 · 1 p1 x2 = 2

p1 x2

(26)

fx(x) fx(x)

(27)

C

Zp p ap = Np (p + 1)

2pp [ 1, 1]

fX(x) = 2

p1 x2

p

fX(x) = 2

p1 x2

N⇥ N

2006

Fp

y = F (x)

x x = F 1(y)

x y = F (x) x y

C P n n

Q = Pn= nP = P + P + . . . + P

| {z }

n additions

(28)

n

n 2

n = d0+ 2d1+ 4d2+ . . . + 2mdm)

nP = (d0+ 2d1+ 4d2+ . . . + 2mdm)P = d0P + 2d1P + 4d2P + . . . + 2mdmP

nP m = log2(n)

Q =O i = 0 di 2iP = 2i 1P + 2i 1P

i > 0 Q di= 1

n P Q

n Q

P

n O(p

n)

C

hP i = {O, P, 2P, 3P, . . .}

E(C) P hP i

E(C) hP i

E(C)

H G |H|

|G|

E(C) C P2 E(C)

h =|E(C)|

|hP i|

h 4

E(C) |E(C)|

Fp p > 2224

|E(C)|

O(p) Fp x 2 Fp

p 1

3· 109 1050

Fp p ⇡ 2224

⇡ 3 · 109

(29)

E(C)

|E(C)|

[p + 1 2pp, p + 1 + 2pp] |E(C)| 4pp

hP i a2 hP i

aN =O N =|hP i| N |E(C)|

a2 E(C) aM = (aN)MN =OMN =O M =|E(C)|

R2 E(C) m2 [p 2pp, p + 2pp]

Rm=O m =|E(C)|

m

P 2 E(C) mP p 2pp < m < p + 2pp

m am = O

mP m >=dp 2ppe m bp + 2ppc

l =dp 2ppe lP

(l+1)P, (l+2)P, . . . , (bp+2ppc)P

lP P 4pp

lP O(log2l) = O(log2p) < O(pp)

4pp lP

O(pp)

C y2=

x3+3x+7 F11 C

|E(C)| [6, 18]

P = (5, 2)

6P = 2P + 4P = 2(P + 2P ) 2P = (10, 5) , P + 2P = (10, 6) 6P = (10, 6) + (10, 6) = (5, 2) 7P, 8P, . . . , 18P

10P = 15P =O P

P = (8, 2) m2 [6, 12] Pm=O m = 10

E(C)

O(p4p)

|E(C)|

A, B, p C : y2= x3+Ax+B

Fp E(C) Np+1

h = 1

hP i 1 |E(C)|

p

1988

(30)

C : y2= x3+ Ax + B Fp r = 4A3 27B2

|{p 2 P, p  n, p - r | |E(C) mod p| 2 P}|

D n

log2n

D C

(31)

References

Related documents

Då varje bokstav har en fix bokstav som den kodas till kan inte två olika bokstäver kodas till samma bokstav, det skulle omöjliggöra dekryptering.. Vi gör

Arabella and Beau decide to exchange a new piece of secret information using the same prime, curve and point... It was only a method of sharing a key through public channels but

When Tietze introduced the three-dimensional lens spaces L(p, q) in 1908 they were the first known examples of 3−manifolds which were not entirely determined by their fundamental

• In the third and main section we will use all the structures discussed in the previous ones to introduce a certain operad of graphs and deduce from it, using the

We study the underlying theory of matrix equations, their inter- pretation and develop some of the practical linear algebra behind the standard tools used, in applied mathematics,

Given a set of homologous gene trees but no information about the species tree, how many duplications is needed for the optimal species tree to explain all of the gene trees?.. This

We also have morphisms called weak equivalences, wC, denoted by − → and defined to fulfill the following conditions: W1: IsoC ⊆ wC; W2: The composition of weak equivalences is a

Dessa är hur vi kan räkna ut antalet parti- tioner av ett heltal och med hjälp av Pólyas sats räkna ut på hur många sätt vi kan färga en kub med n färger i stället för bara