• No results found

Off-gassing from thermally treated lignocellulosic biomass

N/A
N/A
Protected

Academic year: 2021

Share "Off-gassing from thermally treated lignocellulosic biomass"

Copied!
2
0
0

Loading.... (view fulltext now)

Full text

(1)

Department of Applied Physics and Electronics

Off-gassing from thermally treated lignocellulosic biomass

Eleonora Borén

Akademisk avhandling

som med vederbörligt tillstånd av Rektor vid Umeå universitet för avläggande av teknologie doktorsexamen framläggs till offentligt försvar på Umeå Universitet i KBC-huset, KB.E3.01, fredagen den 8 december 2017, kl. 09:00.

Avhandlingen kommer att försvaras på engelska.

Fakultetsopponent: Hab. PhD Capucine Dupont, Environmental

Engineering and Water Technology, IHE Delft Institute of Water

Education, The Netherlands.

(2)

Organization Document type Date of publication Umeå University Doctoral thesis 17th of November 2017 Department of

Applied Physics and Electronics Author

Eleonora Borén Title

Off-gassing from thermally treated lignocellulosic biomass Abstract

Off-gassing of hazardous compounds is, together with self-heating and dust explosions, the main safety hazards within large-scale biomass storage and handling. Formation of CO, CO2, and VOCs with concurrent O2 depletion can occur to hazardous levels in enclosed stored forest products. Several incidents of CO poisoning and suffocation of oxygen depletion have resulted in fatalities and injuries during cargo vessel discharge of forest products and in conjunction with wood pellet storage rooms and silos. Technologies for torrefaction and steam explosion for thermal treatment of biomass are under development and approaching commercialization, but their off-gassing behavior is essentially unknown.

The overall objective of this thesis was to provide answers to one main question: “What is the off- gassing behaviour of thermally treated lignocellulosic biomass during storage?”. This was achieved by experimental studies and detailed analysis of off-gassing compounds sampled under realistic conditions, with special emphasis on the VOCs.

Presented results show that off-gassing behavior is influenced by numerous factors, in the following ways. CO, CO2 and CH4 off-gassing levels from torrefied and stream-exploded biomass and pellets, and accompanying O2 depletion, are comparable to or lower than corresponding from untreated biomass. The treatments also cause major compositional shifts in VOCs; emissions of terpenes and native aldehydes decline, but levels of volatile cell wall degradation products (notably furans and aromatics) increase. The severity of the thermal treatment is also important; increases in torrefaction severity increase CO off-gassing from torrefied pine to levels comparable to emissions from conventional pellets, and increase O2 depletion for both torrefied chips and pellets. Both treatment temperature and duration also influence degradation rates and VOC composition. The product cooling technique is influential too; water spraying in addition to heat exchange increased CO2 and VOCs off-gassing from torrefied pine chips, as well as O2 depletion. Moreover, the composition of emitted gases co-varied with pellets’ moisture content; pellets of more severely treated material retained less moisture, regardless of their pre-conditioning moisture content. However, no co- variance was found between off-gassing and pelletization settings, the resulting pellet quality, or storage time of torrefied chips before pelletization. Pelletization of steam-exploded bark increased subsequent VOC off-gassing, and induced compositional shifts relative to emissions from unpelletized steam-exploded material. In addition, CO, CO2 and CH4 off-gassing, and O2 depletion, were positively correlated with the storage temperature of torrefied softwood. Similarly, CO and CH4 emissions from steam-exploded softwood increased with increases in storage temperature, and VOC off-gassing from both torrefied and steam-exploded softwood was more affected by storage temperature than by treatment severity. Levels of CO, CO2 and CH4 increased, while levels of O2 and most VOCs decreased, during storage of both torrefied and steam-exploded softwood. CO, CO2 and O2 levels were more affected by storage time than by treatment severity. Levels of VOCs were not significantly decreased or altered by nitrogen purging of storage spaces of steam-exploded or torrefied softwood, or controlled headspace gas exchange (intermittent ventilation) during storage of steam-exploded bark.

In conclusion, rates of off-gassing of CO and CO2 from thermally treated biomass, and associated O2 depletion, are comparable to or lower than corresponding rates for untreated biomass. Thermal treatment induces shifts in both concentrations and profiles of VOCs. It is believed that the knowledge and insights gained provide refined foundations for future research and safe implementation of thermally treated fuels as energy carriers in renewable energy process chains.

Keywords

Torrefaction, steam explosion, enclosed storage, CO, CO2, O2 depletion, VOCs, Tenax-TA, SPME, process settings, storage temperature, storage time

Language ISBN Number of pages

English 978-91-7601-809-5 105 + 6 papers

References

Related documents

The managers believed that the organizations work such as facilities, people in the organization, team structure, coaches and their leadership style, the

4% of the males and 2% of the females had major damage on their dorsal fins which could not be caused by other orcas and is probably from interactions with the propellers from the

Chapter 4 summarizes the energy situation in Mozambique and assesses the potential for energy production from renewable sources, including residues from the agricultural crops

Figure 5.2) b) Negative TCA means that the red line is on the left side of the blue line in object space and the refracted rays meet the retina on the negative side. Dashed lines

An overall process integration model of the steel plant has been used to study the integration of a biomass gasifier, syngas conditioning and a methanol synthesis unit into the

To avoid both supply chain disturbance and increased theft risk there are three types of solutions; improved and more exact scheduling of delivery time,

Based on a general discussion of the question how people behave in terms of traveling by public transportation or car and the theoretical framework sorting different groups

The EU exports of waste abroad have negative environmental and public health consequences in the countries of destination, while resources for the circular economy.. domestically