• No results found

SJ ¨ALVST ¨ANDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

N/A
N/A
Protected

Academic year: 2021

Share "SJ ¨ALVST ¨ANDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET"

Copied!
47
0
0

Loading.... (view fulltext now)

Full text

(1)

SJ ¨ ALVST ¨ ANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Line¨ ara koder och Reed-Muller koder

av

Magnus Weiderling

2012 - No 14

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

(2)
(3)

Line¨ ara koder och Reed-Muller koder

Magnus Weiderling

Sj¨ alvst¨ andigt arbete i matematik 15 h¨ ogskolepo¨ ang, grundniv˚ a Handledare: Rikard B¨ ogvad

2012

(4)
(5)
(6)
(7)
(8)
(9)
(10)

n

A ={s1, s2, . . . , sq}

q A

q n A = x1x2. . . xn

xi 2 A i 1 i  n (x1, . . . , xn)

q n A C q

n

C C

C C |C|

M

R(C) C n logqn|C|

C M = qn

q n n = logq M = log M/log q

(11)

C

q n

A =F2={0, 1}

0 1 q = 2

C1={00, 01, 10, 11} n = 2 |C| = 4 C2={000, 011, 101, 110} n = 3 |C| = 4

F3={0, 1, 2} F4

q

q Fq

q Fq

n A

= x1. . . xn = y1. . . yn ( ) =Pn

i=1d(xi, yi)

xi yi 1

(xiyi) =

⇢ 1 xi6= yi

0 xi= yi

C

C d(C)

(C) = {d( ) : 2 6= }

(12)

C1 = {00, 01, 10, 11}

x = 00 y = 11 x y

d(x, y) = 1 + 1 = 2 C1 d(C1) = 1

n M d (n, M, d)

n, M d

0)

C ={000, 010, 111} wt(010) = 1

q

q

p p < 12

q 1

{0, 1}

(1 | 0 ) = (0 | 1 ) = p

C

p Mr

(13)

Mr c c2 C

Mc

Mr Mc

(Mr Mc = max Mr c 2 C

Mr Mc

d(Mr, Mc)

d(Mr, Mc= min{d(Mr, c) 2 C

p < 12

C Mr

n n 0 i  n

d(Mr, c) = i, P Mr pi(1 p)n i p < 12

p0(1 p)n> p1(1 p)n 1> ... > pn(1 p)0

Mr

2 C Mr

d(Mr, c)

(14)

u C

u u

u

u (u + 1)

C ={00000, 00111, 11111}

1

C 1

2

00111 11111

C u

d(C) u + 1

d(C) u+1 2 C 1 d( ) u

2 C/ u d(C) 1 < d(C) C u

d(C) < u + 1 d(C)  u 1 2 2 C

1 d 1 2) = d(C) u 1

d(C) 2 C

C u

v C

v v C

v v (v + 1)

C ={000, 111}

000 100, 010

001 000

111 110, 101

011 111

C 1

C v d(C)

2v + 1

(15)

d b(d 1)/2c

( d(C) 2v + 1

v d( ) v

02 C 6= 0

d( 0, ) d( 0, ) d( , )

d( 0 ) d( 2v + 1 v = v + 1 > d(

C v

) C v d(C) < 2v + 1

0 2 C d( 0 = d(C) 2v v

C v d(C) 2v + 1

d( 0 < v + 1 0

v

0 2 C C v

d( 0 v+1 0

d = d(C) v + 1 d  2v

x1. . . xv

| {z }

lika som c0

xv+1. . . xd

| {z }

lika som c

xd+1. . . xn

| {z }

lika som c0 och c

d( 0 ) = d v  v = d( d( 0 ) <

d( d( 0 = d(

0

(16)

V Fq

{e1, . . . , er} V

a1e1+ ... + arer= 0) a1= ... = ar= 0

S V Fq S ={e1, e2, . . . , ek}

V < S >

< S > ={(a1e1+· · · + akek) : ai2 Fq}

S < S > {0}

q = 2 S = {0001, 0010, 0100}

< S > ={0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111}

V Fq

S ={e1, . . . , ek} V V V = < S > S

(17)

V Fq

V Fq

dim Fq(V )

= (v1, . . . , vn)

= (w1, . . . , wn)2 Fnq

· v1·w1+...+vn·wn2 Fq

· = 0 Fnq Fnq

n Fq S? S

S? { 2 Fnq : · = 0 2 S}

S S?=Fnq

n Fq

C n Fq

Fnq

C n k Fq

[n, k] [n, k, d] d

M k (n, M ) = (n, qk) C

(e1, ..., ek)

(a1e1+ ... + akek) ai Fq q

C qk

k = logqqk= logqM

C1={000000, 100000, 010000, 110000}

C2={000000, 111000, 000111, 111111}

(18)

C1 q = 2 4 = 22 6 k = 2

1, 1 2 1

C2 k = 2 3, 3 6

3

3 1

C Fnq C C?

C Fnq

d(C) C

C Fq d(C) = wt(C) wt(C)

C d( = wt(

d(C) 0 0 2 C

d( 0 0) = d(C)

d(C) = d( 0 0) = wt( 0 0 wt(C) 0 0 2 C

2 C { } wt(C) = wt(

wt(C) = wt( ) = d( d(C)

(19)

S

Fnq S

S

C

q = 3 C = < S >

S ={12101, 20110, 01122, 11010}

0 BB

@

1 2 1 0 1 2 0 1 1 0 0 1 1 2 2 1 1 0 1 0

1 CC A !

0 BB

@

1 2 1 0 1 0 2 2 1 1 0 1 1 2 2 0 2 2 1 2

1 CC A !

0 BB

@

1 2 1 0 1 0 1 1 2 2 0 0 0 0 1 0 0 0 0 0

1 CC A

C G

C G C

C [n, k] k⇥ n

k n

n k

k k 1

k + 1

(20)

H

H C

C?

C [n, k] (n k)⇥

n

C u C uHT = 0

m C

G H

(Ik|X) Ik

k⇥k X G

|

(Y|In k)

Y H

H

G C

G C

C [n, k] Fq G

2 Fnq C?

G 2 C?, GT =

(n k)⇥ n H H

C H HGT =

i i G i2 C 1 i  k

2 C

= 1 1+ ... + k k 1, . . . , k2 Fq

2 C? · = 0 2 C i

1 i  k GT =

· i= 0 1 i  k = 1 1+...+ k k 2

C

· = 1( · 1) +· · · + k( · k) = 0

(21)

H C

H H C?

HGT =

HGT = H

C? H

(n k) C?

H C

G = (Ik|X)

C H = ( XT|In k) C

HGT = 0

n k H

XT = XT X

C H

C

C d d 1 H

C  d H d

= (v1, ..., vn)2 C e > 0 i1, ..., ie vj = 0 j

2 {i/ 1, ..., ie} i 1  i  n i H

C = (v1, ..., vn) e

vi1, ..., vie

= HT vi1 Ti1 vie Tie

e H ci1, ..., cie

C

d C

 d 1  d 1

H (i)

C

d C

 d H

 d (ii)

(22)

C

H = 0

@ 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1

1 A

H 0

d(C) = 3

C [n, k, d] Fq

C C qk

( 1, ..., k)

= u1 1+ ... + uk k u1, ..., uk2 Fq

G C i

i = (u1, ..., uk)2 Fkq

= G = u1 1+ ... + uk k C

2 C = G = (u1, ..., uk)2 Fkq

2 Fkq = G

C (5, 3)

G(5,3)= 0

@ 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 A

= 101

= G = (101) 0

@ 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 A =

(23)

= 1 + 0 + 0, 0 + 0 + 0, 1 + 0 + 1, 1 + 0 + 0, 0 + 0 + 1 = 1, 0, 0, 1, 1

1 3

C n

Fnq 2 Fnq n

C

C+ ={( + ) : 2 C} (= + C) q = 2 C ={000, 101, 010, 111}

C + 000 ={000, 101, 010, 111}

C + 001 ={001, 100, 011, 110}

C + 010 ={010, 111, 000, 101}

C + 011 ={011, 110, 001, 100}

C + 100 ={100, 001, 110, 011}

C + 101 ={101, 000, 111, 010}

C + 110 ={110, 011, 100, 001}

C + 111 ={111, 010, 101, 000}

C + 000 = C + 010 = C + 101 = C + 111 = C C + 001 = C + 011 = C + 100 = C + 110 =F32 C

(24)

C 2 C

= 2

+C = 2 C

+C =

q = 2 C ={0000, 1011, 0101, 1110}

w = 1101 0101

C + 0000 ={0000, 1011, 0101, 1110}

C + 0001 ={0001, 1010, 0100, 1111} (= C + 0100) C + 0010 ={0010, 1001, 0111, 1100}

C + 1000 ={1000, 0011, 1101, 0110}

w = 1101

u = 1000 w u = 1101 1000 =

1101 + 1000 = 0101

C + 0000

n n

C [n, k, d] Fq

H C 2 Fqn

) = HT 2 Fqn k

H

C C =

{0000, 1011, 0101, 1110}

(25)

G =

✓ 1 0 1 1 0 1 0 1

S( ) = HT

0000, 0001, 0010 1000

C HGT =

H =

✓ 1 0 1 0 1 1 0 1

S( )

S( )

q = 2 C = {0000, 1011, 0101, 1110}

= 1101 S( ) = HT = 11

1000 = 1101 1000 = 0101

(26)

n, M d n M d

q C

(n, M, d) C (C) = (d 1)/n

d/n

R(C) = lognqM

C ={00 . . . 0| {z }

n

, 11 . . . 1| {z }

n

} Fq

(n, M, d) = (n, 2, n) [n, k, d] = [n, 1, n]

M = 2

k = dim(C) = logq(M ) = log2(2) = 1

log2(2)

n = n1 ! 0 n! 1 (C) = n 1n ! 1 n! 1

R(C)

A q (q > 1)

n d Aq

M (n, M, d) A

Aq(n, d) = max{M : (n, M, d) A}

(n, M, d) C M = Aq

qk q n

d Bq(n, d) qk

[n, k, d] Fq

Bq(n, d) = max{qk: [n, k, d] Fq}

(27)

Aq(n, d) Bq(n, d) Aq(n, d)

q = 2 C C

C Fq C

C ={(c1, ..., cn, Pn

i=1(ci)) : (c1, ...cn)2 C}

q = 2 Pn

i=1(ci) =Pn i=1(ci)

C ={000, 111, 011, 100}

[3, 2, 1] C

P3

i=1(ci) = 0 + 0 + 0 = 0 P3

i=1(ci) = 1 + 1 + 1 = 1 P3

i=1(ci) = 0 + 1 + 1 = 0 P3

i=1(ci) = 1 + 0 + 0 = 1

C ={0000, 1111, 0110, 1001} [4, 2, 2]

Aq(n, d)

q > 1 n, d 1 d  n

qn Pd 1

i=0(ni)(q 1)i  Aq

Aq(n, d) Bq(n, d)

A q, q > 1

2 An A n r 0

r

SA( , r) ={ 2 An: d( ) r}

An

(28)

q > 1 n r 0 Vqn(r)

Vqn(r) =

n

0 + n1 (q 1) + n2 (q 1)2+ ... + nr (q 1)r 0 r  n

qn n r

r 0 An r

Vqn(r) A q > 1

2 An 2 An

d( , ) = m An m

m

n

m q 1

m mn (q 1)m

0 r  n

n  r SA( , r) = An Vqn(r) = qn

q > 1 n d 1 d  n

Aq(n, d) Pb(d 1)/2cqn i=0 (ni)(q 1)i

b(d 1)/2c  (d 1)/2

C = { 1 2 M} (n, M, d)

A A q M = Aq(n, d)

e = b(d 1)/2c SA( i, e) An

SM

i=1SA( i, e)✓ An

|An| = qn

|SA( i, e)| = Vqn(e) i

M · Vqn(e) qn =) Aq(n, d) = M Vqnn

q(e) = Vn qn q(b(d 1)/2c)

q

qn Pb(d 1)/2c

i=0 (ni)(q 1)i

(29)

r 2

n = 2r 1 H

Fr2 2r 1 Ham(r, 2)

Ham(3, 2)

[7, 4, 3] 7 4

7 3

47

G G

GHam(3,2)= 0 BB

@

1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1

1 CC A

HHam(3,2)= 0

@ 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1

1 A

HHam(3,2) GHam(3,2) I4

HHam(3,2) I7 4 = I3

GHam(3,2) HHam(3,2)

(i)

(ii) Ham(r, 2) k = 2r 1 r

(iii) Ham(r, 2) 3 1

(iv) (i)

(ii) H Ham(r, 2) 2r 1 r⇥

(2r 1) 2r 1 r

(iii) H

H H

(30)

1 0 . 0

0 1 . 0

1 1 . 0

Ham(r, 2)

3 1

(iv)

Ham(r, 2)

|C| = Pb(d 1)/2cqn

i=0 (ni)(q 1)i = 1+n2n q = 2 d = 3 n = 2r 1

|C| = 1+222rr11 = 22r 1 r

2k (ii)

Ham(r, 2) 1 2r

2r (= n + 1) n

 1 n + 1 j

j

j jHT j

H H

( ) = HT ) = 0

6= 0 j 1 j  2r 1

j

j j

Ham(3, 2)

= 1001001

HT = 010 H

2= 0100000 + 2= 1101001

Ham(r, 2) Ham(r, 2)

(31)

Ham(r, 2)

2r 1 r

2r Ham(r, 2) 2r2r1 r1 ) Ham(r, 2)

(n, M, d) C Fq

R(C) = lognqM (C) =d 1n

M n

d Aq(n, d) q, n

d Aq(n, d)

= x1...xn = y1...yn

[ = (x1. . . xny1. . . yn)

Ci [n, ki, di] Fq

i = 1, 2 C ={( + ) : 2 C1, 2 C2}

[2n, k1+ k2, min{2d1, d2}] Fq

D [n, k, d] C

C ={( ) : 2 D} [ {( , + ) : 2 D}

[2n, k + 1, min{n, 2d}]

C1= D C2={ , }

0, 8 0, 2

0, 8 log2(1/0, 8) + 0, 2

(32)

log2(1/0, 2)⇡ 0, 722

V = 0

S = 1 L1 = 0, 2·

1 + 0, 8· 1 = 1 0, 722 N

0, 722N 2

V V = 0 V S = 10 SV = 110 SS = 111 L2 = 0, 64· 1 + 0, 16· 2 + 0, 16 · 3 + 0, 04 · 3 = 1, 56

N/2 L2N/2 = 0, 78N

3 8

= 2, 184 0, 728N 0, 722

RM (r, m)

RM (1, 5)

RM (1, 5) 25= 32

16 7 15

(33)

r m

0  r  m r RM (r, m)

[2m, m0 + m1 + ... + mr , 2m r] r = 1

r > 1

r = 0

(RM (0, m))

0 RM (0, m) m 0

{0...0, 1...1} 2m

0 2m

(RM (1, m), )

RM (1, m)

m 1

(i) RM (1, 1) =F22={00, 01, 10, 11}

(ii) m + 1 2 RM (1, m + 1) =

{( ) : 2 RM(1, m)} [ {( + ) : 2 RM(1, m)}

(RM (1, 2) )

(ii) = 00

{00, 00} [ {00, 11} 0000 0011

RM (1, 1) 8 RM (1, 2)

0000 0011 0101 0110 1001 1010 1100 1111

[4, 3, 2]

RM (1, 2)

GRM (1,2)= 0

@ 1 1 1 1 0 1 0 1 0 0 1 1

1 A

(RM (1, 3) ) RM (1, 3) 16

(34)

00000000 00001111 00110011 00111100 01011010 01010101 01100110 01101001 10010110 10011001 10100101 10101010 11000011 11001100 11110000 11111111 [8, 4, 4]

4

m 1 RM (1, m) [2m, m + 1, 2m 1]

0 1 2m 1

RM (1, 1) [2, 2, 1]

RM (1, m) RM (1, m 1)

RM (1, m 1)

2m 1, m, 2m 2] RM (1, m)

2· 2m 1, m + 1, min{2 · 2m 2, 2m 1}] = [2m, m + 1, 2m 1]

RM (1, m + 1)

2(m+1) 1 = 2m RM (1, m + 1)

RM (1, m) 2 RM(1, m)

2m 1 2m 1+ 2m 1= 2· 2m 1= 2m

2 RM(1, m)

2m 1 = 22m RM

2m 1 2m

= 0 = 1 2m

= 1 = 0 2m

RM (1, 2)

22 1 = 2 1

RM (1, 3) 23 1= 4 1

(35)

RM (1, m+

1) RM (1, m)

(i) RM (1, 1) GRM (1,1)

✓ 1 1 0 1

(ii) GRM (1,m) RM (1, m)

RM (1, m + 1) GRM (1,m+1)=

✓ GRM (1,m) GRM (1,m) 0...0 1...1

GRM (1,2)

RM (1, 3)

GRM (1,3) 0 BB

@ 1 x1

x2

x3

1 CC A

0 BB

@

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1

1 CC A

RM (1, 3)

k =

✓ m 0

◆ +

✓ m 1

◆ +

✓ m 2

◆ +· · · +

✓ m r

= 4 r = 1 m = 3

4 Muc= (a0a1a2a3)

ai Mc =P3

i=0aiGRM (1,3)i GRM (1,3)i i

Muc= 1010 RM (1, 3)

(36)

Mc= 1· (11111111) + 0 · (00001111) + 1 · (00110011) + 0 · (01010101) =

= 11111111 + 00110011 = 11001100 Mc

Muc

1

RM (1, 3)

= x1. . . xn = y1. . . yn

x y

\ = (x1· y1. . . xn· yn)

\ 1 i 1 i

x1, . . . , xm

xi1xi2. . . xis xi x1, . . . , xm

xixj = xjxi

x2i = xi

p(x1, . . . , xm) Z2

(37)

0

1 m = 3 2·2·2 = 8

p(x1, x2, x3) = 1· x1+ 1· x2+ 0· x3

x1 x2 x3 p

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

p

ap= 00111100 RM

00000000 11111111

(RM (r, m))

0  r  m r

ap n = 2m

p(x1, ..., xm) r

RM (1, 3) r = 1 m = 3 n = 23= 8

{1, x1, x2, x3} 1 x1, x2

x3

p(x1, x2, x3) 1

p(x1, x2, x3) = a01 + a1x1+ a2x2+ a3x3

ai= 0 1

a0(11111111) + a1(00001111) + a2(00110011) + a3(01010101)

(38)

16 a0 = 0 a1= 1 a2= 1 a3= 0

x1+ x2 00001111 + 00110011 = 00111100

k

S k Zm2 m

S b + S b2 Zm2 dim(S) = k b + S

k

S

H S

x2 S () xHT = 0

x2 b + S () x b2 S (x b)HT = 0

x2 b + S xHT = bHT

Zm2

EG(m, 2) m Z2

dim(S) = 0 b + S 0

b+{0} = {b} EG(m, 2)

EG(m, 2) 1

{b, b + c} c2 Zm2 {0}

Z22 EG(2, 2)

22= 4 0 42 = 6 1

EG(3, 2) 23= 8 0 82 = 28 1

8

3 / 43 = 14 2

8 EG(3, 2)

(39)

ap=

EG(3, 2) ap ap

1 F = 2

RM (1, m) m 3

k = m 1

m = 1, k = 0 RM (1, 1) = Z12 EG(1, 2)

21= 2 22 = 1

0 RM (1, 1)

m = 2 RM (1, 2) = Z22

EG(2, 2) (22) = 4 42 = 6

1 RM (1, 2)

m = 3 RM (1, 3) 14

2

F E EG(m, 2) aF · aE ⌘ |F \ E|

mod 2

|F | F = 0

0 1 aF · aE

wt(aF \ aE) = wt(aF\E) =|F \ E|

F = + S E = + T EG(m, 2)

Zm2 F \ E = ; F \ E = + (S \ T )

F \ E

F \ E = ; F \ E 6= ; x

F \ E x + r2 F \ E r2 S \ T

y F\ E x + r r2 S \ T

x = b + s x2 b + S r2 S \ T

S x + r = b + (s + r) 2 b + S

s + r2 S x + r2 c + T

x + r b + S c + T F \ E

y F \ E x = b + s

y = b + s1 x y S x y2 T

x y2 T \ S x y r y = x + r

(40)

0

RM (r, m)

p(x1, . . . , xm) = Xr s=0

X

i1,...,is

ai1,...,isxi1. . . xis= a0+ a1x1+· · · + a12x1x2+ . . .

r

ap= Xr s=0

X

i1,...,is

ai1,...,isaxi1...xis

axi1...xis xi1· · ·

xis ax1x2= x1· x2

p(x1, . . . , xm)

ap

r > 1 r, r 1, r 2

RM (1, 3) r = 1, m = 3

ap= a01 + Xm i=1

aiaxi

{k}c={j1, . . . , jm 1}

{1, . . . , m} {1, 2, 3}

RM (1, 3) {k} = {3} {k}c={1, 2}

ap· axj1···xjm 1

ap

axi· axj1...xjm 1 ⌘ |Fxi\ Fxj1...xjm 1| mod 2 ⌘ |Fxixj1...xjm 1| mod 2

(41)

Fx1 x1

0 Fxixj1...xjm 1 0

{i, j1, . . . , jm 1} = {1, . . . , m}

{i} = {j1. . . jm 1}c={k}

RM (1, 3) {k} = {3}

{3} = {1, 2}c={3}

ap· axj1...xj2 = ai

ap· ab+Fxj1 ...xj2

b + Fxj1...xj2 Fxj1...xj2

axi· ab+Fxj1 ...xj2 ⌘ |Fxi\ (b + Fxj1...xj2)| mod 2

|Fxi\ (b + Fxj1...xj2)| = 1 2 Fxi\ (b + Fxj1...xj2)

Fxi\ (b + Fxj1...xj2) = + (Fxi\ Fxj1...xj2) = + Fxixj1...xj2

0 Fxixj1...xjm 1

ap· ab+Fxj1 ...xjm 1 = ai

{j1. . . jm 1} = {k}c b EG(3, 2)

2m 1 1

Fxj1...xj2

(42)

2m 1 4 RM (1, 3) ai

(2m 1 1)/2

RM (1, 3)

1 x1 x2 x3 x1· x2 x2· x3 x1· x3

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 0

1 1 0 1 0 0 1

1 1 1 0 1 0 0

1 1 1 1 1 1 1

RM (1, m)

1 2m 1

a0

RM (1, 3) Mc= (c0c1...c7)

Mr = (r0r1...r7) Me = (e0e1...e7)

Mr= Mc+ Me ap

Mc = 00111100

Mr= 10111100 Mc {010, 011, 100, 101}

Mc= (a0a1a2a3)GRM (1,3)= a01 + a1x1+ a2x2+ a3x3

a0, a1, a2 a3

(43)

ax1x2 Fx1x2 ={110, 111}

ax2x3 Fx2x3 ={011, 111}

ax1x3 Fx1x3 ={101, 111}

a3 k = 3 {k}c={1, 2}

Fx1x2

{110, 111}

{100, 101}

{010, 011}

{000, 001}

a3= ap· ab+Fxj1 ···xj2

10111100· 00000011 = 0 10111100· 00001100 = 0 10111100· 00110000 = 0 10111100· 11000000 = 1

a3 0

a2= a1= 1 a0

Mr a1a2a3· GRM (1,3)2,3,4= 10111100 110· GRM (1,3)2,3,4

= 10111100 00111100 = 10000000 = a0· 1 + Me

a0 1 01111111 a0 0

10000000 a0= 0

0 1

0, 1, 1 0

Muc= 0110 Me

Mr= 10111100 Mr Me= Mr+ Me= 00111100

(44)
(45)

RM (0, 1) 00 11

RM (1, 1) 00 01 10 11

RM (1, 2) 0000 0011 0101 0110 1001 1010 1100 1111

RM (1, 3)

00000000 00001111 00110011 00111100 01011010 01010101 01100110 01101001 10010110 10011001 10100101 10101010 11000011 11001100 11110000 11111111

RM (1, 4)

0000000000000000 0000000011111111 0000111100001111 0000111111110000 0011001111001100 0011001100110011 0011110000111100 0011110011000011 0110011010011001 0101101010100101 0110100110010110 0101010110101010 0101010101010101 0101101001011010 0110100101101001 0110011001100110 1111000000001111 1111000011110000 1100110011001100 1001011010010110 1100001100111100 1100001111000011 1100110000110011 1010101010101010 1001100110011001 1010010110100101 1010101001010101 1001100101100110 1010010101011010 1001011001101001 1111111100000000 1111111111111111

(46)

A a0

c C

C

C C

d(x, y) x y

d

d(C) C

e1

Fq

F G H

Ik k⇥ k

k m

M =|C| C

Muc

Mc

Mr

Me

n p

q A

R(C) C

< S > S

si i A

ri i

v v w

wt(x) x

x y b c

(47)

References

Related documents

Då varje bokstav har en fix bokstav som den kodas till kan inte två olika bokstäver kodas till samma bokstav, det skulle omöjliggöra dekryptering.. Vi gör

Arabella and Beau decide to exchange a new piece of secret information using the same prime, curve and point... It was only a method of sharing a key through public channels but

When Tietze introduced the three-dimensional lens spaces L(p, q) in 1908 they were the first known examples of 3−manifolds which were not entirely determined by their fundamental

• In the third and main section we will use all the structures discussed in the previous ones to introduce a certain operad of graphs and deduce from it, using the

We study the underlying theory of matrix equations, their inter- pretation and develop some of the practical linear algebra behind the standard tools used, in applied mathematics,

Given a set of homologous gene trees but no information about the species tree, how many duplications is needed for the optimal species tree to explain all of the gene trees?.. This

We also have morphisms called weak equivalences, wC, denoted by − → and defined to fulfill the following conditions: W1: IsoC ⊆ wC; W2: The composition of weak equivalences is a

Dessa är hur vi kan räkna ut antalet parti- tioner av ett heltal och med hjälp av Pólyas sats räkna ut på hur många sätt vi kan färga en kub med n färger i stället för bara