• No results found

The role of Southern Ocean fronts in the global climate system

N/A
N/A
Protected

Academic year: 2022

Share "The role of Southern Ocean fronts in the global climate system"

Copied!
41
0
0

Loading.... (view fulltext now)

Full text

(1)

   

 

The  role  of  Southern  Ocean  fronts  in   the  global  climate  system  

Robert  M.  Graham    

(2)

         

Till min mamma & pappa Tack för allt    

                                   

© Robert M. Graham, Stockholm University 2014 ISBN 978-91-7447-991-1

Cover picture by Dr. Jennifer A. Graham,

Printed in Sweden by US-AB Stockholm University, 2014 Distributor: Department of Geological Sciences

(3)

Abstract  

The   location   of   fronts   has   a   direct   influence   on   both   the   physical   and   biological   processes   in   the   Southern  Ocean.  However,  until  recently  fronts  have  been  poorly  resolved  by  available  data  and  climate   models.  In  this  thesis  we  utilise  a  combination  of  high  resolution  satellite  data,  model  output  and  ARGO   data  to  improve  our  basic  understanding  of  fronts.    

A  method  is  derived  whereby  fronts  are  identified  as  local  maxima  in  sea  surface  height  gradients.  In  this   way  fronts  are  defined  locally  as  jets,  rather  than  continuous-­‐circumpolar  water  mass  boundaries.  A  new   climatology  of  Southern  Ocean  fronts  is  presented.  This  climatology  reveals  a  new  interpretation  of  the   Subtropical   Front.   The   currents   associated   with   the   Subtropical   Front   correspond   to   the   western   boundary   current   extensions   from   each   basin,   and   we   name   these   the   Dynamical   Subtropical   Front.  

Previous  studies  have  instead  suggested  that  the  Subtropical  Front  is  a  continuous  feature  across  the   Southern  Ocean  associated  with  the  super  gyre  boundary.    

A  comprehensive  assessment  of  the  relationship  between  front  locations  and  wind  stress  is  conducted.  

Firstly,  the  response  of  fronts  to  a  southward  shift  in  the  westerly  winds  is  tested  using  output  from  a   100  year  climate  change  simulation  on  a  high  resolution  coupled  model.  It  is  shown  that  there  was  no   change  in  the  location  of  fronts  within  the  Antarctic  Circumpolar  Current  as  a  result  of  a  1.3°  southward   shift  in  the  westerly  winds.  Secondly,  it  is  shown  that  the  climatological  position  of  the  Subtropical  Front   is  5-­‐10°  north  of  the  zero  wind  stress  curl  line,  despite  many  studies  assuming  that  the  location  of  the   Subtropical  Front  is  determined  by  the  zero  wind  stress  curl.    

Finally,  we  show  that  the  nutrient  supply  at  ocean  fronts  is  primarily  due  to  horizontal  advection  and  not   upwelling.  Nutrients  from  coastal  regions  are  entrained  into  western  boundary  currents  and  advected   into  the  Southern  Ocean  along  the  Dynamical  Subtropical  Front.      

(4)

Sammanfattning  

Fronters   geografiska   läge   utövar   en   direkt   påverkan   på   såväl   fysiska   som   biologiska   processer   i   Södra   Ishavet.   Hittills   har   fronter   varit   dåligt   upplösta,   både   i   oceanografiska   observationsdata   och   i   klimatmodeller.   I   föreliggande   avhandling   analyseras   en   kombination   av   högupplösta   satellitdata,   modelldata  och  ARGO-­‐data  i  syfte  att  förbättra  den  grundläggande  förståelsen  av  fronter.  

En   metod   har   utarbetats   varigenom   fronter   identifieras   med   lokala   havsytenivågradientmaxima.  

Härigenom   definieras   fronter   lokalt   som   jetströmmar   snarare   än   som   kontinuerliga   cirkumpolära   gränser  mellan  olika  vattenmassor.  En  ny  klimatologi  för  fronter  i  Södra  Ishavet  har  utarbetats.  Denna   leder  till  en  ny  tolkning  av  den  Subtropiska  Fronten;  strömmarna  riktade  östvart  som  förknippas  med   fronten   motsvarar   förlängningen   av   respektive   bassängs   västliga   randström.   Vi   sammanfattar   dessa   strömmar   genom   beteckningen   den   Dynamiska   Subtropiska   Fronten.   Tidigare   studier   har   istället   gjort   gällande   att   den   Subtropiska   Fronten   är   ett   kontinuerligt   fenomen   i   Södra   Ishavet,   där   den   har   sagts   utgöra  den  nordliga  gränsen  för  den  cirkumpolära  cirkulationen.  

En  omfattande  utredning  har  genomförts  av  förhållandet  mellan  dessa  fronters  läge  och  vindstressen.  

Först  har  fronternas  respons  undersökts  vid  en  sydlig  förskjutning  av  de  västliga  vindarna  med  hjälp  av   en  hundraårig  klimatsimulering  från  en  högupplöst  kopplad  ocean/atmosfärmodell.  Resultatet  visar  att   en   sydlig   västvindsförskjutning   på   1°33’   inte   ger   upphov   till   någon   lägesförändring   hos   fronterna.  

Satellitdata  visar  även  att  den  Subtropiska  Frontens  klimatologiska  läge  är  5-­‐10°  norr  om  den  latitud  där   vindstressrotationen   är   noll,   vilken   många   tidigare   studier   har   antagit   sammanfaller   med   den   Subtropiska  Frontens  läge.  

Slutligen  har  visats  att  näringstillförseln  vid  havsfronter  främst  orsakas  av  horisontell  advektion  och  inte   av  uppvällning.  Näringsämnen  från  kustområden  blandas  in  i  västliga  randströmmar  och  advekteras  in  i  

Södra  Ishavet  längs  den  Dynamiska  Subtropiska  fronten.

     

(5)

List  of  Papers  

This  thesis  is  comprised  of  an  overview  section  that  outlines  the  main  aims  of  this  PhD  and  summarises   some  of  the  key  results.  The  following  manuscripts  are  also  included:  

i. Graham,  R.  M.,  A.  M.  de  Boer,  K.  J.  Heywood,  M.  R.  Chapman,  and  D.  P.  Stevens  (2012),   Southern  Ocean  fronts:  Controlled  by  wind  or  topography?,  J.  Geophys.  Res.  Oceans,  117,   doi:10.1029/2012JC007887.  

 

ii. Graham,  R.  M.,  and  A.  M.  De  Boer  (2013),  The  Dynamical  Subtropical  Front,  J.  Geophys.  Res.  

Oceans,  118,  doi:10.1002/  jgrc.20408.  

 

iii. De  Boer,  A.  M.,  R.  M.  Graham,  M.  D.  Thomas,  and  K.  E.  Kohfeld  (2013),  The  control  of  the   Southern  Hemisphere  Westerlies  on  the  position  of  the  Subtropical  Front,  J.  Geophys.  Res.  

Oceans,  118,  doi:10.1002/jgrc.20407.  

 

iv. Graham,  R.  M.,  A.  M.  De  Boer,  K.  E.  Kohfeld,  C.  Schlosser  (Submitted,  16/10/2014),  Identifying   sources  and  transport  pathways  of  iron  in  the  Southern  Ocean,  Deep-­‐Sea  Research  Part  1.  

 

R.   Graham   was   the   main   contributor   in   terms   of   analyses   and   writing   for   manuscripts   I,   II   and   IV,   together   with   the   help   of   all   co-­‐authors.   The   main   contributor   for   manuscript   III   was   A.   De   Boer.   R.  

Graham  assisted  by  producing  all  figures  and  conducting  the  analyses  on  the  satellite  data  and  fronts.  

The  analyses  on  the  model  output  from  HiGEM  used  in  Figures  4  and  5  of  manuscript  III  was  completed   by  M.  Thomas.  The  ideas  for  Manuscript  I  were  developed  primarily  by  A.  De  Boer  and  R.  Graham.  R.  

Graham  proposed  the  ideas  for  Manuscripts  II  and  IV.  The  idea  behind  Manuscript  III  was  developed  by   A.  De  Boer.  Reprints  for  all  manuscripts  are  made  with  permissions  from  the  publishers,  Wiley  &  Sons.    

   

The  following  papers  are  not  included  as  a  part  of  this  thesis:  

Kohfeld,  K.  E.,  Graham,  R.  M.,  de  Boer,  A.  M.,  Sime,  L.  C.,  Wolff  W.  E.,  Le  Quéré,  C.,  Bopp,  L.  (2013),   Southern  Hemisphere  Westerly  Wind  Changes  during  the  Last  Glacial  Maximum:  Paleo-­‐data   Synthesis.  Quaternary  Science  Reviews.  doi:10.1016/j.quascirev.2013.01.017  

Sime,  L.  C.,  Kohfeld,  K.  E.,  Le  Quéré,  C.,  Wolff,  W.  E.,  de  Boer,  A.  M.,  Graham,  R.  M.,  Bopp,  L.  (2013),   Southern  Hemisphere  Westerly  Wind  Changes  during  the  Last  Glacial  Maximum:  Model-­‐Data   Comparison.  Quaternary  Science  Reviews.  doi:10.1016/j.quascirev.2012.12.008  

   

(6)

Acknowledgements  

First  of  all  I  would  like  to  thank  my  family.  If  it  were  not  for  them  I  would  not  be  where  I  am  today.  My  parents   have  always  been  there  for  me  –  whether  it  be  to  help  me  with  my  English  essays  in  high  school;  to  help  me  with   all  of  my  important  decisions  in  life  such  as  whether  to  move  to  Stockholm;  to  provide  me  with  a  house  to  live  in   while  at  UEA;  or  simply  to  take  me  on  a  relaxing  holiday!  I  cannot  begin  to  thank  you  enough.  My  sister,  Jenny,  has   also  been  a  great  help.  While  I  like  to  pretend  otherwise,  there  is  little  doubt  that  Jenny  being  a  PhD  student  in   physical  oceanography  was  a  major  factor  in  my  decision  to  undertake  a  PhD.  Jenny  also  kindly  taught  me  Matlab   and  introduced  me  to  many  of  my  friends  in  Norwich.  More  recently  it  has  also  been  great  fun  to  meet  up  with  her   at  conferences  and  have  a  friend  to  go  travelling  with.    

I  would  also  like  to  thank  my  supervisor,  Agatha.  Agatha  has  truly  been  the  best  supervisor  I  could  possibly  have   wished  for.  She  has  always  been  there  for  me  when  I  have  needed  her  –  both  as  a  friend  and  a  teacher.  Agatha  has   provided   me   with   great   freedom   to   follow   my   own   research   interests   and   curiosities.   However,   perhaps   most   importantly,  she  always  encourages  me  to  give  everything  my  best  shot.  I  never  would  have  dreamt  when  I  began   my  PhD  that  I  would  be  where  I  am  today.  I  also  do  not  think  I  ever  would  have  considered  moving  to  Sweden  if  it   was  not  for  Agatha,  and  for  that  alone  I  will  always  be  grateful  to  you.    

I   would   also   like   to   acknowledge   all   of   my   co-­‐authors.   Without   you   much   of   this   thesis   would   not   have   been   possible.  Karen  Kohfeld  has  been  a  major  inspiration  to  me  through  the  last  few  years  of  my  PhD.  She  has  taught   me  huge  amounts  about  the  paleo-­‐world,  and  I  am  extremely  grateful  for  the  opportunity  to  become  involved  with   her  and  Louise  Sime’s  westerly  wind  project.  Karen  Heywood  was  also  a  great  help  and  very  patient  in  improving   my  writing  skills  and  English  grammar.  While  not  listed  as  co-­‐authors,  I  would  also  like  to  thank  Filippa,  Malin,  Sara   and  Peter  for  their  superb  job  with  writing  my  Swedish  abstract!  

I  would  like  to  thank  all  of  the  staff  and  students  here  at  Stockholm  University,  both  in  IGV  and  MISU,  for  providing   such  a  fantastic  working  environment.  In  particular,  I  would  like  to  thank  all  of  those  who  have  taught  me  over  the   last  two  years.  Likewise,  Arne,  Dan,  Eve,  Margita  and  Monica  have  been  a  great  help  at  keeping  everything  running   smoothly  behind  the  scenes.  A  special  thank  you  must  also  go  to  Fabien  and  Sarah  for  organising  lunch  seminars,   which  I  have  enjoyed  a  great  deal.  I  owe  a  huge  amount  to  the  Bolin  Centre.  They  have  provided  me  with  countless   opportunities  to  travel,  present  my  work,  take  courses  and  purchase  a  new  computer.  Thank  you!    

Along  with  work  there  is  life!  Never  would  I  have  got  through  the  last  four  years  if  it  was  not  for  my  friends  here  in   Stockholm  as  well  as  further  afield.  My  officemate  Francesco  has  been  a  great  source  of  motivation  to  work  harder   and  accompanied  me  on  an  incredible  trip  to  Norway,  numerous  after  work  drinking  and  sushi  adventures,  and  has   cooked   me   countless   delicious   meals!   My   other   officemates   Moo,   Francis,   Liselott   and   baby   Franbert   have   also   provided   great   support   allowing   me   to   practice   presentations   or   accompany   me   to   Fika!   I   am   worried   that   if   I   attempt   to   list   everyone   here   that   I   would   like   to   thank   I   will   miss   someone   important   out.   So   I   have   decided   instead,  with  the  serious  risk  of  offending  everyone,  to  list  some  words  that  should  mean  something  to  all  those   who  have  stood  by  me  over  the  last  four  years!  Green  Villa  (pub  and  lunch),  GEOPUB,  Lunch!,  Mosebacke,  sushi,   Hermans,  Kellys,  Lasagne,  brownie-­‐cookie-­‐dough,  Dominoes,  Stirling,  Norwich,  Reading,  The  Boat,  sea-­‐ice,  Svensk   Lunch,  Folkuniversitetet,  bacon,  bikes,  running,  swimming,  Volley  Ball,  kayaking,  grilling,  Brunnsviken,  The  Party,   Fell   Club,   Triathlon,   water-­‐skiing,   Salt   Lake   City,   Agulhas,   Hawaii,   Bergen,   Nyksund,   ACDC,   Fell   Club,   Triathlon,   Nacka  Halvmarathon,  MISU,  Happy  Hour,  office  golf,  The  meal  for  1  challenge,  Cologne,  London,  Tea!,  Fika!.  I  am   especially  grateful  to  all  of  my  friends  who  have  stayed  in  touch  with  me  during  my  PhD,  despite  me  not  always   replying  to  emails.  It  has  been  great  fun  coming  back  home  to  visit  you,  and  I  have  really  enjoyed  your  trips  out  to   Stockholm  also.  This  also  gives  me  confidence  that  I  am  will  still  be  friends  with  all  of  you  here  in  Stockholm  for   many  years  to  come,  even  if  life  takes  us  to  faraway  lands  in  the  future!  Thank  you.  

   

(7)

Contents  

Abstract  

 

List  of  papers  

 

Acknowledgements  

 

1. Introduction    

2. The  modern  day  frontal  structure  in  the  Southern  Ocean   2.1. The  importance  of  an  accurate  frontal  climatology   2.2. Defining  ocean  fronts  

2.2.1. Fronts  as  water  mass  boundaries   2.2.2. Fronts  as  strong  currents  

2.3. The  Dynamic  Subtropical  Front    

3. The  relationship  between  ocean  fronts  and  the  wind  field  

3.1. Motivation:  Southern  Ocean  fronts  in  a  changing  climate  

3.2. The  response  of  fronts  to  a  southward  shift  of    the  westerly  winds  

3.3. The  relationship  between  the  Subtropical  Front  and  zero  wind  stress  curl    

4. Biological  activity  at  ocean  fronts  

4.1. Background:  limits  on  primary  production  in  the  Southern  Ocean   4.2. The  role  of  western  boundary  currents  for  nutrient  supply  

 

5. Applications  to  the  Last  Glacial  Maximum  

5.1. Southern  Ocean  changes  at  the  Last  Glacial  Maximum   5.2. Advances  made  in  this  thesis  

5.2.1. Evaluating  possible  frontal  shifts  

5.2.2. Explaining  enhanced  export  production  in  the  Sub-­‐Antarctic  Zone    

6. Unresolved  questions  and  possible  future  directions  

6.1. What  sets  the  location  of  the  Dynamic  Subtropical  Front?  

6.2. Inter-­‐model  comparison  of  Southern  Ocean  fronts   6.3. Location  of  fronts  at  the  Last  Glacial  Maximum   6.4. Shelf  sediment  iron  source  parameterisation  

  7. Key  Results  

7.1. Paper  I   7.2. Paper  II   7.3. Paper  III   7.4. Paper  IV  

 

8. References    

 

III

 

 

V

   

VI

 

 

9  

 

11  

11  

11  

12  

13  

14  

 

19  

19  

20  

21  

 

24  

24  

25  

 

27  

27  

28  

28  

28  

 

30  

30  

30  

30  

31  

 

32  

32  

32  

32  

32  

 

33  

(8)

 

   

   

(9)

1. Introduction  

The  Southern  Ocean  is  at  the  centre  of  the  global  climate  system.  It  interconnects  three  other   major   ocean   basins;   the   Atlantic,   Pacific   and   Indian,   and   is   therefore   important   for   transmit   climate   signals  from  one  region  to  another  [Gille,  2002].    The  Southern  Ocean  is  also  the  only  ocean  on  Earth   today   with   no   meridional   boundary   [Olbers   et   al.,   2004].   Within   the   Southern   Ocean   is   the   Antarctic   Circumpolar   Current   (Figure   1).   This   current   is   both   the   longest   and   strongest   ocean   current   on   our   planet.   It   has   a   transport   of   approximately   130   Sv   (1   Sv   =   106   m3/s)   [Whitworth,   1983].   Several   deep   reaching   hydrographic   boundaries,   known   as   fronts,   exist   across   the   Antarctic   Circumpolar   Current   [Deacon,  1982;  Orsi  et  al.,  1995;  Belkin  and  Gordon,  1996].  Associated  with  these  fronts  are  intense  jets   with   high   velocities   [Sokolov   and   Rintoul,   2007a].   These   jets   contribute   the   majority   of   the   Antarctic   Circumpolar   Current   transport.   Fronts   in   the   Southern   Ocean   are   believed   to   be   an   important   component  of  the  climate  system  for  several  reasons.      

  High   bottom   velocities   associated   with   ocean   fronts   generate   lee   waves   as   fronts   cross   over   rough  topography  [Nikurashin  and  Ferrari,  2010;  Sheen  et  al.,  2014].  The  breaking  of  these  lee-­‐waves   acts  to  mix  the  ocean  and  transform  dense  bottom  waters  into  lighter  waters  [Nikurashin  and  Ferrari,   2010;  Sheen  et  al.,  2014].  This  mixing  is  thought  to  be  an  important  process  for  closing  the  meridional   overturning  circulation  [Melet  et  al.,  2014],  and  this  overturning  circulation  is  responsible  for  substantial   cross  equatorial  heat  transport  to  the  Northern  Hemisphere  in  the  Atlantic  Ocean  (Figure  1).      

  Satellite  images  reveal  higher  chlorophyll  concentrations  along  several  ocean  fronts  compared   to   the   low   background   concentrations   ubiquitous   of   the   Southern   Ocean   [Moore   and   Abbott,   2000,   2002;  Sokolov  and  Rintoul,  2007b].  Chlorophyll  is  a  green  pigment  found  in  plants  and  algae  that  is  used   in  photosynthesis.  These  high  chlorophyll  concentrations  indicate  that  biological  activity  is  enhanced  at   frontal  zones  in  the  Southern  Ocean  [Read  et  al.,  2000;  Moore  and  Abbott,  2002;  Saraceno  et  al.,  2005;  

Sokolov   and   Rintoul,   2007b].   The   high   productivity   associated   with   frontal   zones   is   an   important   component   of   the   global   carbon   cycle.   Changes   in   productivity   over   the   Southern   Ocean   have   been   invoked   to   explain   a   substantial   portion   of   the   80   parts   per   million   reduction   in   atmospheric   carbon   dioxide  concentrations  at  the  Last  Glacial  Maximum  [Martin,  1990;  Kohfeld  et  al.,  2005].    

Strong   gradients   in   sea   surface   temperature   exist   over   ocean   fronts.   These   temperature   gradients   can   result   in   substantial   fluxes   of   heat   energy   between   the   atmosphere   and   ocean,   as   the   larger  scale  atmospheric  circulation  adjusts  to  these  small  scale  oceanic  features    [Small  et  al.,  2008].  

Furthermore,   when   strong   winds   blow   parallel   or   across   ocean   fronts,   regions   of   convergence   and  

Figure  1  Simplified  sketch  of  global  overturning  circulation  by  

(10)

divergence  can  be  generated  at  the  surface  of  the  ocean  and  atmosphere,  respectively.  This  is  because   the  atmospheric  boundary  layer  is  more  stable  over  cooler  waters  compared  with  warmer  waters  and   therefore   the   surface   wind   stress   is   reduced   on   the   cold   side   of   fronts   [O’Neill   et   al.,   2003,   2010a;  

Chelton  et  al.,  2004].  Thus,  winds  blowing  parallel  to  an  ocean  front  will  generate  a  strong  wind  stress   curl  perturbation  that  will  induce  a  region  of  convergence/divergence  in  the  Ekman  Layer  of  the  ocean,   while   winds   blowing   across   an   ocean   front   will   generate   regions   of   convergence/   divergence   in   the   atmospheric  boundary  layer  [O’Neill  et  al.,  2003,  2010b;  Chelton  et  al.,  2004;  Small  et  al.,  2008].  These   areas   of   convergence   and   divergence   can   induce   large   vertical   velocities   in   both   the   atmosphere   and   ocean.  This  is  believed  to    influence  local  rainfall  patterns  [Small  et  al.,  2008].  However,  the  net  effects   of  these  vertical  velocities  for  the  general  ocean  circulation  remain  unknown  [Hogg  et  al.,  2009].  The   strong  sea  surface  temperature  gradients  across  ocean  fronts  are  also  thought  to  guide  the  path  of  the   mid-­‐latitude  westerly  winds  under  certain  circumstances  [Nakamura  et  al.,  2008;  Brayshaw  et  al.,  2011].  

  The   locations   of   certain   fronts   in   the   Southern   Ocean   are   thought   to   influence   inter-­‐ocean   exchange.  For  example,  the  latitude  of  the  Subtropical  Front  is  believed  to  regulate  the  volume  of  warm   and  saline  Agulhas  Leakage  passing  from  the  Indian  Ocean  to  the  Atlantic  [Bard  and  Rickaby,  2009;  Beal   et  al.,  2011].  The  salt  flux  from  this  leakage  is  suggested  to  be  a  crucial  component  of  the  Meridional   Overturning  Circulation.  It  has  been  hypothesized  that  northward  shifts  of  the  Subtropical  Front  during   glacial  intervals  cut  off  the  flow  of  Agulhas  Leakage  and  led  to  a  shutdown  of  the  Meridional  Overturning   Circulation  and  its  associated  northward  heat  transport  [Peeters  et  al.,  2004;  Bard  and  Rickaby,  2009;  

Beal  et  al.,  2011;  Marino  et  al.,  2013].        

  While  Southern  Ocean  fronts  are  thought  to  have  an  influence  on  many  different  aspects  of  the   global   climate   system   and   carbon   cycle,   our   understanding   of   these   features   remains   relatively   poor.  

Ocean  fronts  are  small  scale  features  compared  with  the  vast  Southern  Ocean.  Moreover,  the  Southern   Ocean  is  remote  and  weather  conditions  harsh.  It  is  therefore  challenging  to  obtain  sufficient  temporal   and  spatial  resolution  of  observations  to  monitor  fronts  well.  Similarly,  models  are  expensive  to  run  at   the  high  resolutions  required  to  resolve  frontal  features.  However,  these  challenges  are  gradually  being   overcome   with   improvements   in   satellite   capabilities,   computing   power,   and   observational   programs   such  as  the  ARGO  network.      

In  this  thesis  we  utilise  the  wealth  of  new  data  from  satellites  and  the  ARGO  network,  as  well  as   high  resolution  model  output,  to  address  three  key  questions  regarding  fronts  in  the  Southern  Ocean:  

i. What  is  the  modern  day  frontal  structure  like?  (Papers  I  &  II)  

ii. What  is  the  relationship  between  ocean  fronts  and  the  wind  field?  (Papers  I  &  III)   iii. Why  is  biological  activity  enhanced  at  ocean  fronts?  (Paper  IV)  

In  Sections  2  -­‐  4  we  will  outline  our  motivation  for  asking  each  of  these  questions  and  describe   the   progress   we   have   made   towards   answering   them.   A   discussion   is   given   in   Section   5   detailing   the   applications  of  this  work  for  our  understanding  oceanic  changes  at  the  Last  Glacial  Maximum.  In  Section   6   we   highlight   some   of   the   important   outstanding   questions   that   remain   following   our   analyses,   and   potential  directions  for  future  research  to  tackle  these  problems.  As  a  reference,  a  brief  summary  of  the  

key  results  from  each  of  the  four  papers  contained  within  this  thesis  is  provided  in  Section  7.      

(11)

2. The  modern  day  frontal  structure  in  the  Southern  Ocean   2.1. The  importance  of  an  accurate  frontal  climatology  

It  is  essential  to  have  an  accurate  knowledge  of  where  fronts  are  in  the  Southern  Ocean  in  order   to  improve  our  understanding  of  the  role  fronts  play  in  the  global  climate  system  and  carbon  cycle.    

Having   an   a   priori   knowledge   of   where   ocean   fronts   are   would   greatly   benefit   sea-­‐going   observational  studies.  For  example,  studies  wishing  to  investigate  the  mixing  generated  from  lee-­‐waves   as   fronts   pass   over   rough   topography   could   save   considerable   money   and   ship   time   if   near-­‐real   time   maps  of  front  locations  were  available  when  planning  their  route.  The  same  would  be  true  for  in-­‐situ   observational   studies   wishing   to   investigate   the   relationship   between   fronts   and   biological   activity.  

Similarly,  for  those  wanting  to  reconstruct  front  locations  in  past  climates  knowledge  of  the  present  day   mean  front  locations  is  required.  Without  accurate  knowledge  regarding  the  location  of  fronts,  incorrect   conclusions  may  be  drawn  from  the  analyses  of  these  studies.    

In  order  to  create  an  accurate  frontal  climatology,  or  to  have  real  time  information  about  the   location  of  fronts,  a  consistent  and  robust  method  of  identifying  fronts  is  needed.  

2.2. Defining  ocean  fronts  

Defining  ocean  fronts  is  not  trivial  [Sokolov  and  Rintoul,  2007a;  Chapman,  2014].  Two  common   definitions   of   fronts   prevail   in   the   literature   [Graham   and   De   Boer,   2013].   Traditionally   fronts   are   defined  as  hydrographic  features  or  water  mass  boundaries  [Orsi  et  al.,  1995;  Belkin  and  Gordon,  1996].  

However,   as   higher   resolution   data   sets   and   ocean   models   have   become   available   fronts   are   often   defined  as  strong  narrow  currents  known  as  jets  [Thompson  et  al.,  2010;  Graham  et  al.,  2012;  Thompson   and  Sallée,  2012;  De  Boer  et  al.,  2013;  Graham  and  De  Boer,  2013;  Chapman,  2014].  Frequently  these   two  definitions  of  fronts  are  used  interchangeably  [Sokolov  and  Rintoul,  2002,  2007a,  2009a].    

There   is   strong   physical   reasoning   to   support   the   idea   that   a   water   mass   boundary   should   coincide   with   a   strong   current   [Chapman,   2014].   By   definition,   a   water   mass   boundary   is   a   region   of   strong  gradients  in  water  mass  properties  such  as  temperature  and  salinity  [Orsi  et  al.,  1995].  Gradients   in   temperature   and   salinity   produce   density   gradients,   and   gradients   in   density   drive   geostrophic   currents.  When  considering  the  problem  from  the  other  angle,  it  is  known  that  strong  currents  act  as   barriers   to   mixing   in   the   ocean   [Dritschel   and   McIntyre,   2008;   Ferrari   and   Nikurashin,   2010;   Naveira-­‐

Garabato   et   al.,   2011;   Klocker   et   al.,   2012].   Such   a   mixing   barrier   would   isolate   the   water   masses   on   either   side   of   the   current.   Thus   if   there   is   a   west   to   east   orientated   current,   and   the   atmospheric   conditions  on  its  northern  side  are  warm  and  dry  and  to  the  south  is  cold  and  wet,  it  follows  that  the   water  mass  at  the  surface  on  the  northern  side  of  the  current  will  become  progressively  warmer  and   more  saline  due  to  heating  and  evaporation,  while  the  water  to  the  south  will  become  comparatively   cooler  and  fresher  due  to  heat  loss  and  precipitation.    

Water   mass   boundaries   and   strong   currents   are   often   observed   to   coincide   [Orsi   et   al.,   1995;  

Belkin   and   Gordon,   1996;   Sokolov   and   Rintoul,   2007a].   However,   this   is   not   always   the   case.   One   example   of   this   is   at   subtropical   latitudes,   where   strong   gradients   in   temperature   and   salinity   can   be   density  compensating  [James  et  al.,  2002].  This  means  that  the  reduction  in  density  due  to  the  increase   in  temperature  as  one  moves  equatorward  is  equally  offset  by  an  increase  in  density  due  to  the  increase   in  salinity.  Without  a  density  gradient  there  will  be  no  geostrophic  current  at  the  water  mass  boundary.  

Hence,  the  presence  of  a  water  mass  boundary  does  not  command  the  existence  of  a  jet.  This  raises   some  important  questions.  For  instance,  when  considering  the  role  of  fronts  in  generating  lee-­‐waves,  or   the  relationship  between  front  and  enhanced  biological  activity,  is  it  more  relevant  to  think  of  fronts  as   water  mass  boundaries  or  strong  currents?    

 

(12)

2.2.1. Fronts  as  water  mass  boundaries    

When  treating  fronts  as  water  mass  boundaries,  five  classical  fronts  have  been  identified  in  the   Southern   Ocean   [Orsi   et   al.,   1995].   From   north   to   south   these   are   the   Subtropical   Front;   the   Sub-­‐

Antarctic   Front;   the   Antarctic   Polar   Front;   the   Southern   ACC   Front;   and   the   Southern   Boundary   Front   (Figure  2).  Each  of  these  fronts  are  said  to  be  continuous  and  circumpolar  in  extent  [Orsi  et  al.,  1995].    

The   changes   in   water   masses   across   Southern   Ocean   fronts   are   related   to   changes   in   the   stratification   of   the   water   column   [Pollard   et   al.,   2002].   In   northern   regions   surface   waters   are   warm   due  to  strong  surface  heating,  while  the  deep  ocean  is  isolated  from  this  heating  and  is  therefore  cold.  

Here  temperature  dominates  the  stratification  of  the  water  column.  Surface  heating  is  weaker  closer  to   the  pole  and  therefore  the  difference  in  temperature  between  ocean  surface  and  deep-­‐ocean  is  less.  In   Polar  Regions  salinity  dominates  the  stratification  of  the  water  column.  Surface  waters  are  fresh  while   deep  waters  are  more  saline  [Pollard  et  al.,  2002].    

The  Sub-­‐Antarctic  Front  delineates  the  southern  limit  of  regions  where  temperature  dominates   the   stratification   of   the   water   column   [Pollard   et   al.,   2002].   North   of   this   boundary   the   strong   temperature   stratification   permits   a   subsurface   salinity   minimum   to   exist   (Figure   3).   The   water   mass   associated  with  this  salinity  minimum  is  known  as  Antarctic  Intermediate  Water.  The  Sub-­‐Antarctic  Front   can  thus  be  identified  as  the  southern  boundary  of  the  Antarctic  Intermediate  Water  [Orsi  et  al.,  1995].    

Similarly,   the   Antarctic   Polar   Front   delineates   the   northern   limit   of   the   region   where   salinity   dominates  the  stratification  of  the  water  column  [Pollard  et  al.,  2002].  South  of  this  boundary  the  strong   salinity  stratification  allows  temperature  to  increase  with  depth  (Figure  3).  The  water  mass  associated   with   this   subsurface   temperature   maximum   is   known   as   Upper   Circumpolar   Deep   Water   [Orsi   et   al.,   1995].    

Frontal   definitions   associated   with   changes   in   the   stratification   of   the   water   column   are   inherently  continuous  and  circumpolar  [Pollard  et  al.,  2002].  One  can  identify  the  transition  from  where   temperature  dominates  the  stratification  of  the  water  column  to  salinity  along  any  latitudinal  transect  in   the  Southern  Ocean.  However,  due  to  the  limited  availability  of  subsurface  data,  it  is  not  common  to   identify   fronts   based   on   these   stratification   criteria.   Instead,   the   location   of   fronts   are   often   approximated  using  water  mass  properties  i.e.  specific  isotherms  or  isohalines  [Orsi  et  al.,  1995;  Belkin   and   Gordon,   1996].   For   example,   the   location   of   the   Polar   Front   is   commonly   defined   as   the   2°C   isotherm  at  200  m  depth  [Orsi  et  al.,  1995].  Fronts  are  also  inherently  continuous  and  circumpolar  when   defined  in  this  way.  

   

       

Figure  2  Climatology  of  Southern  Ocean  fronts  defined  by  Orsi  et  al.  [1995].  From  north  to   south   these   fronts   are   the   Subtropical   Front   (red),   Sub-­‐Antarctic   Front   (green),   Antarctic   Polar  Front  (blue),  Southern  ACC  Front  (magenta)  and  the  Southern  Boundary  Front  (cyan).  

The  grey  contours  are  the  500  m  and  3500  m  isobaths.    

(13)

   

       

2.2.2. Fronts  as  strong  currents  

Unlike   fronts   defined   as   water   mass   boundaries,   strong   currents   in   the   Southern   Ocean   are   neither   continuous   nor   circumpolar   in   extent   [Sokolov   and   Rintoul,   2007a;   Thompson   et   al.,   2010;  

Graham   et   al.,   2012].   The   number   of   strong   currents   present   in   the   Southern   Ocean   varies   with   longitude  [Thompson  et  al.,  2010].    

The  discord  between  continuous-­‐circumpolar  water  mass  boundaries  and  discontinuous  frontal   jets  has  been  noted  for  several  years  [Hughes  and  Ash,  2001;  Sokolov  and  Rintoul,  2002].  Sokolov  and   Rintoul   [2002]   investigated   this   discord   using   sea   surface   height   data.   They   suggest   that   while   frontal   jets  are  discontinuous,  the  jets  are  consistently  found  along  distinct  sea  surface  height  contours.  They   therefore   conclude   that   the   location   of   each   of   the   circumpolar   water   mass   boundary   fronts   can   be   represented  by  a  single  sea  surface  height  contours  along  which  jets  occur  [Sokolov  and  Rintoul,  2007a,   2009a,  2009b].    

The   method   derived   by   Sokolov   and   Rintoul   [2007]   has   proven   to   be   a   powerful   tool.   It   has   allowed  the  position  of  fronts  to  be  tracked  with  high  spatial  and  temporal  resolution  satellite  data  for   the   first   time.   Using   this   method   statistics   can   easily   be   calculated   to   show   the   circumpolar   average   variability  and  trends  in  the  latitude  of  ocean  fronts  [Sokolov  and  Rintoul,  2009b;  Billany  et  al.,  2010].  

Figure  3  a)  Salinity  transect  at  100°E  and  b)  Temperature  transect  at  100°E,  from  a  gridded  ARGO   data  set    [Hosoda  et  al.,  2008]  c)  Criteria  for  identifying  Southern  Ocean  fronts  using  water  mass   boundary  definitions  from  Pollard  [2002].  APF=Antarctic  Polar  Front,  SAF=Sub-­‐Antarctic  Front,   AAIW=Antarctic  Intermediate  Water,  UCDW=Upper  Circumpolar  Deep  Water.  

(14)

Furthermore,   correlations   can   be   calculated   to   investigate   whether   these   trends   and   variability   are   related  to  atmospheric  patterns  such  as  the  Southern  Annular  Mode  and  El  Nino  Southern  Oscillation   [Sallée  et  al.,  2008;  Kim  and  Orsi,  2014].    

Despite  the  advantages  of  Sokolov  and  Rintoul’s  [2007]  method,  it  continues  to  treat  fronts  as   circumpolar  features.  As  a  result  the  climatological  positions  of  their  fronts’  provide  no  information  on   zonal   variations   in   frontal   characteristics.   Nor   does   the   method   inform   us   whether   a   jet   is   actually   present   at   any   given   longitude   [Graham   et   al.,   2012].   For   certain   studies,   such   as   those   wishing   to   investigate  the  generation  of  lee-­‐waves  at  ocean  fronts,  information  about  where  jets  are  present  would   be  useful.    

In   this   thesis   we   derive   a   new   method   of   identifying   ocean   fronts.   We   identify   fronts   as   local   maxima  in  the  mean  annual  sea  surface  height  or  temperature  gradients  above  a  given  threshold  (Figure   4).   We   show   using   output   from   a   high   resolution   climate   model   (HiGEM)   that   maxima   in   sea   surface   height  gradients  correspond  closely  to  strong  currents  (maxima  in  zonal  transport).  In  contrast,  maxima   in  temperature  gradients  may  not  correspond  to  strong  currents  if  these  fronts  are  shallow  or  density   compensated  (Figure  5).    

We   present   a   new   climatology   of   fronts   in   the   Southern   Ocean   where   fronts   are   defined   specifically   as   strong   currents   [Graham   and   De   Boer,   2013].   Thus,   the   locations   of   fronts   in   our   climatology  correspond  directly  to  locations  where  strong  currents  are  present  in  the  annual  mean  field.  

By  defining  fronts  this  way  our  fronts  are  discontinuous.  We  do  not  classify  fronts  using  their  traditional   names  –  e.g.  the  Sub-­‐Antarctic  Front  or  Polar  Front.  Arguably  this  definition  of  fronts  is  more  relevant   for  studies  investigating  mixing  in  the  ocean  compared  with  the  traditional  method  of  defining  fronts  as   water   mass   boundaries   [Chapman,   2014].   The   gradient   threshold   method   we   use   has   since   been   extended  to  study  the  time-­‐varying  location  of  fronts  in  the  Southern  Ocean  [Chapman,  2014].  

We   present   a   further   climatology   of   fronts   where   we   define   fronts   as   local   maxima   in   sea   surface  temperature  gradients  [Graham  and  De  Boer,  2013].  This  definition  of  fronts  is  more  relevant     for  studying  air  sea  fluxes,  because  the  largest  air-­‐sea  fluxes  will  occur  where  sea  surface  temperature   gradients  are  strong  [Small  et  al.,  2008].  This  climatology  may  also  be  more  relevant  for  paleo-­‐climate   studies,  as  paleo-­‐proxies  are  able  to  record  large  changes  in  sea  surface  temperature  which  may  be  the   result  of  a  sea  surface  temperature  front  shifting  [Kohfeld  et  al.,  2013].  

   

 

Figure  4  Identifying  fronts  using  sea  surface   temperature   and   height   gradients   with   HiGEM   output   (30   year   mean).   Figure   adapted  from  Graham  et  al.  [2012]  

a)   Transect   of   sea   surface   temperature   (green)   and   height   (black)   gradients,   and   zonal  transport  (magenta)  at  100°E.  b)  cross   section   of   zonal   velocities   at   100°E.   Black   vertical   lines   show   the   location   of   fronts   identified   as   local   maxima   in   sea   surface   height  gradients.    

 

(15)

   

     

The   skill   of   our   frontal   identification   method   is   underlined   by   its   consistency.   Outside   of   the   Subtropics,  very  similar  results  are  found  regardless  of  whether  fronts  are  identified  as  local  maxima  in   zonal   transport,   sea   surface   temperature   or   sea   surface   height   gradients   when   using   HiGEM   model   output  (Figure  5).  Furthermore,  the  pattern  of  fronts  identified  using  satellite  data  and  HiGEM  model   output   are   remarkably   similar   [De   Boer   et   al.,   2013].   Similar   front   locations   were   also   found   when   comparing  two  one  hundred  year  simulations  on  HiGEM,  one  of  which  was  a  control  run  and  the  other  a   climate  change  run  where  CO2  concentrations  increased  by  400%  [Graham  et  al.,  2012].  The  consistency   when  using  our  method  on  independent  data  sets,  different  time  intervals,  and  when  comparing  model   output  with  observations,  provides  strong  confidence  in  the  robustness  of  this  method.  It  also  reveals   new  insights  into  the  behaviour  of  fronts.  The  consistency  between  the  frontal  patterns  in  each  of  these   scenarios,   despite   differing   wind   fields,   shows   that   the   mean   position   of   fronts   is   more   stable   than   previously  thought  and  that  topography  has  a  strong  control  on  the  mean  position  of  fronts  [Graham  et   al.,   2012].   The   method   also   reveals   how   the   number   of   jets   present   in   the   Southern   Ocean   changes   dramatically   with   longitude,   and   that   the   number   of   jets   is   controlled   primarily   by   the   bottom   topography  [Graham  et  al.,  2012].  

When  using  the  Sokolov  and  Rintoul  [2007]  method,  large  seasonal  fluctuations  in  the  locations   of  fronts  have  been  reported.  However,  we  show  here  that  when  defining  fronts  specifically  as  strong   currents  there  is  minimal  seasonal  cycle  in  the  location  of  fronts  [Graham  and  De  Boer,  2013].  This  result   raises  some  concerns  about  the  accuracy  and  applicability  of  the  Sokolov  and  Rintoul  [2007]  method.  

Graham  et  al.  [2012]  further  show  that  large  spurious  frontal  movements  can  be  recorded  when  using   the  Sokolov  and  Rintoul  [2007]  method,  at  locations  and  times  where  sea  surface  height  gradients  are   very  weak  and  no  jets  are  present.  This  result  has  important  implications  for  certain  studies  using  the   Sokolov  and  Rintoul  [2007]  method,  such  as  those  examining  cross  frontal  mixing  [Thompson  and  Sallée,   2012].  

   

Figure   5   Mean   location   of   fronts   in   HiGEM.   a)   Fronts   located   as   local   maxima   in   zonal   transport   (magenta)   and   sea   surface   height   gradients   (black),   b)   Fronts   located   as   local   maxima   in   zonal   transport   (magenta)   and   sea   surface   temperature   gradients   (green,   b).  

Grey  lines  are  the  1000  m  and  3000  m  isobaths.  The  figure  is  adapted  from  Graham  and  De   Boer  [2013]  

(16)

2.3. The  Dynamic  Subtropical  Front  

                 

Reconstructing  the  location  of  the  Subtropical  Front  during  past  climate  intervals  is  a  key  goal  of   paleoclimate  research  [Bard  and  Rickaby,  2009;  Franzese  et  al.,  2009;  De  Deckker  et  al.,  2012;  Kohfeld  et   al.,  2013].  This  is  because  the  latitude  of  the  Subtropical  Front  is  believed  to  be  related  to  the  volume  of   warm   and   saline   Agulhas   Leakage   passing   from   the   Indian   Ocean   to   the   Atlantic   [Bard   and   Rickaby,   2009;  Beal  et  al.,  2011].  It  is  hypothesised  that  a  northward  shift  of  the  Subtropical  Front  during  glacial   intervals  pushed  the  Subtropical  Front  up  against  the  African  Continent,  cutting  off  the  flow  of  Agulhas   Leakage  and  the  associated  salt  flux.  The  salt  flux  from  Agulhas  Leakage  is  an  important  component  of   the  Atlantic  Meridional  Overturning  Circulation  (Figure  6),  and  it  is  thought  that  the  cessation  of  this  salt   flux   may   have   caused   the   circulation   and   its   northward   heat   transport   to   shut   down   [Peeters   et   al.,   2004;  Bard  and  Rickaby,  2009;  Beal  et  al.,  2011].    

While   there   is   a   major   research   effort   among   the   paleo-­‐climate   community   to   study   the   Subtropical  Front,  our  understanding  of  this  feature  during  the  present  day  remains  confused  [Graham   and   De   Boer,   2013].   Traditional   climatologies   of   the   Subtropical   Front   water   mass   boundary   depict   a   continuous  and  near  zonal  feature  extending  from  the  Western  Atlantic  to  the  Eastern  Pacific  (Figure  7).  

However,  there  are  known  zonal  variations  in  the  characteristics  of  the  Subtropical  Front  along  its  path   [Burls   and   Reason,   2006;   Dencausse   et   al.,   2011].   For   example,   depending   on   where   a   study   is   conducted,  descriptions  of  the  Subtropical  Front  range  from  a  deep  and  narrow  jet  with  large  transport   to   a   broad   and   shallow   frontal   zone   with   little-­‐to-­‐no   transport,   and   there   is   even   uncertainty   over   whether   the   front   exhibits   a   small   or   large   seasonal   cycle   [Lutjeharms   and   Valentine,   1984;   Stramma   and  Peterson,  1990;  Stramma,  1992;  Orsi  et  al.,  1995;  Stramma  et  al.,  1995;  Belkin  and  Gordon,  1996;  

James  et  al.,  2002;  Kostianoy  et  al.,  2004;  Burls  and  Reason,  2006].  Moreover,  climatologies  disagree  on   the  location  and  number  of  fronts  within  this  frontal  zone  [Orsi  et  al.,  1995;  Belkin  and  Gordon,  1996].  

Figure  6  Schematic  of  the  greater  Agulhas  System  by  Beal  et  al.  [2011].  Background  colours  show  the   mean  subtropical  gyre  circulation,  depicted  by  climatological  dynamic  height  integrated  between  the   surface   and   2,000   dbar.   Black   arrows   illustrate   significant   features   of   the   flow   and   the   Southern   Hemisphere   supergyre   is   given   by   the   grey   dashed   line.   Southward   expansion   of   the   Southern   Hemisphere  westerlies  over  a  30  year  period  is  shown  on  the  right.  Red  arrows  show  the  expected   corresponding  southward  shift  of  the  Subtropical  Front,  and  how  it  could  affect  Agulhas  Leakage  and   the  pathway  between  the  leakage  and  the  Atlantic  Meridional  Overturning  Circulation.    

(17)

             

Many  studies  neglect  to  consider  how  these  variations  in  the  characteristics  of  the  Subtropical   Front   may   affect   the   interpretation   of   their   data   [Nürnberg   and   Groeneveld,   2006;   De   Deckker   et   al.,   2012].   This   is   because   continuous   frontal   climatologies   obscure   known   zonal   differences   along   the   Subtropical  Front’s  path.  These  differences  only  become  evident  when  reading  deep  into  the  literature.    

Our  new  frontal  identification  method  reveals  a  clearer  picture  of  the  physical  features  present   in  the  Subtropics  [Graham  and  De  Boer,  2013].  We  see  that  the  only  strong  currents  (identified  as  local   maxima  in  sea  surface  height  gradients)  associated  with  the  Subtropical  Front  water  mass  boundary  are   located  on  the  western  sides  of  basins  (Figure  7).  These  strong  currents,  or  ‘dynamic  fronts’  as  we  name   them,   are   the   western   boundary   current   extensions   from   each   basin   in   the   Southern   Ocean   i.e.   the   South  Atlantic  Current,  the  Agulhas  Return  Current,  and  South  Pacific  Current.  Collectively,  we  call  these   features  the  Dynamic  Subtropical  Front.  The  Dynamic  Subtropical  Front  tracks  south-­‐eastwards  in  each   basin   and   merges   with   the   Sub-­‐Antarctic   Front   (Figure   7).   This   is   a   departure   from   traditional   climatologies  of  Subtropical  Front  water  mass  boundary  that  depict  a  zonal  route  extending  across  the   entire  Southern  Ocean  [Orsi  et  al.,  1995;  Belkin  and  Gordon,  1996].  

There  are  no  dynamic  fronts  at  the  Subtropical  Front  water  mass  boundary  on  the  eastern  side   of  basins  (Figure  7).  Instead,  there  is  a  broad  area  of  sea  surface  temperature  fronts  that  are  visible  as   local   maxima   in   sea   surface   temperature   gradients   but   not   height   gradients.   We   observe   with   ARGO   data,  as  well  as  in  model  output,  that  these  frontal  features  in  the  east  are  shallow  and  there  are  no  jets   associated  with  them  [Graham  et  al.,  2012;  Graham  and  De  Boer,  2013].  We  call  this  area  of  sea  surface   temperature  fronts  the  Subtropical  Frontal  Zone.    

Interestingly,  we  see  from  the  satellite  data  that  there  is  a  large  seasonal  cycle  in  the  latitude  of   the  Subtropical  Frontal  Zone,  on  the  order  of  5-­‐7°  [Graham  and  De  Boer,  2013].  In  contrast,  the  Dynamic   Subtropical   Front,   and   fronts   associated   with   the   Antarctic   Circumpolar   Current   have   little-­‐to-­‐no   seasonal   cycle.   We   can   also   see   from   the   ARGO   data   that   the   Dynamic   Subtropical   Front   is   a   deep   feature  (~2  km),  while  the  Subtropical  Frontal  Zone  is  shallow  [Graham  and  De  Boer,  2013].  Separating   the   Dynamic   Subtropical   Front   from   the   Subtropical   Frontal   Zone   is   a   region   of   weak   sea   surface   temperature  and  height  gradients  (Figure  7).    

   

Figure  7  Fronts  identified  as  local  maxima  in  satellite  sea  surface  temperature  (green)  and   height  (black)  gradients.  Orange  lines  are  climatological  positions  of  the  Sub-­‐Antarctic  and   Subtropical   Front   from   Orsi   et   al.   [1995].   Pink   lines   are   the   Dynamical   Subtropical   Front.  

Grey  contours  are  the  500  m  and  3500  m  isobaths.  The  figure  is  adapted  from  Graham  and   De  Boer  [2013]  

(18)

We  conclude  that  the  Dynamic  Subtropical  Front  and  Subtropical  Frontal  Zone  are  distinct  and   unrelated  features  (Figure  8).  Thus,  they  should  be  studied  separately.  No  continuous  Subtropical  Front   exists,  since  the  features  on  the  eastern  and  western  sides  of  basins  that  are  usually  associated  with  the   Subtropical   Front   are   in   fact   unrelated.   This   has   important   implications   for   studies   reconstructing   the   location  of  the  Subtropical  Front  in  the  Indian  Ocean  during  past  climates,  and  any  inferences  that  may   be  made  about  Agulhas  Leakage.  In  particular,  we  suggest  that  this  structure  of  the  Subtropical  Front   can  help  explain  the  asymmetric  sea  surface  temperature  changes  during  glacial-­‐interglacial  cycles  on   the  east  and  west  of  basins  [Nürnberg  and  Groeneveld,  2006].    

 

   

Figure  8  Schematic  of  frontal  features  at  Subtropical  latitudes  by  De  Boer  et  al.  [2013].  Blue   lines  show  the  path  of  the  western  boundary  currents  and  their  extensions  that  we  call  the   Dynamical  Subtropical  Front.  Red  shaded  areas  indicate  the  location  of  a  region  of  enhanced   temperature  gradients  (no  currents)  that  we  refer  to  as  the  Subtropical  Frontal  Zone.  Beige   and   purple   lines   show   the   location   of   the   Subtropical   and   Sub-­‐Antarctic   Front   water   mass   boundaries,  respectively.    

References

Related documents

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

This result becomes even clearer in the post-treatment period, where we observe that the presence of both universities and research institutes was associated with sales growth

I två av projektets delstudier har Tillväxtanalys studerat närmare hur väl det svenska regel- verket står sig i en internationell jämförelse, dels när det gäller att

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

De minsta företagen är de som tappade procentuellt minst (knappt 2 procent) medan de största tappade ytterligare 13 procent. Ser man till hela perioden har de största och näst