• No results found

Introduc)on  to  Neutrino  Physics

N/A
N/A
Protected

Academic year: 2022

Share "Introduc)on  to  Neutrino  Physics"

Copied!
30
0
0

Loading.... (view fulltext now)

Full text

(1)

ν e   ν µ ν τ

Introduc)on  to  Neutrino  Physics  

Lecture  1  

Neutrino  oscilla0ons  Part  I  

Elisabeth  Falk  

University  of  Sussex  and  Lund  University  

(2)

Neutrino  

•  “The  liAle  neutral  one”  in  Italian  

•  A  subatomic  par0cle  with  almost  no  mass,  no  charge,   no  magne0c  moment,  and  which  interacts  only  rarely    

•  Neutrinos  make  up  the  same  frac0on  of  mass  in  the   universe  as  stars  and  planets  do  

•  They  exhibit  bizarre  behavior  when  travelling  through   space:  They  change  form  from  one  type  of  neutrino  to   another.    No  other  par0cle  does  this  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   2  

(3)

Overview  of  lecture  course  

•  Introduc0on  to  the  

course  and  to  neutrinos  

•  Neutrino  oscilla0on   formalism  

•  “Solar”  neutrinos  

•  Atmospheric  and  long-­‐

baseline  neutrinos  

•  θ 13  and  CP  viola0on  

•  Neutrino  mass,  

Majorana  neutrinos,   the  see-­‐saw  

mechanism  

•  Neutrinoless  double   beta  decay:  theory   and  experiment  

•  “The  neutrino  speed   of  light  thing”  –  

OPERA  

•  SN1987a  (hopefully!)  

•  Wrap-­‐up  and  outlook  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   3  

~   L1  

&  

L2+  

~   L3-­‐  

&  

L4  

~  

L5  

(4)

Outline  lecture  1  

•  Neutrinos:  introduc0on  and  a  liAle  history  

•  Neutrino  oscilla0on  formalism:  

two-­‐  and  three-­‐neutrino  oscilla0ons  

•  Solar  neutrinos  (con0nued  tomorrow)  

•  Suggested  reading  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   4  

(5)

The  discovery  of  the  neutrino  

•  1920s:  Puzzle:  Radioac0ve  β  decay  appears  to    

break  energy  conserva0on:  electron  has  con0nuous  spectrum!  

•  1930:  “Desperate  remedy”:  Wolfgang  Pauli  suggests  new  par0cle  carrying   off  missing  energy  without  being  detected  

•  1933:  Enrico  Fermi  formulates  comprehensive  theory  of  radioac0ve  decays  

–  Pauli’s  par0cle  crucial  

–  “Neutrino”  –  the  liAle  neutral  one  

•  1956:  Fred  Reines  and  Clyde  Cowan  detect   neutrinos  created  by  nuclear  reactor  

–  Savannah  River,  South  Carolina,  USA   –  Case  of  champagne  from  Pauli  

–  1995  Nobel  Prize  (Reines)  

W.  Pauli  

E.  Fermi  

C.  Cowan  and  F.  Reines  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   5  

(6)

The  discovery  of  the  neutrino  

•  1962:  Leon  Lederman,  Mel  Schwartz  and  Jack  Steinberger   detect  muon  neutrinos  

–  Created  neutrino  beam  at  accelerator  lab  (Brookhaven,  NY)   –  1988  Nobel  Prize  

•  2000:  DONUT  collabora0on  sees  first  direct  evidence  of  tau  neutrino  

–  Fermilab,  Chicago  

C.  Cowan  and  F.  Reines  

L.  Lederman,  M.  Schwartz  and  J.  Steinberger  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   6  

(7)

Lots  of  neutrinos!  

Supernova  explosions  

Cosmic  rays  hikng  the  atmosphere   produce  neutrinos  

Relics  from  the  Big  Bang:  

30  million  neutrinos  in  each  of  us!  

Together  with  microwave  radia0on  make  up   cosmic  background  radia0on  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   7  

(8)

Lots  of  neutrinos!  

•  Nuclear  fusion:  

–  Mainly  from  pp  cycle:  

4  p  combine  with  2  e -­‐  to  form   a  He 2+   and  2ν e  

•  100  billion  neutrinos  from  the  sun  pass  through  each   of  your  fingernails—every  second!  

But  most  of  the  neutrinos     passing  through  us    

come  from  the  sun  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   8  

(9)

Elusive  neutrinos  

"The chances of a neutrino actually hitting something as it travels through all this

howling emptiness [that is the Earth] are

roughly comparable to that of dropping a ball bearing at random from a cruising 747 and

hitting, say, an egg sandwich."

-- Douglas Adams, (1952-2001)

This  happens  to  be  correct:  see  

hAp://faculty.oAerbein.edu/NTagg/OAerbein/Publica0ons_files/eggsandwich.pdf  

for  the  calcula0on  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   9  

(10)

Why  do  we  care?  

•  Fundamental  part  of  nature  

•  Poorly  understood,  compared  to  other  nature’s  other  building   blocks  

For  example:  

•  What  are  the  neutrino  masses?  

•  What  is  the  paAern  for  neutrino  flavour  mixing?  

•  Is  the  neutrino  its  own  an0par0cle?  

–  The  ul0mate  neutral  par0cle  

•  Do  neutrinos  violate  CP?  

•  Do  neutrinos  cons0tute  dark  maAer?  

•  What  can  neutrinos  and  the  universe  tell  us  about  each  other?    

•  Can  neutrinos  help  explain  the  maAer-­‐an0maAer  asymmetry  in  the   universe?  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   10  

(11)

Massive  neutrinos  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   11  

Neutrino  mass  eigenstates  are  not  the  same  as  the  flavour  eigenstates   u  

d  

µ

+  

ν

µ  

W

+  

ν

1  

ν

3  

ν

2  

Flavour  eigenstate  

produced  in  

weak  interac0on  

Superposi0on  of  

mass  eigenstates  

(12)

Current  situa0on  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   12  

ν µ  

ν τ   ν e  

ν 1   ν 2   ν 3  

(13)

Neutrino  oscilla0ons:  concept  

•  Write  down  the  rela0on  between  mass  eigenstates  and   flavour  eigenstates  as  a  rota0on  with  angle  θ:  

•  The  mass  eigenstates  have  different  momenta  and  thus   travel  at  slightly  different  speeds:  get  out  of  phase  

–  IF  masses  are  different!  

–  Assump0on:  energy  is  the  same  

•  Detec0on  probability  for  a  given  flavour  changes  with   distance  travelled    

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   13  

(14)

Neutrino  oscilla0ons:  concept  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   14  

Two  flavours:  

Three  flavours:  

θ

3-­‐D  complex  rota0on  

(15)

Oscilla0on  amplitude  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   15  

(16)

Outline  of  deriva0on  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   16  

1.    Weak  eigenstates  ν

α

in  terms  of  mass  eigenstates  ν

k

:  

2.    Transi0on  probability  ν

α

   ν

β

 from  amplitude  squared:  

3.    For  ultrarela0vis0c  neutrinos  (E  >>  m):  

where  energy  eigenvalues:    

where   and  

4.    Using  distance  travelled  L  instead  of  0me  t  (t  =  L,  as  neutrino  speed  ≈  c):  

Neglec0ng  mass  

contribu0on  

Assuming  plane  wave  

(17)

Two-­‐neutrino  oscilla0ons  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   17  

Using  

with  result  from  previous  slide,    

transi0on  probability  becomes:    

Physical  constants  

Experimental  

parameters  

(18)

Two-­‐neutrino  oscilla0ons  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   18  

(19)

Three-­‐neutrino  oscilla0ons  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   19  

U

PMNS

=

1 0 0

0 cosθ

23

sinθ

23

0 −sinθ

23

cosθ

23

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟ ×

cosθ

13

0 e

−iδCP

sinθ

13

0 1 0

−e

−iδCP

sinθ

13

0 cosθ

13

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟

×

cosθ

12

sinθ

12

0

−sinθ

12

cosθ

12

0

0 0 1

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟ × U

Majdiag

Mixing  matrix  U

PMNS

 can  be  factored  into  three  2-­‐D  rota0onal  matrices    ×  U

maj

 (diagonal,  so  not  relevant  for  oscilla0ons)

 

Three  independent  mixing  angles

 

CP-­‐viola0on     phase

 

U

PMNS

Pontecorvo-Maki-

Nakagawa-Sakata

(20)

Mass  hierarchy  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   20  

We  don’t  know  the  ordering  the  mass  splikngs  Δm

2

 –   but  we  do  know  that  ν

2

 >>  ν

1  

ν

3

Δm

232

"

Δm

221

"

ν

2

ν

1

ν

e

ν

τ

ν

µ

(mass)

2  

ν

3

Δm

221

"

ν

2

ν

1

Δm

232

"

Normal  hierarchy   Inverted  hierarchy  

(21)

Current  knowledge  

28/11/11   21  

U

PMNS

=

1 0 0

0 cosθ

23

sinθ

23

0 −sinθ

23

cosθ

23

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟ ×

cosθ

13

0 e

−iδCP

sinθ

13

0 1 0

−e

−iδCP

sinθ

13

0 cosθ

13

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟

×

cosθ

12

sinθ

12

0

−sinθ

12

cosθ

12

0

0 0 1

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟ × U

Majdiag

CP-­‐viola0on    

phase

 

θ

13

 <~  10

o

  Δm

231

 ~  Δm

232  

~Unknown  

cosθ

13

0 e

−iδCP

sinθ

13

0 1 0

−e

−iδCP

sinθ

13

0 cosθ

13

⎛

⎝

⎜

⎜ ⎜

⎞

⎠

⎟

⎟ ⎟

Well  measured:  

θ

23

 =  (45  ±  7)

o  

-­‐>  ~equal  mixing  of              ν

µ

 and  ν

τ

 

Δm

232

 ≈  

Δm

2atm

=  2.4  

x

 10

-­‐3

 eV

2  

“Atmospheric”  from   atmosphere  and  

accelerators  

Un0l  this  summer  ~unknown:  

θ

13

 <~  10

o  

Now  ~3σ  indica0ons     that  θ

13

 <  10

o

   

|Δm

231|

 ≈  Δm

232  

but  Δm

231

 >  0  or  <  0  

(normal  or  inverted  hierarchy)?    

“Subdominant”  

or  “third”   CP-­‐viola0on     phase    =  ?

 

Well  measured:  

θ

12

 =  (34  ±  3)

o  

-­‐>  ν

1

 is  predominantly  ν

e  

Δm

221

 =  7.6  

x

 10

-­‐5

 eV   ν

2

 >  ν

1

 (sign  of  Δm

221

)     from  maAer  effects  in  sun    

“Solar”  from   sun  +  reactors  

E.  Falk,  U.  of  Sussex  and  Lund  U.  

(22)

MaAer  oscilla0ons  

1.  Low  electron  density   (the  Earth):  

2.  Resonant  MSW:  

θ M  =  π/4  

Total  transi0on  

between  two  flavours   3.  Varying  N e  (the  Sun):  

M /dx  ≠  0  

Adiaba0c  transi0on  

between  effec0ve  mass   eigenstates  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   22  

Linc  Wolfenstein   (1978)  

MSW  effect:  

Electron  neutrinos  feel  a  “drag”  

due  to  extra  contribu0on   from  W  exchange  

Effec)ve  θ M  and  Δm 2  

N

e

 =  electron  density  

(23)

Energy  produc0on  in  the  sun  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   23  

(24)

Neutrino  produc0on  in  the  sun  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   24  

(25)

E.  Falk,  U.  of  Sussex  and  Lund  U.  

40  years  ago:    

Homestake  chlorine  experiment  

  First  experiment  to  study  neutrinos  from  the  sun  

  Homestake  Gold  Mine,  South  Dakota,  USA

 

  Big  tank  of  chlorine-­‐based  cleaning  fluid  

  ν

e

 +  

37

Cl    

37

Ar  +  e

-­‐  

  Counted  electron  neutrinos  (ν

e

)  

  Saw  1/3  of  neutrinos  expected  from  luminosity  

   The  “solar  neutrino  problem”  

  Ray  Davis:  Nobel  Prize  2002  

R.  Davis  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   25  

(26)

Experimental  techniques  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   26  

e

µ -

Elas0c  scaAering  of  neutrinos  on  electrons   Charged  lepton  produces  Cherenkov  radia0on   CC  contribu0on  6.8  x  NC  contribu0on  

  much  enhanced  for  ν

e

     

Gallium  experiments  

Water  Cherenkov  experiments  

Liquid-­‐scin)llator  detectors  

Neutrinos:  Elas0c  scaAering  on  electrons   An0-­‐neutrinos  (reactor):  

Inverse  beta  decay:  ν

e

 +  p  →  n  +  e

+  

Different  

ν  energy  

thresholds  

with  different  

techniques  

(27)

The  solar  neutrino  problem  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   27  

Solved  in  2002  by  SNO  

More  in  Lecture  2  

(28)

Recap  and  outlook  

•  The  neutrino  is  the  least  understood  of  our  fundamental   par0cles,  but  may  hold  the  answer  to  many  exci0ng  

ques0ons  about  the  universe  as  well  as  par0cle  physics  

•  Neutrinos  oscillate  between  different  flavours  because  they   have  non-­‐zero  mass  AND  their  mass  eigenstates  are  

different  from  their  flavour  eigenstates  

•  The  study  of  neutrinos  from  the  sun  showed  an  apparent   deficit  of  neutrinos  –  we  know  now  that  it  is  due  to  

oscilla0ons  

•  More  on  neutrino  oscilla0ons  tomorrow!  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   28  

(29)

Suggested  reading  

•  C.  Giun0  and  C.  W.  Kim,  

Fundamentals  of  Neutrino  Physics   and  Astrophysics,  Oxford  University   Press  2007  

•  F.  Close,  Neutrino,     Oxford  University     Press  2010  

•  Deriva0on  of  neutrino  oscilla0ons:  

PhD  theses,  .e.g.,  B.  S0ll,  T2K  ND280 π

0

 Electromagne0c  Calorimeter,   University  of  Sheffield  2009  

–  Ben  also  runs  a  neutrino  blog:  hAp://

neutrinoscience.blogspot.com/  

•  Par0cle  Data  Group  review:  hAp://

pdg.lbl.gov/2010/reviews/rpp2010-­‐

rev-­‐neutrino-­‐mixing.pdf  

•  H.  Lipkin,  Neutrino  oscilla0ons  as   two-­‐slit  experiments  in  momentum   space,  Phys.  LeA.  B477  (2000)

195-­‐2000  

•  B.  Kayser,  On  the  quantum  mechanics   of  neutrino  oscilla0on,  Phys.  Rev.  D24   (1981)  110-­‐116  

•  B.  Kayser,  Neutrino  Oscilla0on  

Phenomenology ,  hAp://arxiv.org/pdf/

0804.1121  

•  Neutrino  Oscilla0on  Industry:  /hAp://

www.hep.anl.gov/ndk/hypertext  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   29  

(30)

Back-­‐ups  

28/11/11   E.  Falk,  U.  of  Sussex  and  Lund  U.   30  

References

Related documents

The occurrence of Rugathodes instabilis in Sweden is reported. One female has been found at an eutrophic pool in Stockholm. The species was hitherto not known from

With the fast Fourier transform algorithm, the computing time needed for a large set of data points is tremendously reduced. We can see this by examining the calculation steps needed

The most interesting case arises if a positive signal is consistent with all complementary results: Then, the possible room for further new physics contributions to double beta decay

We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non- standard interactions in the creation

• the SNEWS project involves several neutrino detectors currently running or nearing completion, like Super–KamiokaNDE, SNO, LVD, IceCube,.

• GLUE (Goldstone Lunar Ultrahigh energy neutrino Experiment)  two radio telescopes separated by 22 km and linked by optic fiber  search for microwave pulses ≤ 10 ns from

Figure 4.10: 116 CdWO 4 simulated deposited energy in the absorber vs maximum pulse amplitude in volts and quadratic fitting.. 4.11) with 609.31 keV line of 214 Bi as a

[r]