• No results found

Factorizations for q-Pascal matrices of two variables

N/A
N/A
Protected

Academic year: 2022

Share "Factorizations for q-Pascal matrices of two variables"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2015 Thomas Ernst, licensee De Gruyter Open.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Research Article Open Access

Thomas Ernst

Factorizations for q-Pascal matrices of two variables

DOI 10.1515/spma-2015-0020

Received July 15, 2015; accepted September 14, 2015

Abstract:In this second article on q-Pascal matrices, we show how the previous factorizations by the sum- mation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows

Φn,q(x, y) =

(︃

i j )︃

q

xi−jyi+j

n−1

i,j=0

.

We also find two different matrix products for

Ψn,q(x, y; i, j) =

(︃i+ j

j )︃

q

xi−jyi+j

n−1

i,j=0

.

Keywords: q-Pascal matrix; q-unit matrix; q-matrix multiplication

1 Introduction

Once upon a time, Brawer and Pirovino [2, p.15 (1), p. 16(3)] found factorizations of the Pascal matrix and its inverse by the summation and difference matrices. In another article [7] we treated q-Pascal matrices and the corresponding factorizations. It turns out that an analoguous reasoning can be used to find q-analogues of the two variable factorizations by Zhang and Liu [13]. The purpose of this paper is thus to continue the q-analysis- matrix theme from our earlier papers [3]-[4] and [6]. To this aim, we define two new kinds of q-Pascal matrices, the lower triangular Φn,qmatrix and the Ψn,q, both of two variables. To be able to write down addition and subtraction formulas for the most important q-special functions, i.e. the q-exponential function and the q- trigonometric functions, we need the q-additions. These addition formulas were first published in different notation by Jackson [9] and Exton [8]. In one formula of the present paper we use this q-addition. This paper is organized as follows: In section 2 we give the definitions for q-calculus and definitions and a simple theorem for the matrices.

In section 3 we give the factorization and inverse of the extended q-Pascal matrix Φn,q(x, y). Finally, in section 4, we give the factorizations for the generalized symmetric q-Pascal matrix Ψn,q(x, y).

2 Definitions

For a full description of all definitions, see the recent book [5].

Thomas Ernst:Department of Mathematics, Uppsala University, P.O. Box 480, SE-751 06 Uppsala, Sweden, E-mail:

thomas@math.uu.se

(2)

Definition 1. The power function is defined by q e . We always assume that 0 < q < 1. Let δ > 0 be an arbitrary small number. We will use the following branch of the logarithm: −π + δ < Im (log q) ≤ π + δ.

This defines a simply connected space in the complex plane.

The variables a, b, c, . . .C denote certain parameters. The variables i, j, k, l, m, n will denote natural numbers except for certain cases where it will be clear from the context that i will denote the imaginary unit.

The q-analogues of a complex number a and the factorial function are defined by:

{a}q 1 − qa

1 − q , qC∖{1}, (1)

{n}q!

n

∏︁

k=1

{k}q, {0}q!1, qC. (2) Gauss’ q-binomial coefficients are given by

(︃n k )︃

q

{n}q!

{k}q!{n− k}q!. (3)

Definition 2. Let α and β be elements of a ring. The NWA q-addition is given by [1], [5], [6], [10], [11] :

qβ)n

n

∑︁

k=0

(︃n k )︃

q

αkβn−k, n = 0, 1, 2, . . . (4)

Definition 3. If f (x) C[x], the polynomials with complex coefficients, the function ϵ : C[x] ↦→ C[x] is defined by

ϵf(x)f(qx). (5)

We now leave q-calculus and turn our attention to the matrix definitions. In order to be able to write down certain q-matrix multiplication formulas, the following definition will be convenient.

Definition 4. Let A and B be two n × n matrices, with matrix index aijand bij, respectively. Then we define

ABf,q(i, j)

n−1

∑︁

m=0

aimbmjqf(m,i,j). (6)

Whenever we use a q-matrix multiplication, we specify the corresponding function f (m, i, j).

Remark1. This q-matrix multiplication will be used in formulas (38) and (39).

The following matrices, which are used for intermediary calculations, have a relatively simple structure. In section 3 we will encounter similar q-dependent matrices, which enable a multitude of similar formulas.

Definition 5. The matrices In, Sn(x), Wn(x, y) , Dn(x) and Un(x, y) [13, p. 171] are defined by

Indiag(1, 1, . . . , 1), (7)

Sn(x)(i, j)

{︃xi−j, if j ≤ i,

0, if j > i, (8)

Wn(x, y; i, j)

{︃xi−jyi+j, if j ≤ i,

0, if j > i, (9)

Dn(x; i, i)1, i = 0, . . . , n − 1, Dn(x; i + 1, i)−x, for i = 0, . . . , n − 2,

Dn(x; i, j)0, if j > i or j < i − 1. (10)

(3)

Un(x, y; i, i)y−2i, i = 0, . . . , n − 1; Un(x, y; i + 1, i)−xy−2i−1,

for i = 0, . . . , n − 2; Un(x, y; i, j)0, if j > i or j < i − 1. (11) The matrices Snand Dnare used in definition (19).

Definition 6. The extended q-Pascal matrix Φn,q(x, y) is given by

Φn,q(x, y; i, j) (︃i

j )︃

q

xi−jyi+j. (12)

Theorem 2.1. A q-analogue of [13, p. 170].

Φn,q(x1, y1n,q(x2, y2) = Φn,q(x1

y2qx2y1, y1y2), y2≠ 0. (13) Proof.

Φn,q(x1, y1n,q(x2, y2)(i, j) =

n−1

∑︁

k=0

x1i−kyi1+k (︃

i k

)︃

q

x2k−jyk+j2 (︃

k j )︃

q

= (︃

i j )︃

q

(y1y2)i+j

n−1

∑︁

k=0

(︃

i− j k− j

)︃

q

(x1

y2)i−k(x2y1)k−j= (︃

i j )︃

q

(y1y2)i+j(x1

y2qx2y1)i−j.

(14)

Definition 7. The matrices Pn,q(x), Pn,k,q(x), Pk,q* (x) and Pn,k,q* (x) are defined by

Pn,q(x; i, j) (︃i

j )︃

q

xi−j, i, j = 0, . . . , n − 1, (15)

Pn,k,q(x)

[︃ In−k 0T 0 Pk,q(x)

]︃

, (16)

Pk,q* (x; i, j) (︃

i j )︃

q

(qx)i−j, i, j = 0, . . . , k − 1, (17)

Pn,k,q* (x)

[︃ In−k 0T 0 Pk,q* (x)

]︃

. (18)

The summation matrix Gn,k(x) and the difference matrix Fn,k(x) are defined by

Gn,k(x)

[︃ In−k 0T 0 Sk(x)

]︃

, k = 3, . . . , n,

Fn,k(x)

[︃ In−k 0T 0 Dk(x)

]︃

, k = 3, . . . , n, Fn,n(x)Dn(x), n > 2.

(19)

Let the two matrices Ik,q(x) and Ek,q(x) be given by

Ik,q(x; i, i)1, i = 0, . . . , k − 1, Ik,q(x; i + 1, i)x(qi+1− 1), i ≤ k − 2, Ik,q(x; i, j)0 for other i, j.

Ek,q(x; i, j)≡ ⟨j+ 1; qi−jxi−j, i ≥ j, Ek,q(x; i, j)0 for other i, j.

(20)

(4)

In,k,q(x)

[︃ In−k 0T 0 Ik,q(x)

]︃

, In,n,q(x)In. (21)

En,k,q(x)

[︃ In−k 0T 0 Ek,q(x)

]︃

, En,n,q(x)In. (22)

We call In,k,q(x) the q-unit matrix function. We will use a slightly q-deformed version of the D- and F-matrices:

Dk,q* (x; i, i)1, i = 0, . . . , k − 1, Dk,q* (x; i + 1, i)−xqi+1, i ≤ k − 2,

Dk,q* (x; i, j)0, if j > i or j < i − 1. (23)

Fn,k,q* (x)

[︃ In−k 0T 0 Dk,q*(x)

]︃

. (24)

Gk,q* (x; i, j)

{︃q(i−j+12 )+j(i−j)xi−j, if j ≤ i,

0, if j > i,, Gn,k,q* (x)

[︃ In−k 0T 0 Gk,q* (x)

]︃

.

(25)

The inverse of Pk,q* (x) is given by

(Pk,q* (x))−1(i, j) = (︃

i j )︃

q

(−x)i−jq(i−j+12 ), i, j = 0, . . . , k − 1. (26)

3 Factorization of the extended q-Pascal matrix Φn,q(x, y)

We start this section with a couple of lemmata to be able to make quick proofs of the factorization theorems.

Lemma 3.1. Four inverse relations.

Wn(x, y) = Un(x, y)−1; Fn,k(x) = Gn,k(x)−1, k = 3, . . . , n. (27)

In,k,q(x)−1= En,k,q(x); Fn,k,q* (x)−1= Gn,k,q* (x). (28) The following three lemmata enable a step by step proof of (33).

Lemma 3.2. [7] A q-analogue of [12, p.53 (1)]. If n ≥ 3, the q-Pascal matrix Pn,q(x) can be factorized by the summation matrices and by the q-unit matrices as

Pn,q(x) =

3

∏︁

k=n

(︀In,k,q(x)Gn,k(x))︀ Gn,2,q* (x), (29)

where the product is taken in decreasing order of k.

Proof. Use the same technique as in Brawer & Pirovino [2], but use the q-unit matrices and the q-Vandermonde theorem.

Lemma 3.3. [7]

In,n−1,q(x)Pn,n−1,q(x) = Pn,n−1,q* (x), n ≥ 1. (30)

(5)

Proof. Use the q-Pascal triangle in the end.

Lemma 3.4. A q-analogue of [13, p.173].

Wn(x, y)Pn,n−1,q* (x

y) = Φn,q(x, y), n ≥ 1. (31)

Proof. For n = 1, Pn,n−1,q* (x) = Inand Wn(x, y) = Φn,q(x, y). Let n > 1. The matrix element (Wn(x, y)Pn,n−1,q* (x

y)(i, j) =

i

∑︁

k=j

xi−jyi+j (︃

k− 1 j− 1 )︃

q

qk−j= xi−jyi+j (︃

i j )︃

q

= Φn,q(x, y)(i, j), j ≥ 1. (32)

For j = 0, Wn(x, y)Pn,n−1,q* (xy; i, 0) = (xy)i= Φn,q(x; i, 0).

Theorem 3.5. A q-analogue of [13, p.174]. If n≥ 3, the extended q-Pascal matrix Φn,q(x, y) can be factorized by the W matrix, the summation matrices and by the q-unit matrices as

Φn,q(x, y) = Wn(x, y)

∏︁3 k=n−1

(︂

In,k,q(x y)Gn,k(x

y) )︂

Gn,2,q* (x

y), (33)

where the product is taken in decreasing order of k.

Proof. Use (31). At each step the q-unit matrix maps Pn,k,q* (xy) to Pn,k,q(xy) by (30) and to Gn,k(xy) by (29).

Example1. The case n = 4:

1 0 0 0

xy y2 0 0

x2y2 {2}qxy3 y4 0 x3y3 {3}qx2y4 {3}qxy5 y6

=

1 0 0 0

xy y2 0 0

x2y2 xy3 y4 0 x3y3 x2y4 xy5 y6

1 0 0 0

0 1 0 0

0 xy(q − 1) 1 0

0 0 xy(q2− 1) 1

1 0 0 0

0 1 0 0

0 xy 1 0

0 (xy)2 xy 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 xyq 1

.

(34)

Theorem 3.6. A q-analogue of [13, p.174]. The inverse of the extended q-Pascal matrix is given by Φn,q(x, y)−1= Fn,2,q*(︂ x

y )︂ n

∏︁

k=3

(︂

Fn,k

(︂ x y )︂

En,k,q

(︂ x y

)︂)︂

Un(x, y). (35)

Proof. Use formulas (27), (28) and (29).

4 Higher q-Pascal matrices

In this section we treat matrices of a slightly different form.

Definition 8. A q-analogue of the matrix Qnin [12, p.55]. The matrix Rn,q(x) is defined by Rn,q(x; i, j)

(︃i j )︃

q

xi+j, i, j = 0, . . . , n − 1. (36)

A q-analogue of the matrix Ψn[x, y] in [13, p.175]. The generalized symmetric q-Pascal matrix Ψn,q(x, y) is defined by

Ψn,q(x, y; i, j) (︃

i+ j j

)︃

q

xi−jyi+j, i, j = 0, . . . , n − 1. (37)

(6)

Theorem 4.1. A q-analogue of [13, p.175]. In the following two formulas we use the q-matrix multiplication with f(m, i, j) = m2.

Ψn,q(x, y) = Rn,q(xy)Φn,q(y,1

x)T, (38)

Ψn,q(x, y) = Φn,q(x, y)Pn,q(y

x)T. (39)

Proof. By the first q-Vandermonde theorem,

Rn,q(xy)Φn,q(y,1

x)T(i, j) =

n−1

∑︁

k=0

(︃

i k

)︃

q

(xy)i+kyj−kx−j−k (︃

j k

)︃

q

qk2 = (︃

i+ j j

)︃

q

xi−jyi+j. (40)

Φn,q(x, y)Pn,q(y

x)T(i, j) =

n−1

∑︁

k=0

(︃

i k

)︃

q

xi−jyi+j (︃

j k )︃

q

qk2 = (︃

i+ j j

)︃

q

xi−jyi+j. (41)

We have found two different matrix products for the same function.

Example2. The case n = 4:

1 yx

y2 x2

y3 x3

xy {2}qy2 {3}qy3

x {4}qy4 x2

x2y2 {3}qxy3 (︀4

2

)︀

qy4 (︀5

3

)︀

q y5

x

x3y3 {4}qx2y4 (︀5

2

)︀

qxy5 (︀6

3

)︀

qy6

=

1 0 0 0

xy x2y2 0 0

x2y2 {2}qx3y3 x4y4 0 x3y3 {3}qx4y4 {3}qx5y5 x6y6

1 yx

y2 x2

y3 x3

0 x12 {2}q y

x3 {3}qy2 x4

0 0 x14 {3}q y x5

0 0 0 x16

=

1 0 0 0

xy y2 0 0

x2y2 {2}qxy3 y4 0 x3y3 {3}qx2y4 {3}qxy5 y6

1 yx yx22

y3 x3

0 1 {2}qy

x {3}qy2 x2

0 0 1 {3}qyx

0 0 1

. (42)

We note that we needed a q-matrix multiplication for the two last formulas and thus no inverse was available.

References

[1] W. A. Al-Salam, q-Bernoulli numbers and polynomials, Math. Nachr 17 (1959), 239–260.

[2] R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13–23.

[3] T. Ernst, q-Leibniz functional matrices with applications to q-Pascal and q-Stirling matrices, Adv. Stud. Contemp. Math., Kyungshang 22 (2012), 537-555.

[4] T. Ernst, q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials, J. Discrete Math., (2013), Article ID 450481, 10 p.

[5] T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser 2012.

[6] T. Ernst, An umbral approach to find q-analogues of matrix formulas, Linear Algebra Appl. 439 (2013), 1167–1182.

[7] T. Ernst, Faktorisierungen von q-Pascalmatrizen (Factorizations of q-Pascal matrices), Algebras Groups Geom. 31 (2014), no. 4, 387-405

[8] H. Exton, q-Hypergeometric functions and applications, Ellis Horwood 1983.

[9] F.H. Jackson, A basic-sine and cosine with symbolical solution of certain differential equations, Proc. Edinburgh Math. Soc.

22 (1904), 28–39.

[10] P. Nalli, On a calculation procedure similar to integration, (Sopra un procedimento di calcolo analogo all integrazione) (Italian), Palermo Rend 47 (1923), 337–374.

(7)

[11] M. Ward, A calculus of sequences, Amer. J. Math. 58 (1936), 255–266.

[12] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51–60.

[13] Z. Zhang and M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), 169–177.

References

Related documents

The original idea of this project was to use a data-driven approach for the row and columns sums of the matrices, where different statistical data sources are used to

If, for some reason, one or more steps in the calculation described above are not possible to make, an option could be to skip the use of the CN

while considering that the given matrix A is diagonalizable with eigenvalues having identical geometric and algebraic multiplicities, the columns of the matrix Q evalu- ated as

Att det huvudsakliga instrumentet för verkan är indirekt eld indikerar också att skydd har relativt hög prioritering för skyttekompaniet eftersom de främsta

Samtidigt anser eleverna också att de egentligen inte lär sig någonting inom ämnet idrott och hälsa, utan att det istället verkar vara mer ett tillfälle för att få vara praktiskt

Simulations illustrate characteristic behavior of data transport through heterogeneous networks - a behavior different from that obtained with more simplistic models of either the

4D Flow MRI-based prediction of the irreversible pressure drop across a stenosis based on the total turbulence production agreed with ground-truth CFD solutions at 1 mm

Möjligtvis skulle det också kunna argumenteras för att även utfästelser kan bygga på förutsättningar och att det därför inte är nödvändigt