• No results found

Parameter Typ. Max. Units

N/A
N/A
Protected

Academic year: 2022

Share "Parameter Typ. Max. Units"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Parameter Typ. Max. Units

R

θJA

Maximum Junction-to-Ambient ƒ 75 100 °C/W

IRLML6402

HEXFET ® Power MOSFET

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on- resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET

power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3  , is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

The thermal resistance and power dissipation are the best available.

Thermal Resistance

V DSS = -20V R DS(on) = 0.065Ω

l Ultra Low On-Resistance

l P-Channel MOSFET

l SOT-23 Footprint

l Low Profile (<1.1mm)

l Available in Tape and Reel

l Fast Switching Description

www.irf.com 1

S D

G

Parameter Max. Units

V

DS

Drain- Source Voltage -20 V

I

D

@ T

A

= 25°C Continuous Drain Current, V

GS

@ -4.5V -3.7

I

D

@ T

A

= 70°C Continuous Drain Current, V

GS

@ -4.5V -2.2 A

I

DM

Pulsed Drain Current  -22

P

D

@T

A

= 25°C Power Dissipation 1.3

P

D

@T

A

= 70°C Power Dissipation 0.8

Linear Derating Factor 0.01 W/°C

E

AS

Single Pulse Avalanche Energy „ 11 mJ

V

GS

Gate-to-Source Voltage ± 12 V

T

J,

T

STG

Junction and Storage Temperature Range -55 to + 150 °C

Absolute Maximum Ratings

W

Micro3 

(2)

Parameter Min. Typ. Max. Units Conditions

I

S

Continuous Source Current MOSFET symbol

(Body Diode) ––– –––

showing the

ISM

Pulsed Source Current integral reverse

(Body Diode)  ––– –––

p-n junction diode.

V

SD

Diode Forward Voltage ––– ––– -1.2 V T

J

= 25°C, I

S

= -1.0A, V

GS

= 0V ‚ t

rr

Reverse Recovery Time ––– 29 43 ns T

J

= 25°C, I

F

= -1.0A

Q

rr

Reverse RecoveryCharge ––– 11 17 nC di/dt = -100A/µs ‚

 Repetitive rating; pulse width limited by max. junction temperature.

Notes:

‚ Pulse width ≤ 300µs; duty cycle ≤ 2%.

Source-Drain Ratings and Characteristics

-1.3 -22

A

S D

G

** For recommended footprint and soldering techniques refer to application note #AN-994.

ƒ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

„ Starting T

J

= 25°C, L = 1.65mH R

G

= 25Ω, I

AS

= -3.7A.

Parameter Min. Typ. Max. Units Conditions

V

(BR)DSS

Drain-to-Source Breakdown Voltage -20 ––– ––– V V

GS

= 0V, I

D

= -250µA

∆V(BR)DSS/∆TJ

Breakdown Voltage Temp. Coefficient ––– -0.009 ––– V/°C Reference to 25°C, I

D

= -1mA ‚ ––– 0.050 0.065 V

GS

= -4.5V, I

D

= -3.7A ‚ ––– 0.080 0.135 V

GS

= -2.5V, I

D

= -3.1A ‚ V

GS(th)

Gate Threshold Voltage -0.40 -0.55 -0.95 V V

DS

= V

GS

, I

D

= -250µA g

fs

Forward Transconductance 6.0 ––– ––– S V

DS

= -10V, I

D

= -3.7A ‚

––– ––– -1.0 V

DS

= -20V, V

GS

= 0V

––– ––– -25 V

DS

= -20V, V

GS

= 0V, T

J

= 70°C Gate-to-Source Forward Leakage ––– ––– -100 V

GS

= -12V

Gate-to-Source Reverse Leakage ––– ––– 100 V

GS

= 12V

Q

g

Total Gate Charge ––– 8.0 12 I

D

= -3.7A

Q

gs

Gate-to-Source Charge ––– 1.2 1.8 nC V

DS

= -10V

Q

gd

Gate-to-Drain ("Miller") Charge ––– 2.8 4.2 V

GS

= -5.0V ‚

t

d(on)

Turn-On Delay Time ––– 350 ––– V

DD

= -10V

t

r

Rise Time ––– 48 ––– I

D

= -3.7A

t

d(off)

Turn-Off Delay Time ––– 588 ––– R

G

= 89 Ω

t

f

Fall Time ––– 381 ––– R

D

= 2.7Ω

C

iss

Input Capacitance ––– 633 ––– V

GS

= 0V

C

oss

Output Capacitance ––– 145 ––– pF V

DS

= -10V

C

rss

Reverse Transfer Capacitance ––– 110 ––– ƒ = 1.0MHz

Electrical Characteristics @ T J = 25°C (unless otherwise specified)

I

GSS

µA Ω R

DS(on)

Static Drain-to-Source On-Resistance

I

DSS

Drain-to-Source Leakage Current

nA

ns

(3)

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

1 10 100

0.1 1 10 100

20µs PULSE WIDTH T = 25 C

J °

TOP

BOTTOM VGS -7.00V -5.00V -4.50V -3.50V -3.00V -2.70V -2.50V -2.25V

-V , Drain-to-Source Voltage (V)

-I , Drain-to-Source Current (A)

DS

D

-2.25V

1 10 100

0.1 1 10 100

20µs PULSE WIDTH T = 150 C

J °

TOP

BOTTOM VGS -7.00V -5.00V -4.50V -3.50V -3.00V -2.70V -2.50V -2.25V

-V , Drain-to-Source Voltage (V)

-I , Drain-to-Source Current (A)

DS

D

-2.25V

10 100

2.0 3.0 4.0 5.0 6.0 7.0 8.0

V = -15V 20µs PULSE WIDTH

DS

-V , Gate-to-Source Voltage (V)

-I , Drain-to-Source Current (A)

GS

D

T = 25 C

J °

T = 150 C

J °

-60 -40 -20 0 20 40 60 80 100 120 140 160 0.0

0.5 1.0 1.5 2.0

T , Junction Temperature ( C) R , Drain-to-Source On Resistance (Normalized)

J

DS(on)

°

V =

I =

GS D

-4.5V

-3.7A

(4)

Fig 8. Maximum Safe Operating Area Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

0.1 1 10 100

0.1 1 10 100

OPERATION IN THIS AREA LIMITED BY R

DS(on)

Single Pulse T

T

= 150 C

= 25 C °

J

°

C

-V , Drain-to-Source Voltage (V)

-I , Drain Current (A)I , Drain Current (A)

DS

D

10us

100us

1ms

10ms

1 10 100

VDS, Drain-to-Source Voltage (V)

0

200 400 600 800 1000

C, Capacitance(pF)

Coss Crss

Ciss

VGS = 0V, f = 1 MHZ

Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd

Coss = Cds + Cgd

0 3 6 9 12

0 2 4 6 8 10

Q , Total Gate Charge (nC)

-V , Gate-to-Source Voltage (V)

G

GS

FOR TEST CIRCUIT SEE FIGURE I =

D

13 -3.7A

V

DS

= -10V

0.1 1 10 100

0.2 0.4 0.6 0.8 1.0 1.2

-V ,Source-to-Drain Voltage (V)

-I , Reverse Drain Current (A)

SD

SD

V = 0 V

GS

T = 25 C

J °

T = 150 C

J °

(5)

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Fig 9. Maximum Drain Current Vs.

Case Temperature Fig 10. Maximum Avalanche Energy Vs. Drain Current

25 50 75 100 125 150

0.0 1.0 2.0 3.0 4.0

T , Case Temperature ( C)

-I , Drain Current (A)

C °

D

25 50 75 100 125 150

0 5 10 15 20 25

Starting T , Junction Temperature ( C)

E , Single Pulse Avalanche Energy (mJ)

J

AS

° ID TOP

BOTTOM -1.7A -3.0A -3.7A

0.1 1 10 100 1000

0.00001 0.0001 0.001 0.01 0.1 1 10

Notes:

1. Duty factor D = t / t

2. Peak T = P x Z + T

1 2

J DM thJA A

P t

t DM

1

2

t , Rectangular Pulse Duration (sec)

Thermal Response (Z )

1

thJA

0.01 0.02 0.05 0.10 0.20 D = 0.50

SINGLE PULSE (THERMAL RESPONSE)

(6)

Fig 13. Typical On-Resistance Vs.

Drain Current Fig 12. Typical On-Resistance Vs.

Gate Voltage

2.0 3.0 4.0 5.0 6.0 7.0

-VGS, Gate -to -Source Voltage ( V )

0.02

0.04 0.06 0.08 0.10 0.12 0.14

RDS(on) , Drain-to -Source Voltage ( Ω )

Id = -3.7A

0 5 10 15 20 25 30

-ID , Drain Current ( A ) 0.00

0.04 0.08 0.12 0.16 0.20

RDS ( on ) , Drain-to-Source On Resistance ( Ω )

VGS = -4.5V

VGS = -2.5V

(7)

Micro3     

Dimensions are shown in millimeters (inches)

Part Marking Information

Micro3     

Package Outline

L E A D A S S IG N M E N T S 1 - G A T E 2 - SO U R C E 3 - D R AIN

L

3 X 3X

C θ

A 1 - C -

B 3X

A e

e1

0.008 (.0 03) 3

1 2

E - A -

- B - D

H

0.20 ( .00 8 ) M A M

D IM IN C H E S M ILL IM ET E R S M IN M A X M IN M A X A .03 2 .04 4 0.8 2 1 .11 A1 .00 1 .00 4 0.0 2 0 .10 B .01 5 .02 1 0.3 8 0 .54 C .004 .006 0 .10 0.15 D .105 .120 2 .67 3.05 e .07 50 BA S IC 1.90 B A SIC e1 .03 75 BA S IC 0.9 5 B AS IC E .04 7 .055 1.2 0 1 .40 H .083 .098 2 .10 2.50 L .00 5 .0 10 0.1 3 0 .25

θ 0° 8 ° 0° 8 °

0.10 (.00 4) M C A S B S M IN IM U M R E C O M M E N D E D FO O T PR IN T 0 .80 ( .031 ) 3 X 2.00 ( .079 ) 0.95 ( .037 ) 2X 0 .90 ( .0 35 ) 3X 3 3 3 N O T E S : 1 . D IM EN SIO N IN G & T O L E R A N C IN G P ER A N SI Y1 4.5M -1 982. 2 . C O N TR O LLIN G D IM E N S IO N : IN C H . D IM EN SIO N S D O N O T IN C LU D E M O LD F LA SH . P AR T N U M B E R D A T E C O D E W = W E E K C O D E W O R K W E E K = (1 -26 ) IF P R E C E D ED BY L AS T D IG IT O F C A LE N D E R YE A R W O R K W E E K = ( 2 7 -5 2 ) IF P R E C E D E D B Y L E T T E R W O R K W O R K Y = YE A R C O D E

T O P

Y E A R Y W E E K W 2 0 0 1 1 0 1 A 2 0 0 2 2 0 2 B 2 0 0 3 3 0 3 C 1 9 9 4 4 0 4 D 1 9 9 5 5

1 9 9 6 6

1 9 9 7 7

1 9 9 8 8

1 9 9 9 9 2 0 0 0 0 2 4 X 2 5 Y 2 6 Z P A R T N U M B E R E X AM P L E S :

1 A = IR L M L 2 4 0 2 1 B = IR L M L 2 8 0 3 1 C = IR LM L 6 3 0 2 1 D = IR LM L 5 1 0 3

YE A R Y W E E K W

2 0 0 1 A 2 7 A 2 0 0 2 B 2 8 B 2 0 0 3 C 2 9 C 1 9 9 4 D 3 0 D 1 9 9 5 E 1 9 9 6 F 1 9 9 7 G 1 9 9 8 H 1 9 9 9 J 2 0 0 0 K 5 0 X 5 1 Y 5 2 Z

1 C Y W

E XA M P L E : T H IS IS A N IR L M L 6 3 0 2

D A T E C O D E E X A M P LE S : YW W = 9 5 0 3 = 5 C YW W = 9 5 3 2 = E F

(8)

Tape & Reel Information

Micro3     

Dimensions are shown in millimeters (inches)

2.0 5 ( .0 80 ) 1.9 5 ( .0 77 )

T R

F E E D D IR E C T IO N

4 .1 ( .161 ) 3 .9 ( .154 )

1 .6 ( .062 ) 1 .5 ( .060 )

1.85 ( .07 2 ) 1.65 ( .06 5 )

3.55 ( .13 9 ) 3.45 ( .13 6 )

1.1 ( .04 3 ) 0.9 ( .03 6 ) 4.1 ( .16 1 )

3.9 ( .15 4 ) 0.35 ( .01 3 )

0.25 ( .01 0 ) 8 .3 ( .326 ) 7 .9 ( .312 ) 1 .32 ( .051 ) 1 .12 ( .045 )

9.90 ( .39 0 ) 8.40 ( .33 1 ) 1 78.0 0

( 7.008 ) M A X .

N O T E S :

1 . C O N T R O L LIN G D IM E N S IO N : M ILLIM E T E R . 2 . O U T LIN E C O N F O R M S T O E IA -481 & E IA -5 41.

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630

IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 8/99

References

Related documents

The effects of the students ’ working memory capacity, language comprehension, reading comprehension, school grade and gender and the intervention were analyzed as a

En input de idag tar hänsyn till men som alltid kan utvecklas och göra det bättre både för de anställda men som även skulle kunna förbättras och förenklas för den som

With decreasing financial margins within the dairy industry around the world, the trend of today's dairy producers is an ever-increasing degree of automated

Indeed, the combined current and speed model predictive controller proposed in the paper, is able to command the motor into both below and above the base speed, by an effective

Vid en ytlig översikt kan man lätt tänka att en gymnasieskola som nätverk är en enkel linjär process mellan lärare och elev, men i mitt datamaterial framkommer fler aktörer än

The rate constant has been found decrease exponentially with the driving force (energy gap law [40]). In the M.I.R., nuclear tunnelling between the reactant and product state

The main theme in Study II was presented as “The contradictory path towards wellbeing in daily life.” In Study III, the mem- bers’ experiences in everyday life showed that

För att förstå och kunna bemöta dem på ett värdigt sätt är det viktigt att ha kunskap om vilka följder långvarig smärta kan ha på människors aktivitet i det dagliga