• No results found

Internet performance issues for safety-critical applications

N/A
N/A
Protected

Academic year: 2022

Share "Internet performance issues for safety-critical applications"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Internet Performance Issues for Safety-Critical Applications

Markus Fiedler

Blekinge Institute of Technology School of Engineering

Dept. of Telecommunication Systems

Internet Issues (1)

• Its very nature

• A network of networks

• Connectivity – the only concern?

• “Can you ping?” (If yes, everything is OK.)

• Shared resources and the best-effort paradigm

– “Jantelagen”: “Du skall icke tro att du är bättre än vi.”

– No guarantees

• IP (layer 3) uses datagrams

– No explicit quality feedback between the layers

• TCP (layer 4) “times out”

(2)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Internet Issues (2)

• Few QoS standardization and handling efforts – IntServ does not scale

– Island-type solutions

• MPLS (DiffServ) in the core

• Industrial real-time Ethernet at the edge

• QoS handling – if any – is mainly left to the end systems/application

– RTCP (layer 7): monitors quality for real-time applications – TCP (layer 4): loss and sequence recovery at the cost of

delay

• Motto: Help yourself!

... And Some Consequences

• Packet streams

– Meet braking transport capacity limitations (bottlenecks)

– Interfere with (= brake) each other

• User-perceived Quality of Service (QoS) in terms of – Speed: Too low and varying  delay and jitter – Accuracy: Too low  losses

– Reliability: Not dependable  time-/drop-outs

• Perceived speed < installed capacity

(3)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Perceived Speed

Low capacity

High cap.

Server

Switch Client

Ethernet

Transmission time Processing time ()

Queuing time  Entity level Transmission

level

Legend:

time

Travel Length/capacity Client

Effective speed

Perceived Speed – Shared (1)

High cap.

Server

Switch Client

Ethernet

Transmission time Processing time ()

Queuing time 

Entity level Transmission

level

Legend:

time

Travel Length/capacity Client

Effective speed

Low capacity Collision

(4)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Perceived Speed – Shared (2)

Low capacity

High cap.

Server

Switch Client

Transmission time Processing time ()

Queuing time  Entity level Transmission

level

Legend:

time

Travel Length/capacity Client

Effective speed

Perceived Speed – Shaped

Low capacity

High cap.

Server

Switch Client

Transmission time Processing time ()

Queuing time  Entity level Transmission

level

Legend:

time

Travel Length/capacity Client

Effective speed

Speed adaptation

(5)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Loss Due To Overload

Low capacity

High cap.

Server

Switch Client

Ethernet

Transmission time Processing time ()

Queuing time  Entity level Transmission

level

Legend:

time

Travel Length/capacity Client

Dependability

Low capacity

Server

Switch Client

Ethernet

Transmission time Processing time ()

Queuing time  Entity level Transmission

level

Legend:

time

Travel Length/capacity Client

(6)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Some QoS Degradation Measures (1)

• One-way delay

– Problematic due to time synchronization

• NTP useful in local environments

• GPS might help

• Round-trip delay

– Determines download times

– Approximately available through ping

• Active measurement: implies extra load; just probing – Upper bound for the one-way delay

• Asymmetrical delays are quite normal

Some QoS Degradation Measures (2)

• Delay jitter

– Comparably simple to obtain – Trend analysis required

• Loss

– To be observed on upper layers

• Reliability

– Real-time applications: Frequency of time-outs – General: Relative downtime

(7)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Safety-Critical Applications

• Needs:

– Minimal delay and (additional) jitter

• Keep timing relationships as good as possible – No loss

– Information = feedback in case of problems

• Characteristics:

– Streaming: amount ∆L within each ∆T

• Control; voice; video; ...

– Messaging: amount L to be received within T

• Alarms; notifications; ...

– Interactive: amounts LCS + LSCto be received within T

Speed Considerations

• Close to limiting factor: lack of transport capacity

⇒ Queuing ⇒ delay, jitter

⇒ Loss

• Calculation of end-to-end-perceived speed – Time synchronization upon arrival of first packet

• As perceived by the receiver

– Bandwidth changes along the way through the network reflect jitter and loss

– Focus on streaming services

• Provides speed information even for messaging/interactive services

(8)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

End-To-End Perceived Speed – Ideal Case

∆L

Delay of 1stpacket

∆T

∆L/∆T

End-To-End Perceived Speed – Jitter (1)

Delay of 1stpacket

∆T

∆L ∆L/∆T

Delayed packet speed change

(9)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

End-To-End Perceived Speed – Jitter (2)

Delay of 1stpacket

∆T

∆L ∆L/∆T

End-To-End Perceived Speed – Loss

Delay of 1stpacket

∆T

∆L L/ ∆T

Lost packet speed change

(10)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

”Kilroy was here”

• http://www.kilroywashere.org

• End-to-end-perceived speed measurements and histograms tell about

– Type of bottleneck – Severity of disturbance

• ”Kilroy indicator” = histogram@output – histogram@input – Observation window ∆W

– Averaging interval ∆T – Speed discretization ∆R

Shared Bottleneck – Example

In

Speed Out

Time interval

1

Speed

H

1

Speed

H

1

-1

H

Speed

(11)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Shaping Bottleneck – Example

In

Speed Out

Time interval

1

Speed

H

1

Speed

H

1

-1

H

Speed

Video Experience of an Artificial Bottleneck

Switch

Switch Internet

Karlskrona (SE) Generator

Consumer 10 Mbps half-duplex

Würzburg (D)

Distur- bing UDP traffic 010Mbps

Speed histogram

Karlskrona Würzburg ”Kilroy”

Difference

Measure- ment point Würzburg Measure- ment point Karlskrona

(12)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

A Closer Look on Audio

• One packet à 492 B each 60 ms

• Inter-packet jitter

– Observation window = 1 min

– Jitter = Packet inter-arrival time – 60 ms – Discretization = 1 ms

• Speed

– Observation window = 1 min – Averaging interval = 60 ms – Speed discretization = 10 kbps

• Different levels of disturbance

Jitter – Disturbance

0 Mbps 6 Mbps

-0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3

-0,06 -0,04 -0,02 0 0,02 0,04

Jitter [s]

Rel. frequency

Jitter in Jitter out Difference

-0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3

-0,06 -0,04 -0,02 0 0,02 0,04 0,06

Jitter [s]

Rel. frequency

Jitter in Jitter out Difference

-0,15 -0,1 -0,05 0 0,05 0,1 0,15

-0,06 -0,04 -0,02 0 0,02 0,04

Jitter [s]

Rel. frequency

Difference

-0,15 -0,1 -0,05 0 0,05 0,1 0,15

-0,06 -0,04 -0,02 0 0,02 0,04 0,06

Jitter [s]

Rel. frequency

Difference

(13)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Speed – Disturbance 0 Mbps

-20%

0%

20%

40%

60%

80%

100%

0 20000 40000 60000 80000 100000 120000 140000 160000

Sender Receiver Difference Difference

-2,5%

-2,0%

-1,5%

-1,0%

-0,5%

0,0%

0,5%

1,0%

1,5%

0 20000 40000 60000 80000 100000 120000 140000 160000

bps

Speed – Disturbance 6 Mbps

-20%

0%

20%

40%

60%

80%

100%

0 20000 40000 60000 80000 100000 120000 140000 160000

Sender Receiver Difference

Difference

-12,5%

-10,0%

-7,5%

-5,0%

-2,5%

0,0%

2,5%

5,0%

7,5%

0 20000 40000 60000 80000 100000 120000 140000 160000

bps

(14)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Speed Comparisons

+ Reflects flow of packets

+ Takes packet lengths into account + Comparable to installed capacities + Comparable to expected behaviour

+ See whether packets come ”too late”

+ Comparable to behaviour at inlet

• Requires exchange of speed histograms + Feedback facility

− Dependency on first packet

− Short flows

− Granularity/discretization

Conclusion And Open Issues

• Quality of Service problems in terms of – Speed

– Accuracy – Reliability

are well reflected in speed changes

• Important: Time scale of interest

• Time synchronization issue and one-way delays via Internet

– Measurement – Guarantee

(15)

Markus Fiedler: Internet Performance Issues for Safety-Critical Applications

Internet Performance Issues for Safety-Critical Applications

Markus Fiedler Thanks for listening ☺☺☺☺

Any questions?

References

Related documents

I relation till detta används en rad nyhetsartiklar för att visa hur yttrandefriheten idag kan anses utgöra en konflikt med minoritetsrätten och vidare hur en nation

We discovered that the number of deaths       caused by software­related failures is estimated to be over 2600 and the main cause of       these software failures was

Förord Detta examensarbete är utfört på institutionen för Samhällsbyggnad, avdelningen för byggkonstruktion vid Luleå tekniska universitet.. Denna avslutande del

Optipress syftade till att genom datainsamling och beräkningar undersöka möjligheten att skapa modeller för tillståndsbaserat underhåll av äldre pressgjutmaskiner,

Det första stycket beskriver hur eleven ska kunna samtala och argumentera kring lösningarna av det matematiska problemet. Eleverna ska kunna fråga sig själva om svaret är

Ingen av hans regerings- kolleger ko~ honom till undsättning, inte ens statsministern, vilkens mora- liska skyldighet det borde ha varit att hålla sin medarbetare

I ett föregående häfte av Svensk Tid- skrift citerades en deklaration av stats- minister Pahne i O slo i november förra året. Han sade, att då läget i

Om vi moderater bara lyckas bemästra vår instinktiva misstänksamhet mot offentliga lösningar och acceptera egenmakt som en annan beskrivning av det moderata