• No results found

Materialval/ tillbehör 9 november 2020 Anne-Charlotte Hanning och Mikael Larsson

N/A
N/A
Protected

Academic year: 2022

Share "Materialval/ tillbehör 9 november 2020 Anne-Charlotte Hanning och Mikael Larsson"

Copied!
31
0
0

Loading.... (view fulltext now)

Full text

(1)

Materialval/ tillbehör

9 november 2020

Anne-Charlotte Hanning och Mikael Larsson

(2)

Viktig egenskap/-er map lång livslängd

Exempel -

RISE

Rivkraft, nötning, vattenavvisning

Exempel - Tvätt/tork, elasticitet, komfort

(3)

• För att bestämma vilka egenskaper produkten ska ha.

Kravspecifikationer

• För att leverantören ska ha något att arbeta utifrån/en specifikation över vad som ska tillverkas.

• För att veta att du får det du beställer och att det levereras på rätt sätt.

• För att kunna visa på att materialet uppfyller/inte uppfyller kraven vid en tvist.

• För att veta vad du ska beställa nästa gång, exempelvis när en ny leverantör ska utvärderas.

RISE

(4)

Vanliga miljö- och humanekologiska certifieringar

• STANDARD 100 by OEKO-TEX ®

• STeP by OEKO-TEX ®

• MADE IN GREEN by OEKO-TEX ®

• Svanen

• EU-Ecolabel

• KRAV

• GOTS

• Bra Miljöval

• bluesign ®

• Better Cotton Initiative

RISE

(5)

Exempel - polycotton vs 100% bomull

• 100 stycken fler tvättar

• Upp till 30% mindre energiåtgång

• Mindre tvättmedel

RISE

(6)

Sammanfattningsvis

• Fundera på vilken/-a

egenskaper som är viktigast

• Bygg in i kravspecifikationerna

• Testa även efter åldring

• Mest fördelaktigt är det om textilien används så länge som möjligt i sin första cykel

RISE

(7)

RISE — Research Institutes of Sweden

(8)
(9)

2

supply

Fibres = fat, sugar and proteins!!!

http://mistrafuturefashion.com/shifting-the-focus-from-fiber-to-process/

(10)

2

supply

Conclusion from scientific facts:

There are no ”sustainable” or ”unsustainable” fibres!

It is the suppliers that differ!

36,2

80,9

9,3 18,6 6,0

0,8

13,0 3,4

highest = 324

3,3 4,5 3,5 2,9

9,4

2,2

2,5

-26,0 52,5

-0,9 -6,4 -1,6

-4,1

-2,0 0,1

average = 166

2,0 1,7 1,0 0,4

8,6 8,0

1,9

8,0 4,0

2,0 5,4

3,0 4,8 2,8

16,8

66,7

2,2 8,6

3,1

-0,6

3,8

1,5

0,03

2,8 3,3 2,0 1,5

9,1

2,0

3,0

-30,0 -10,0 10,0 30,0 50,0 70,0 90,0

wool (12) silk (2) cotton (51) flax (7) hemp (9) jute/ kenaf (14) viscose (13) lyocell (3) modal (1) PET granulate (10) PET fibre (5) PET granulate biobased (3) PET granulate recycled (6) PA6 granulate (4) PA66 granulate (4) PE granulate (3) PTFE granulate (2) PLA granulate (1) PLA fibres (2) acrylic fibre (1) acrylic granulate (1) elastane granulate (1) PP fibres (1)

Climate impact (kg CO2-eq./kg fibre)

highest

lowest

average

(11)

With one exception? In the future, what will conventional cotton cultivation look like?

11

(12)

12

Freshwater ecotoxicity impacts from the Swedish apparel sector over one year (cradle to gate)

Cotton…

0,0E+00 5,0E+09 1,0E+10 1,5E+10 2,0E+10 2,5E+10

Fibre production

Yarn spinning Fabric production

Wet treatment Garment

production

Background processes Foreground processes

(13)

Cotton and wood consist of cellulose (sugar)

1

(14)

Organic / BCI / recycled cotton

Annual production volume of cotton fibres. Data from conventional cotton fibres from 2016 (The Fiber Year 2017), data for

organic and BCI from 2013/2014 (PAN UK 2016).

(15)

• GMO crops are farmed on a total of

approx 180 million hectares (over 10% of the world’s arable land)

• Approx 24 million hectares (Mha) GMO cotton farming world wide

• 24 MHa represents 75% of the total world production of cotton.

• In total 15 countries farm GMO cotton

• https://royalsociety.org/topics-policy/projects/gm-plants/what-gm- crops-are-currently-being-grown-and-where/ (2015)

Certified organic cotton is grown on 350.000 hectares worldwide (2015),

~ 1 % market share

Global status for GMO cotton (genetically modified cotton)

(16)

Only two major processes exist to make man-made cellulose fibres from wood

Viscose

Lyocell

(17)

2

supply

Materials/Name Type of fibre Raw material source(s)

Acrylic Acrylonitrilic Petroleum

Repreve® nylon Polyamide Post-industrial PA waste

rPET Polyester Generic name for recycled polyester

Polylana® Polyester Petroleum

Bamboo (linen) Bast fibre Bamboo

Hemp Bast fibre Hemp

Recover Cotton and polyester blend Mechanically recycled cotton waste (50% and recycled polyester (50%)

EVO Polyamide Castor oil

S.cafe® Polyamide Coffee grounds (2%) and petroleum

Nylon Polyamide Petroleum (bio-based/recycled)

Econyl® Polyamide Post-consumer and post-industrial polyamide (50/50)

Mipan Regen Polyamide Post-industrial PA waste

Nilit® EcoCare Polyamide Post-industrial PA waste

Q-Nova® Polyamide Post-industrial PA waste

Sorona® Polyester Corn (32%) and petroleum

Ingeo Polyester PLA from corn

Regen® Polyester Post consumer PET waste

Eco Circle Fiber Polyester Post-consumer PET waste

ECOPET Polyester Post-consumer PET waste

Repreve® Polyester Post-consumer PET waste

Elastane (Lycra®) Polyurethane Petroleum Lycra® (elastane) Polyurethane Petroleum

Alpaca Protein Alpaca

Silk Protein Mulberry silk worms and other insects

Recycled wool Protein Post-industrial waste wool (post-consumer waste)

Rex, Okcabol, Roos: “Possible sustainable fibres on the market and their technical properties”

Sandin, Roos and Johansson: “Environmental impact of textile fibres – what we know and what we don’t know”

Materials/Name Type of fibre Raw material source(s) Bamboo (viscose) Regenerated cellulose fibre Bamboo

Monocel® Regenerated cellulose fibre Bamboo Orange Fiber Regenerated cellulose fibre Citrus peel

Tencel® Regenerated cellulose fibre Eucalyptus and other wood types

Evrnu Regenerated cellulose fibre Post-consumer cotton waste (20%) and virgin cotton Refibra® Regenerated cellulose fibre Post-industrial cotton (20%) and wood

Seacell® Regenerated cellulose fibre Seaweed (1%) and wood Acetate Regenerated cellulose fibre Wood

Ioncell Regenerated cellulose fibre Wood Triacetate Regenerated cellulose fibre Wood

Fortisan Regenerated cellulose fibre Wood and plants Lyocell Regenerated cellulose fibre Wood and plants Rayon (viscose) Regenerated cellulose fibre Wood and plants Viscose (rayon) Regenerated cellulose fibre Wood and plants CELSOL Regenerated cellulose fibre Wood and plants Milk fibre Regenerated protein fibre Milk

Qmilch® Regenerated protein fibre Milk

Azlon Regenerated protein fibre Milk (casein), eggs (albumin), corn and soy (zein), chicken feathers (keratin), or leather and hide waste (collagen)

Soybean Regenerated protein fibre Soy beans

(18)

2

supply

Which fibre to select?

Biobased economy: ”skip the fossil ones” (but use also renewable fuels!)

(19)

2

supply

Which fibre to select?

Slow fashion: ”use synthetics with long life span”

(20)

20

Circular economy in the fashion industry

(21)

Example of resource use:

Wood to material - viscose fibres

Tops, root, bark: 12 kg 12 m

77 kg

Wood under bark: 65 kg Dry mass: 30 kg

Viscose fibres: 20 kg

What do we mean with circular economy?

(22)

Example of resource use:

Wood to energy: heat and electricity

12 m 77 kg

Dry mass: 34 kg

Heat: 288 MJ Electricity: 107 MJ

Bauer C. (2007) Holzenergie. In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz (ed. Dones R.). Swiss Centre for Life Cycle Inventories, Dübendorf, CH.

(23)

Material AND energy production from wood:

20 kg viscose fibres

Material for 20 kg viscose fibres:

= 1 tree

+ +

Energy for 20 kg viscose fibres:

= 1.3 trees (~200 MJ)

?

(24)

Material AND energy production from wood:

20 kg viscose fibres

Material for 20 kg viscose fibres:

= 1 tree

+ +

Energy for 20 kg viscose fibres:

= 1.3 trees (~200 MJ)

Energy for 15 kg viscose garments:

= 13 trees

(~3800 MJ)

(25)

Recycling – why is that good for the environment?

Transport to collection Transport to

sorting Recycling New fibre

(26)

Recycling – environmental benefit is created when virgin resources are replaced (and the

”recycling” process route has less impact than the ”virgin” route)

Virgin resources Manufacturing New fibre

Transport to collection Transport to

sorting Recycling New fibre

(27)

2

supply

Which fibre to select?

Non-toxic environment: ”skip the cotton”

(28)

2

supply

Which fibre to select?

Circular economy: ”use recycled or bio-based”

(29)

2

supply

Differ between Market substitution vs.

Technical substitution

• Cotton

– Only market substitution possible for the foreseeable future

– There are LOTS of alternatives but look out for green-washing!

• Polyester

– Technical substitution: bio-based or recycled ”drop-in” solutions have the same performance

– Market substitution also an option

(30)

Climate impact expressed as kg CO 2 equivalents and calculated for a hypothetical average garment of 0.5 kg. A doubled life length, from 30 uses of the garment (left) to 60 uses of the garment (right), decreases the climate impact by 48% - from 14.7 to 7.6 kg CO 2 -eq. Modified from Roos et al. (2015).

Most important recommendation: Optimise the life span!

0 2 4 6 8 10 12 14 16

Average garment, 30 uses Average garment, 60 uses

Clima te imp act (kg C O2 e q .)

Disposal Laundry

Consumer transport Distribution

Fibre to garment

Fibre

(31)

References

Related documents

Arbetsorganisation i träbränslefabriker Work Organisation in Wood Fuel Plants..

Making the films with and without ethanol was chosen as a second test property because the initial tests showed a tendency of making the xyloglucan containing films less brittle

The influence of sulphonic and carboxylic acid groups in combination with the effect of counter ion form, on the swelling capacity of mechanical pulp fibres was studied by

Here, we investigated the function of CSI1 in developing wood, and in particular xylem fibre formation in hybrid aspen (Populus tremula × tremuloides) using RNA interference

The experiments also support previous results, in that the crack propagation velocity increases for shorter initial crack lengths and that the energy required to cause fracture

The analytical solution, obtained from the phase field model correlates satisfactory with both wet and dry PLA and wood fiber PLA composite with respect to fracture

Table 3 shows mechanical properties for some regenerated cellulose fibres and reference fibres (flax and glass fibre). It is evident that regenerated cellulose fibres have less

Keywords: Acoustic emission, Chips, Compression tests, Defibration, Disc refiners, Energy consumption, Fibre structure, Force sensors, Fracture, Impact strength,