• No results found

Effects of boundary conditions and unsteadiness on draft tube flow

N/A
N/A
Protected

Academic year: 2022

Share "Effects of boundary conditions and unsteadiness on draft tube flow"

Copied!
159
0
0

Loading.... (view fulltext now)

Full text

(1)

L U L E A • U N I V E R S I T Y . J k ^t

O F T E C H N O L O G Y

2003:11

DOCTORAL THESIS

Effects of Boundary Conditions and Unsteadiness on Draft Tube Flow

b y

MICHEL J. CERVANTES

Department ot Applied Physics and Mechanical Engineering Division o f Fluid Mechanics

2003:11 • ISSN: 1402 - 1544 • I S R N : L T U - D T - - 03/11 - - SE

(2)

Effects of Boundary Conditions and Unsteadiness on Draft Tube Flow

Michel J . Cervantes April 7, 2003

(3)

ABSTRACT

T h e present research focuses o n flow p r o p e r t i e s o f t h e e l b o w d r a f t t u b e . T h i s element has a m a j o r f u n c t i o n i n low head t u r b i n e s , since u p t o h a l f of t h e flow losses m a y arise t h e r e away f r o m the best efficiency.

T h e use of c o m p u t a t i o n a l fluid d y n a m i c ( C F D ) t o redesign a d r a f t t u b e necessitates d e t a i l e d knowledged of the b o u n d a r y c o n d i t i o n s . T h e y are generally n o t available a n d q u a l i f i e d guesses m u s t be m a d e . T h i s applies i n p a r t i c u l a r t o t h e r a d i a l v e l o c i t y at t h e i n l e t . A m e t h o d t o e s t i m a t e t h i s c o m p o n e n t i n s w i r l i n g flows f r o m e x p e r i m e n t a l values of the a x i a l a n d t a n g e n t i a l velocities is d e r i v e d . T h e m e t h o d uses a t w o dimensional non-viscous d e s c r i p t i o n o f t h e flow, t h e Squire-Long formulation. I t is tested against s w i r l i n g flow i n a d i f f u s e r a n d a p p l i e d t o t h e T u r b i n e - 9 9 d r a f t t u b e flow.

A s several o t h e r b o u n d a r y c o n d i t i o n s are d i f f i c u l t t o e s t i m a t e , e.g. t h e t u r b u - lence l e n g t h scale, a n d m a n y parameters are available t o p e r f o r m a s i m u l a t i o n , e.g. t u r b u l e n c e models a n d difference schemes, t h e use o f factorial design is p r o p o s e d as an a l t e r n a t i v e t o design s i m u l a t i o n s i n a s y s t e m a t i c , o b j e c t i v e a n d q u a n t i t a t i v e way. T h e m e t h o d allows t h e d e t e r m i n a t i o n o f t h e m a i n a n d j o i n t effects o f i n p u t p a r a m e t e r s o n t h e n u m e r i c a l s o l u t i o n . T h e i n p u t p a r a m e t e r s m a y be e x p e r i m e n t a l u n c e r t a i n t y on b o u n d a r y c o n d i t i o n s , u n k n o w n b o u n d a r y c o n d i t i o n s , g r i d a n d t u r b u l e n c e models. T h e m e t h o d is a p p l i e d t o the T u r b i n e - 99 test case, w h e r e t h e r a d i a l velocity, t h e surface roughness, the t u r b u l e n c e l e n g t h scale a n d t h e g r i d were the f a c t o r s i n v e s t i g a t e d . T h e i n l e t r a d i a l v e l o c i t y is f o u n d t o have a m a j o r effect o n the pressure recovery.

T h e flow i n w a t e r t u r b i n e s is h i g h l y u n s t e a d y due t o t h e r u n n e r blade r o - t a t i o n , guide vanes a n d stay vanes. U n s t e a d y pressure measurements on a K a p l a n p r o t o t y p e p o i n t o u t unsteadiness i n t h e h i g h a n d l o w pressure region of t h e t u r b i n e . Since m o d e l a n d p r o t o t y p e are n o t r u n n i n g i n d y n a m i c a l l y s i m - i l a r c o n d i t i o n s , t h e influence of unsteadiness o n t h e losses is o f interest. T h e d e r i v a t i o n of t h e variation of the mechanical energy f o r t h e mean, o s c i l l a t i n g a n d t u r b u l e n t f i e l d p o i n t o u t the c o n t r i b u t i o n o f unsteadiness t o the losses a n d t h e t u r b u l e n t p r o d u c t i o n . A p p l i c a t i o n t o t u r b u l e n t channel flow reveals t h a t t h e c o n t r i b u t i o n is a f u n c t i o n of the a m p l i t u d e o f t h e o s c i l l a t i o n , t h e f r e q u e n c y a n d t h e f r i c t i o n velocity.

i

(4)

i i

Turbulent pulsating flow i n a generic m o d e l o f t h e r e c t a n g u l a r diffuser f o u n d a t t h e end o f elbow d r a f t t u b e is s t u d i e d i n d e t a i l w i t h laser D o p p l e r a n e m o m - e t r y ( L D A ) . T h r e e frequencies, c o r r e s p o n d i n g t o t h e quasi-steady, r e l a x a t i o n or i n t e r m e d i a t e a n d q u a s i - l a m i n a r regime w i t h a n a m p l i t u d e of a b o u t 10% are i n v e s t i g a t e d beside t h e steady r e g i m e . T h e results i n d i c a t e no a l t e r a t i o n of t h e m e a n f l o w b y t h e e x c i t a t i o n of a single frequency. F u r t h e r m o r e , t h e existence of t h e d i f f e r e n t regimes, as f o u n d i n t u r b u l e n t p u l s a t i n g t u r b u l e n t p i p e and channel flows, is c o n f i r m e d .

(5)

ACKNOWLEDGMENTS

I w o u l d like t o t h a n k m y supervisor, Professor H . Gustavsson, f o r g u i d i n g me i n m y three years o f research a n d give me the o p p o r t u n i t y t o be i n v o l v e d i n t h e e d u c a t i o n p r o g r a m H y d r o Power U n i v e r s i t y .

I a m g r a t e f u l t o F . E n g s t r ö m f o r i n t r o d u c i n g me t o laser D o p p l e r anemome- t r y ( L D A ) technique a n d the c o n s t r u c t i v e c o l l a b o r a t i o n f o r three o f t h e papers presented i n t h e thesis.

V a l u a b l e discussions have be made w i t h P h D students o f t h e " V a t t e n t u r b i n - t e k n i k " p r o g r a m ; U . Anderssson ( V a t t e n f a l l U t v e c k l i n g A B , Sweden), M . G r e k u l a ( C h a l m e r s U n i v e r s i t y o f Technology, Sweden) a n d S. V i d e h u l t ( G E H y d r o , N o r - w a y ) .

Special t h a n k s are t o m y lovely w i f e Sara a n d c h i l d r e n , E m i l a n d Elise, f o r t h e i r comprehension a n d s u p p o r t despite m y l o n g absence f r o m t h e house t o w o r k o n t h e present thesis. Since m y c h i l d r e n c a n n o t r e a d yet, I take t h e l i b e r t y t o p u t t h e i r p i c t u r e . I t h a n k also D r . C a r r , D r . v a n Devanter, J . B e r r e b i a n d S. Leduc f o r t h e i r f r i e n d s h i p .

T h e present w o r k was financed b y t h e Swedish E l e c t r i c a l U t i l i t i e s Research a n d D e v e l o p m e n t C o m p a n y ( E L F O R S K ) , the Swedish N a t i o n a l E n e r g y A d m i n - i s t r a t i o n , G E E n e r g y (Sweden) a n d W a p l a n s M e k a n i s k a V e r k s t a d s A B t h r o u g h t h e p r o g r a m " V a t t e n t u r b i n t e k n i k " .

i i i

(6)

A T

(7)

Contents

Abstract i Acknowledgments i i i

I G e n e r a l d i s c u s s i o n 1

1 I N T R O D U C T I O N 3

1.1 K a p l a n t u r b i n e 4 1.2 M o d e l t e s t i n g a n d C F D 7

1.3 Thesis a i m a n d l i s t of p u b l i c a t i o n s 10

2 T R U S T A N D Q U A L I T Y I N C F D 1 3

2.1 B o u n d a r y c o n d i t i o n s 13 2.1.1 R a d i a l v e l o c i t y at the i n l e t of t h e d r a f t t u b e 13

2.1.2 R a d i a l pressure at t h e i n l e t of t h e d r a f t t u b e 15

2.2 S i m u l a t i o n of t h e d r a f t t u b e 16 2.2.1 T h e k — e t u r b u l e n c e m o d e l 16 2.2.2 A p p l i c a t i o n t o the Turbine-99 b e n c h m a r k 17

2.3 F a c t o r i a l design a p p l i e d t o C F D 20

2.3.1 F a c t o r i a l design 20 2.3.2 A p p l i c a t i o n t o t h e Turbine-99 b e n c h m a r k 2 1

2.4 C o n c l u s i o n 22

3 U N S T E A D I N E S S A N D V I S C O U S L O S S E S I N H Y D R A U L I C M A C H I N E S 2 3

3.1 Unsteadiness i n h y d r a u l i c machines 23 3.1.1 U n s t e a d y pressure measurements 23 3.1.2 U n s t e a d y v e l o c i t y measurements o n t h e H ö l l e f o r s e n m o d e l 24

3.2 V a r i a t i o n of t h e mechanical energy 25 3.2.1 C o n t r i b u t i o n of unsteadiness t o t h e m e a n losses 26

3.2.2 Losses i n a t u r b u l e n t p u l s a t i n g channel f l o w 26 3.3 P u l s a t i n g t u r b u l e n t f l o w i n a s t r a i g h t a s y m m e t r i c d i f f u s e r . . . . 27

3.3.1 D e t e r m i n a t i o n of t h e w a l l shear stress 27

3.3.2 E x p e r i m e n t a l results 28

v

(8)

v i

3 . 4 C o n c l u s i o n 2 9

I I P a p e r s 35

A E S T I M A T I O N O F T H E R A D I A L V E L O C I T Y 3 7

B I N F L U E N C E O F B O U N D A R Y C O N D I T I O N S U S I N G F A C T O R I A L D E S I G N 5 9

C F A C T O R I A L D E S I G N A P P L I E D T O C F D 7 3

D U N S T E A D I N E S S A N D V I S C O U S L O S S E S I N H Y D R A U L I C T U R B I N E S 9 5

E P U L S A T I N G T U R B U L E N T F L O W I N A N A S Y M M E T R I C D I F F U S E R 1 1 9

F U N S T E A D Y P R E S S U R E M E A S U R E M E N T S A T P O R J U S U 9 1 4 5

(9)

Part I

General discussion

i

(10)

Chapter 1

INTRODUCTION

T h e first p r o d u c t i o n of e l e c t r i c i t y b y water t u r b i n e s dates back t o 1882 [1].

Today, h y d r o p o w e r p l a n t s are present i n most countries a n d s t a n d f o r a b o u t 20%

o f t h e e l e c t r i c i t y p r o d u c t i o n w o r l d w i d e . H y d r o p o w e r is t h e m a j o r renewable source of energy w i t h m a n y b e n e f i t s . I t produces e l e c t r i c i t y w i t h a m i n i m a l emission of greenhouse gases. H i g h l y effective, u p t o 96% efficiency f o r the large size o f Francis t u r b i n e . I t has the a b i l i t y t o respond r a p i d l y t o m a r k e t demands, a n i m p o r t a n t f e a t u r e f o r deregulated m a r k e t s . F u r t h e r m o r e , reservoirs represent a h i g h l y efficient w a y t o store energy. T h e m a i n drawbacks of t h i s technology concern i t s dependence t o p r e c i p i t a t i o n , w h i c h can be h i g h l y v a r i a b l e a n d i t s influence on fish m i g r a t i o n . A p r o b l e m w h i c h has t o be e f f e c t i v e l y solved before h y d r o p o w e r can be f u l l y accepted as a green source o f energy. Since less t h a n a t h i r d of the h y d r o p o w e r p o t e n t i a l is i n s t a l l e d over the w o r l d a n d the concern over t h e e n v i r o n m e n t increases, h y d r o p o w e r can p l a y a m a j o r role i n the n e x t decades as i t does already i n m a n y countries such as N o r w a y , C a n a d a a n d Sweden where 99%, 6 1 % a n d 54% respectively o f the e l e c t r i c i t y was p r o d u c e d b y t h i s technology i n year 2000, a c c o r d i n g t o t h e O r g a n i z a t i o n f o r E c o n o m i c C o o p e r a t i o n a n d D e v e l o p m e n t ( O E C D ) .

Besides h y d r o p o w e r , Swedish e l e c t r i c i t y is p r i n c i p a l l y p r o d u c e d b y nuclear p l a n t s (37.4%) a n d fossil f u e l ( 6 . 1 % ) , a c c o r d i n g t o t h e O E C D i n year 2000. T h e p a r k of h y d r o t u r b i n e s i n Sweden is w i d e a n d composed o f a b o u t 700 p l a n t s w i t h a capacity larger t h a n 1.5 MW of w h i c h 14 have a c a p a c i t y o f m o r e t h a n 200 MW a n d a b o u t 1200 o t h e r smaller u n i t s [2]. T h e m a i n p r o d u c t i o n is con- c e n t r a t e d along t h e L u l e å r i v e r ( 2 0 % ) , Å n g e r m a n r i v e r (17%, i n c l u d i n g Fax r i v e r ) and I n d a l s r i v e r ( 1 5 % ) . M o s t o f t h e t u r b i n e s were b u i l d between 1940 a n d 1970 [3], t h e r e f o r e a n i m p o r t a n t p e r i o d o f r e n o v a t i o n is a p p r o a c h i n g . T h e r e f u r b i s h m e n t has t o be done i n c o n j u n c t i o n w i t h state o f t h e a r t i n t u r b i n e t e c h n o l o g y t o o b t a i n best efficiency. However, r a t i o n a l i z a t i o n o f t h e m a r k e t has considerably reduced the n u m b e r o f t u r b i n e m a n u f a c t u r e r s a n d R<kD i n the i n - d u s t r y and at universities decreased s u b s t a n t i a l l y . A w a r e o f t h e p r o b l e m , t h e Swedish E l e c t r i c a l U t i l i t i e s Research a n d D e v e l o p m e n t C o m p a n y ( E L F O R S K ) ,

3

(11)

4

F i g u r e 1 . 1 : Schematic of a hydropower plant [5].

t h e Swedish N a t i o n a l E n e r g y A d m i n i s t r a t i o n , G E E n e r g y (Sweden) a n d W a - plans Mekaniska Verkstads A B s t a r t e d a p r o g r a m i n 1997 t o i m p r o v e Swedish w a t e r power competence [4]. T h e present w o r k is p a r t o f t h e second phase, w h i c h s t a r t e d i n J a n u a r y 2000 a n d ended i n F e b r u a r y 2003, where 9 research s t u d e n t s were i n v o l v e d . T h e f o l l o w i n g w o r k has been f i n a n c e d b y t h i s p r o g r a m .

1.1 Kaplan t u r b i n e

H y d r o p o w e r p l a n t s are c o m p l e x systems, cf. figure 1.1, where competence i n c i v i l , mechanical a n d e l e c t r i c a l engineering are c o m b i n e d . T h e a i m is t o convert p o t e n t i a l energy c o n t a i n e d i n a n elevated b o d y of water i n t o r o t a t i o n a l me- chanical energy i n order t o d r i v e a generator. H y d r o p o w e r p l a n t s are generally composed of a reservoir d e l i m i t e d p a r t i a l l y b y the n a t u r a l e n v i r o n m e n t a n d a d a m , where water is stored. A s t h e c o n t r o l gate is opened, t h e w a t e r flows f r o m t h e reservoir t h r o u g h t h e penstock t o t h e t u r b i n e , where i t t r a n s m i t s i t s energy.

T h e t u r b i n e is coupled t o a s h a f t w i t h a generator p r o d u c i n g e l e c t r i c i t y . T h e electrical power generated is a f u n c t i o n of t h e t o t a l efficiency o f t h e power p l a n t , t h e w a t e r density, t h e acceleration due t o g r a v i t y , t h e flow r a t e a n d t h e s t a t i c head.

T h e r e are t w o types of t u r b i n e s ; r e a c t i o n a n d i m p u l s e . R e a c t i o n t u r b i n e s have t h e i r r u n n e r covered b y w a t e r , w h i l e i m p u l s e t u r b i n e s have t h e i r r u n n e r i n a i r . I m p u l s e t u r b i n e s are used f o r large head. T h e t u r b i n e s i n Sweden are of the f i r s t k i n d due t o t h e l o w head. T h e y can be either h o r i z o n t a l a x i a l , a x i a l

(12)

5

T u r b i n e

I m p u l s e ( P e l t o n ) R a d i a - a x i a l (Francis) A d j u s t a b l e blade m i x e d - f l o w

10-50 80-400 300-500 A d j u s t a b l e blade a x i a l - f l o w ( K a p l a n ) 450-1200

T a b l e 1.1: T u r b i n e t y p e as a f u n c t i o n o f t h e specific speed [6].

( K a p l a n ) , m i x e d - f l o w , r a d i a l - a x i a l (Francis)or b u l b .

T h e choice o f t h e t u r b i n e is p r i n c i p a l l y based o n t h e specific speed ris , see K r i v c h e n k o [6].

where n , Q, rj a n d H represents t h e r o t a t i o n a l speed o f t h e r u n n e r ( r p m ) u n d e r r a t e d c o n d i t i o n s , t h e flow rate, the efficiency a n d t h e head. T h e specific speed represents t h e r o t a t i o n a l speed o f a given r u n n e r t o develop 1.36 k W (1 horse p o w e r ) under 1 m head. T a b l e 1.1 represents t h e v a r i a t i o n o f the specific speed f o r d i f f e r e n t t y p e o f t u r b i n e s .

T h e present w o r k focuses o n K a p l a n e l b o w d r a f t t u b e flow. I n v e n t e d i n the early 20th c e n t u r y b y t h e A u s t r i a n V i k t o r K a p l a n (1876-1934), t h i s t y p e o f t u r b i n e is used f o r l o w head r a n g i n g f r o m 4 t o 70 m, cf. figure 1.2. A s t h e w a t e r leaves t h e penstock, i t enters the s p i r a l , w h i c h is designed t o d i s t r i b u t e a s y m m e t r i c , steady a n d s w i r l i n g flow over the l e a d i n g edge o f t h e stay vanes w i t h m i n i m u m losses. S p i r a l casings are either made of m e t a l f o r heads r a n g i n g f r o m 40 t o over 200 m or of concrete f o r l o w and m e d i u m heads, i.e. u p t o 75 m [8].

Generally, the s p i r a l i n m e t a l have a r o u n d cross-section a n d t h e concrete spirals have a t r a p e z o i d a l cross-section t o d i m i n i s h t h e overall dimensions a n d s i m p l i f y t h e c o n s t r u c t i o n . P o t e n t i a l flow t h e o r y was first used t o design s p i r a l casing.

Today, C o m p u t a t i o n a l F l u i d D y n a m i c ( C F D ) is used t o h a n d l e t h e c o m p l e x i t y of t h e flow as done e.g. b y O h n i s h i [9].

T h e stay vanes are present t o s t r e n g t h t h e s t r u c t u r e . T h e guide vanes are used t o regulate t h e flow r a t e a n d a d j u s t the f l o w d i r e c t i o n t o m a t c h t h e r u n n e r blades. T h e i r n u m b e r ranges f r o m 20 t o 32 [6]. B o t h types o f vanes are s t r e a m - l i n e d t o reduce h y d r a u l i c losses. T h e r u n n e r consists of a h u b o n w h i c h the r u n n e r blades are m o n t e d . T h e blades are a d j u s t a b l e a l l o w i n g h i g h e f f i c i e n c y at d i f f e r e n t loads. R e l a t i v e l y t h i n , t h e n u m b e r o f r u n n e r blades m a y range f r o m 4 t o 8 as the head increases.

T h e d r a f t t u b e f o l l o w s t h e r u n n e r . T h e role o f t h e d r a f t t u b e is t o convert k i n e t i c energy i n t o pressure energy w i t h a m i n i m u m o f losses. For l o w h e a d t u r b i n e s , t h e d r a f t t u b e c a n represent a s u b s t a n t i a l p a r t of t h e h y d r a u l i c losses, u p t o 50% a t p a r t l o a d . M a n y t y p e s o f d r a f t t u b e have been developed over t h e

Hi (1.1)

(13)

(i

F i g u r e 1.2: Kaplan turbine [7].

years [8]; s t r a i g h t conical d r a f t t u b e , b e n d conical d r a f t t u b e , M o o d y spread- i n g d r a f t t u b e a n d elbow d r a f t t u b e . T h e elbow d r a f t t u b e , cf. f i g u r e 1.3, is e x t e n s i v e l y used i n r e a c t i o n t u r b i n e since i t has a h i g h pressure recovery a n d t h e h e i g h t o f i t s u n d e r g r o u n d c o n s t r u c t i o n is l o w , t h u s l i m i t i n g excavation. A n e l b o w d r a f t t u b e is composed of a s t r a i g h t cone d i f f u s e r , f o l l o w e d b y an elbow a n d a d i f f u s e r . T h e m a i n p a r a m e t e r d e s c r i b i n g such a d r a f t t u b e are the d i f f u - sion r a t e d e f i n e d as the r a t i o of t h e i n l e t area t o t h e o u t l e t area ( 1 / 4 ~ 1/3), t h e r e l a t i v e l e n g t h , represented t h e l e n g t h of t h e d r a f t t u b e c e n t r a l line d i v i d e d b y t h e i n l e t d i a m e t e r (4 ~ 6) [8].

T h e f l o w leaving the runner is h i g h l y u n s t e a d y due t o t h e p e r i o d i c wake o f t h e r u n n e r blades. F u r t h e r m o r e , t h e c o m b i n a t i o n o f l o w mechanical energy a n d h i g h v e l o c i t y induce a low pressure, w h i c h m a y give rise t o c a v i t a t i o n . M o s t o f t h e pressure recovery ( ~ 80%) occurs i m m e d i a t e l y a f t e r t h e r u n n e r i n t h e s t r a i g h t cone d i f f u s e r . T h e conical angle is q u i t e large; i t ranges f r o m 1 4 ° t o a b o u t 1 8 ° . T h e p e r f o r m a n c e of t h e d r a f t t u b e increases w i t h t h e l e n g t h o f

(14)

7

F i g u r e 1.3: Hölleforsen d r a f t tube model.

t h e cone d i f f u s e r , since the losses i n t h e elbow a n d t h e s t r a i g h t d i f f u s e r are m i n i m i z e d w i t h a lower k i n e t i c energy. T h e distance f r o m t h e b o t t o m o f t h e g u i d e vanes t o t h e d r a f t t u b e b o t t o m is f o u n d between 1.9 t o a b o u t 2.4 r u n n e r d i a m e t e r s . T o get g o o d p e r f o r m a n c e , t h e f l o w has t o be a t t a c h e d o n t h e cone.

T h e f l o w e n t e r i n g the elbow is s u b j e c t t o a c e n t r i f u g a l force, w h i c h gives rise t o a r a d i a l as w e l l as l o n g i t u d i n a l pressure g r a d i e n t [10]. T h e l o n g i t u d i n a l pressure g r a d i e n t is m o r e i m p o r t a n t o n t h e i n n e r r a d i u s at t h e i n l e t a n d t h e o u t e r r a d i u s a t t h e o u t l e t . Since t h e d i f f u s e r f o l l o w s a f t e r t h e elbow, t h e f l u i d is s u b j e c t t o an a d d i t i o n a l l o n g i t u d i n a l pressure g r a d i e n t , w h i c h c o m b i n e d w i t h t h e precedent m a y induce separation. A c o n t r a c t i o n m a y be present f r o m t h e m i d d l e t o the e n d o f t h e e l b o w t o a v o i d such p h e n o m e n o n . T h e u p w a r d angle o f t h e d i f f u s e r r o o f varies generally f r o m 10° t o a b o u t 1 3 ° .

1.2 M o d e l testing and C F D

H y d r o p o w e r t u r b i n e s have a life cycle of a p p r o x i m a t e l y 50 years. A f t e r t h i s p e r i o d , t h e y are r e f u r b i s h e d a n d i t is m a n d a t o r y t h a t t h i s process is done w i t h s t a t e of t h e a r t i n t u r b i n e technology. A s t h e e l e c t r i c i t y p r o d u c e r s w a n t t o m i n i m i z e t h e cost o f such an o p e r a t i o n , t h e y f a v o r solutions w h i c h c a n be i m - p l e m e n t e d w i t h o u t i m p o r t a n t c o n s t r u c t i o n , i.e. solutions f i t t i n g i n t h e e x i s t i n g i n s t a l l a t i o n s . T h e m o d i f i c a t i o n o f t h e H ö l l e f o r s e n d r a f t t u b e sharp heel done b y D a h l b ä c k [11] is one example. Such m o d i f i c a t i o n s m a y be done by m o d e l t e s t i n g as done b y D a h l b ä c k or w i t h C o m p u t a t i o n a l F l u i d D y n a m i c s ( C F D ) as done b y L i n d g r e n [12].

M o d e l t e s t i n g has been used since decades t o design a n d o p t i m i z e h y d r o p o w e r t u r b i n e s . T h e y a l l o w efficiency measurement w i t h a n accuracy below 0.5 % [13].

F r o m such measurements, scale-up f o r m u l a are used t o e s t i m a t e t h e p r o t o t y p e

(15)

8

efficiency since m o d e l a n d p r o t o t y p e are n o t o p e r a t i n g i n d y n a m i c a l l y s i m i l a r c o n d i t i o n s . V a l i d a t i o n of scale-up f o r m u l a are d i f f i c u l t , since accurate measure- ments o n a p r o t o t y p e offer larger challenges c o m p a r e d t o measurements o n a m o d e l i n a l a b o r a t o r y , the m a i n d i f f i c u l t y concerns t h e d e t e r m i n a t i o n of the flow rate. Several f o r m u l a s have been proposed since t h e b e g i n n i n g of t h e 20th

century. A s u m m a r y o f t h e d i f f e r e n t c o n t r i b u t i o n s have been made b y A n t o n [14]. T h e c o m p l e x i t y o f t h e flow i n h y d r o p o w e r t u r b i n e s does n o t a l l o w a n exact a n a l y t i c a l d e s c r i p t i o n . T h e r e f o r e , scale-up f o r m u l a are e m p i r i c a l f o r m u l a , where t h e losses are separated i n t o k i n e t i c a n d viscous losses, an idea o r i g i n a t i n g f r o m A c k e r e t (1931). T h e viscous losses are due t o f r i c t i o n o n c o n d u i t s walls a n d are scalable, w h i l e t h e k i n e t i c losses are concerned w i t h energy d i s s i p a t i o n i n t h e t u r b u l e n t flow, e.g. i n the wake of the r u n n e r blades [15] a n d are n o t scalable.

T h e t w o m a i n s t a n d a r d s , JSME S008 a n d t h e IEC 60193 consider t h e k i n e t i c losses equal o n t h e m o d e l a n d the p r o t o t y p e . C o n s i d e r i n g t h e d o m i n a n t r u n - ner losses, I d a [16] demonstrates t h a t t h e y are n o t equal, g i v i n g rise t o a new scale-up f o r m u l a . T h e IEC 60193 s t a n d a r d is considered less accurate, since t h e r a t i o o f t h e viscous losses t o the t o t a l losses is considered constant f o r each t y p e o f machine, w h i l e i t is a f u n c t i o n o f t h e specific speed f o r the JSME S008 s t a n d a r d .

T h e d i f f e r e n t scale-up f o r m u l a consider the flow steady. However, t h i s is n o t t h e case i n r e a c t i o n t u r b i n e s due t h e g e o m e t r y (stay a n d guide vanes, r u n n e r r o t a t i o n ) a n d flow p h e n o m e n a such as v o r t e x rope a n d s t a l l . I n Stokes second p r o b l e m [17], i.e. a n o s c i l l a t i n g p l a t e i n a fluid at rest, t h e losses increases w i t h the square r o o t of t h e frequency. T h e effects of unsteadiness i n t u r b i n e flow are m o r e c o m p l e x , since t h e flow is also three d i m e n s i o n a l a n d t u r b u l e n t . T h e unsteadiness arises especially f r o m p e r i o d i c wakes, w h i c h d i s t u r b t h e b o u n d a r y layer, see F a r h a t , A v e l l a n & Siedel [18] a n d C i o c a n & A v e l l a n [19]. T h e w o r k o f H o l l a n d & Evans [20] o n t h e effect of p e r i o d i c wake s t r u c t u r e s o n t u r b u l e n t b o u n d a r y layers i n t u r b o machines indicates an increase of t h e b o u n d a r y layer thickness a n d s k i n f r i c t i o n a n d therefore, an increase o f t h e viscous losses. T h i s m a y i n d i c a t e , t h a t unsteadiness influences t h e viscous losses. I f i m p o r t a n t , t h e y s h o u l d be i n c l u d e d i n t h e step-up f o r m u l a t o o b t a i n p r o t o t y p e efficiency, i f scaled d i f f e r e n t l y t h a n t h e steady viscous losses. W h i l e t u r b u l e n t p u l s a t i n g flows i n p i p e a n d channel have received p a r t i c u l a r a t t e n t i o n d u r i n g t h e last t w o decades [21], f e w w o r k s have been r e p o r t e d f o r t u r b u l e n t p u l s a t i n g flow i n diffusers. W o r k i n t h i s area m a y help t o f u r t h e r u n d e r s t a n d flow i n d r a f t t u b e . A l s o , t h e l a b o r a t o r y a l l o w i n g m o d e l t e s t i n g are large f a c i l i t i e s , w h e r e reser- voirs, p u m p s a n d m a n y measuring devices such as t o r q u e , flow r a t e , r o t a t i o n a l speed a n d pressure measurements are necessary. F u r t h e r m o r e , m o d e l b u i l d - i n g , m o d i f i c a t i o n s a n d d e t a i l e d i n v e s t i g a t i o n of t h e f l o w w i t h e.g. Laser D o p p l e r A n e m o m e t r y ( L D V ) or P a r t i c l e Image Velocimeter ( P I V ) are expensive a c t i v i - ties. A n a l t e r n a t i v e t o m o d e l t e s t i n g is c o m p u t a t i o n a l fluid d y n a m i c s ( C F D ) .

C F D is a p o w e r f u l technology, t h a t has emerged over t h e last 10 years f r o m t h e academic research t o t h e i n d u s t r y . T h e m a j o r i t y o f t h e c o n t r i b u t i o n s pre-

(16)

9

sented t o the last I A H R s y m p o s i u m used t h i s t o o l . T h e m a j o r b e n e f i t s o f C F D are i t s cost, t h e d e t a i l e d i n f o r m a t i o n generated a n d i t s a b i l i t y t o test r a p i d l y n e w m o d i f i c a t i o n s , c o m p a r e d t o m o d e l t e s t i n g .

A c c u r a t e c a l c u l a t i o n of u n s t e a d y t u r b u l e n t f l o w is possible w i t h D i r e c t N u - m e r i c a l S i m u l a t i o n s ( D N S ) . However, several decades are necessary t o get a r e s u l t w i t h the present c o m p u t e r s due t o the s m a l l l e n g t h scales i n v o l v e d i n h y - d r o p o w e r flows, w h i c h d e m a n d s a huge g r i d . A m o r e generally used a l t e r n a t i v e is t h e Reynolds A v e r a g e Navier-Stokes ( R A N S ) e q u a t i o n . I t s i m p l e m e n t a t i o n i n v o l v e s t u r b u l e n c e m o d e l l i n g a n d several models have been developed since t h e 70th such as algebraic or zero e q u a t i o n m o d e l , one e q u a t i o n m o d e l , t w o equa- t i o n m o d e l and R e y n o l d s stress m o d e l , see e.g. W a l l i n [22]. T h e s t a n d a r d k—e m o d e l is w i d e l y used i n the i n d u s t r y due t o its robustness. H y d r o p o w e r flows are h i g h l y c h a l l e n g i n g f o r t u r b u l e n c e m o d e l l i n g , since several p h e n o m e n a ap- p e a r s i m u l t a n e o u s l y such as 3-dimensionality, unsteadiness, s e p a r a t i o n , s w i r l i n g flow i n diffuser a n d e l b o w a n d t u r b u l e n c e . T h e space d i s c r e t i s a t i o n , g r i d size a n d topology, is a n o t h e r issue a n d g r i d independent solutions are d i f f i c u l t t o o b t a i n w i t h t h e present c o m p u t e r s , m a k i n g accurate s i m u l a t i o n of t h e e n t i r e flow, i n l e t t o o u t l e t o f t h e s t a t i o n , p r a c t i c a l l y unfeasible t o d a y . T h e b o u n d a r y c o n d i t i o n s o n t h e d o m a i n , i.e. i n l e t velocities, surface roughness, o u t l e t pressure m u s t be k n o w n i n d e t a i l . T h i s is generally d i f f i c u l t f o r d r a f t t u b e flows, o b l i g i n g t o q u a l i f y guesses.

T h e assumptions o n b o u n d a r y c o n d i t i o n s a n d t h e m u l t i t u d e o f possible i n p u t p a r a m e t e r s make i t d i f f i c u l t t o o b t a i n reliable results. T h e T u r b i n e - 9 9 W o r k s h o p [23], a i m e d t o d e t e r m i n e t h e state o f t h e a r t i n C F D s i m u l a t i o n s o f d r a f t t u b e flows, reflects t h i s d i f f i c u l t y . E x p e r i m e n t a l d a t a , m e a n a x i a l a n d t a n g e n t i a l v e l o c i t y components measured along a r a d i a l line, a t t h e i n l e t of t h e H ö l l e f o r s e n d r a f t t u b e m o d e l , cf. f i g u r e 1.3, were p r o v i d e d . T h e p e r i o d i c fluctuations a r i s i n g f r o m t h e blade passages a n d t h e t u r b u l e n t fluctuations i n t h e measurements were b o t h chosen t o c o n t r i b u t e t o t h e steady t u r b u l e n t q u a n t i t i e s . Some d a t a c o u l d n o t be measured such as t h e r a d i a l velocity, some o f t h e R e y n o l d s stresses a n d t h e t u r b u l e n c e l e n g t h scale a t t h e i n l e t of t h e d r a f t t u b e . A s these c o m p o n e n t s need t o be k n o w n t o p e r f o r m a n u m e r i c a l s i m u l a t i o n , various q u a l i f i e d guesses w e r e a t t e m p t e d r e s u l t i n g i n d i f f e r e n t results. T h e pressure recovery o b t a i n e d b y t h e d i f f e r e n t p a r t i c i p a n t s presents a scatter of ± 4 5 % .

T h e r e f o r e , i t is obvious t h a t m u c h e f f o r t s h o u l d be d e d i c a t e d t o i m p r o v e t r u s t & q u a l i t y i n C F D besides t h e development of t h e t u r b u l e n c e m o d e l . T h e Q N E T - C F D , a t h e m a t i c n e t w o r k o n q u a l i t y and t r u s t f o r t h e i n d u s t r i a l a p p l i - c a t i o n s of C F D , w o r k s i n t h i s d i r e c t i o n [24]. I t is set t o "assemble, s t r u c t u r e a n d collate e x i s t i n g knowledge encapsulating the p e r f o r m a n c e o f C F D m o d e l s " . E R C O F T A C special interest g r o u p i n Q u a l i t y a n d T r u s t f o r t h e I n d u s t r i a l A p - p l i c a t i o n o f C F D [25] w o r k s also i n t h i s d i r e c t i o n a n d r e c e n t l y p u b l i s h e d t h e Best Practice Guidelines f o r i n d u s t r i a l CFD-users [26].

T h e above r e m a r k s indicates, t h a t C F D is s t i l l u n d e r d e v e l o p m e n t a n d n o t m a t u r e t o c o m p l e t e l y take over m o d e l t e s t i n g . I t s h o u l d r a t h e r be seen as a p o w e r f u l c o m p l e m e n t t o m o d e l t e s t i n g today, w h i c h can m a k e t h i s m o r e e f f i c i e n t ,

(17)

1 0

b u t i t w i l l have increased i m p o r t a n c e i n t h e f u t u r e .

1.3 Thesis aim and list of publications

T h e present thesis focuses o n t h e f l o w i n a n e l b o w d r a f t t u b e a n d t r y t o h e l p answer t w o p r o b l e m s , w h i c h are r e l a t e d t o unsteadiness a n d C F D :

• H o w can t h e a s s u m p t i o n s o n b o u n d a r y c o n d i t i o n s t o s i m u l a t e d r a f t t u b e f l o w be h a n d l e d i n a s y s t e m a t i c , o b j e c t i v e a n d q u a n t i t a t i v e w a y i n o r d e r t o increase t r u s t a n d q u a l i t y i n C F D ?

• H o w does unsteadiness i n f l u e n c e s t h e viscous losses?

P a p e r s A t o C are r e l a t e d t o t h e first q u e s t i o n , where t h e use of f a c t o r i a l design is proposed as a n a l t e r n a t i v e t o h a n d l e t h e m u l t i t u d e o f i n p u t a n d as- s u m p t i o n s . F u r t h e r m o r e , special a t t e n t i o n is g i v e n t o t h e i n l e t r a d i a l v e l o c i t y a n d pressure o f t h e d r a f t t u b e , a n issue o f t h e T u r b i n e - 9 9 w o r k s h o p .

P a p e r s D t o F are r e l a t e d t o t h e second q u e s t i o n , where t h e v a r i a t i o n o f t h e m e c h a n i c a l energy is f i r s t s t u d i e d i n d e t a i l f o r u n s t e a d y t u r b u l e n t f l o w . F r o m t h i s analysis, unsteady f l o w m e a s u r e m e n t s i n a s t r a i g h t a s y m m e t r i c d i f f u s e r a n d u n s t e a d y pressure measurements o n a K a p l a n t u r b i n e were p e r f o r m e d .

T h e d i f f e r e n t papers, t h e i r p u b l i c a t i o n s t a t u s a n d the c o n t r i b u t i o n o f t h e c o - a u t h o r are:

• P a p e r A - M . J . Cervantes & L . H . Gustavsson, Estimation of the Radial Velocity from the Squire-Long Equation and Experimental Data, s u b m i t t e d t o t h e J o u r n a l o f H y d r a u l i c Research ( c o n d i t i o n a l l y accepted f o r p u b l i c a - t i o n ) .

Professor Gustavsson h a d t h e o r i g i n a l idea o f u s i n g t h e S q u i r e - L o n g equa- t i o n t o s t u d y t h e i n l e t r a d i a l v a r i a t i o n o f t h e pressure.

• P a p e r B - M . J . Cervantes & T . F . E n g s t r ö m , Influence of Boundary Con- ditions Using Factorial Design, t o be p u b l i s h e d i n t h e P r o c e e d i n g o f t h e T u r b i n e - 9 9 W o r k s h o p o n D r a f t T u b e F l o w , Ä l v k a r l e b y , Sweden, 2 0 0 1 . T h e c o m p u t a t i o n a l g r i d s were s u p p l i e d b y D r . J. B e r g s t r ö m ( c u r r e n t l y a t V o l v o Cars, Sweden) a n d D r . Y . G . L a i ( c u r r e n t l y at I I H R - H y d r o - science a n d E n g i n e e r i n g , I o w a C i t y , U S A ) . D r . J . B e r g s t r ö m s u p p l i e d also t h e o r i g i n a l F O R T R A N r o u t i n e s . T h e i m p l e m e n t a t i o n o f t h e b o u n d a r y c o n d i t i o n s a n d m o d i f i c a t i o n o f F O R T R A N r o u t i n e s were done b y F . E n - g s t r ö m . T h e p r e p a r a t i o n o f t h e e x p e r i m e n t a l b o u n d a r y c o n d i t i o n s , t h e v i s u a l i z a t i o n s a n t h e i n l e t pressure analysis were done b y M . Cervantes.

T h e s i m u l a t i o n s a n d e v a l u a t i o n o f d a t a were p e r f o r m e d b y b o t h a u t h o r s .

(18)

11

• P a p e r C - M . J . Cervantes & T . F . E n g s t r ö m , Factorial Design Applied to CFD, s u b m i t t e d t o t h e J o u r n a l o f F l u i d E n g i n e e r i n g ( c o n d i t i o n a l l y accepted f o r p u b l i c a t i o n ) .

T h e w o r k was o r g a n i z e d as i n Paper B

• P a p e r D - M . J . Cervantes & S. V i d e h u l t , Unsteady Pressure Measurements at Porjus U9, p u b l i s h e d i n t h e P r o c e e d i n g o f t h e X X Is t I A H R S y m p o s i u m o n H y d r a u l i c M a c h i n e r y a n d Systems at Lausanne, S w i t z e r l a n d , Septem- ber, 2002.

S. V i d e h u l t p a r t i c i p a t e d t o t h e P i t o t t u b e measurements.

• P a p e r E - M . J . Cervantes & L . H . Gustavsson, Unsteadiness and Viscous Losses in Hydraulic Turbines, t o be s u b m i t t e d t o t h e J o u r n a l o f H y d r a u l i c Research.

• P a p e r F - T . F . E n g s t r ö m & M . J . Cervantes, Pulsating Turbulent Flow in a Straight Asymmetric Diffuser, t o be s u b m i t t e d t o t h e J o u r n a l o f F l u i d M e c h a n i c s .

T h e v e l o c i t y measurements a n d t h e paper were done j o i n t l y . E r r o r analysis a n d pressure measurements were p e r f o r m e d b y T . F . E n g s t r ö m , w h i l e t h e v e l o c i t y analysis a n d c o m p i l a t i o n were done b y M . J . Cervantes.

(19)
(20)

Chapter 2

TRUST AND QUALITY I N C F D

U n t i l n o w , m o s t academic w o r k has been d i r e c t e d towards t h e v a l i d a t i o n o f p a r t i c u l a r codes a n d t u r b u l e n c e models i n s i m p l i f i e d geometries [24], w h e r e t h e b o u n d a r y c o n d i t i o n s were w e l l d e f i n e d a n d g r i d independent s o l u t i o n s was n o t an issue. A p p l i e d t o i n d u s t r i a l flows, C F D meets new problems; accurate b o u n d a r y c o n d i t i o n s are d i f f i c u l t t o o b t a i n e d , t h e large geometries make g r i d i n d e p e n d e n t s o l u t i o n s d i f f i c u l t t o o b t a i n a n d t h e the t u r b u l e n c e models have d i f f i c u l t i e s t o c a p t u r e t h e c o m p l e x i t y o f c e r t a i n flows.

T h e T u r b i n e - 9 9 W o r k s h o p [23] i l l u s t r a t e s such problems. T h e scatter i n t h e r e s u l t s m a y have several e x p l a n a t i o n s . T h e p a r t i c i p a n t s used d i f f e r e n t t u r b u - lence models (k-e, k-u>, R S M ) a n d t h e grids ranged f r o m 41000 t o 728000 cells, w e l l b e l o w t h e e s t i m a t i o n of B e r g s t r ö m [23]; a g r i d w i t h 3.9 • 1 06 t o 222 • 1 06

cells was necessary t o lower t h e g r i d e r r o r t o 1 % f o r t h e pressure recovery u s i n g a R e y n o l d s stress m o d e l . A n o t h e r reason f o r the scatter i n t h e results m a y be a t t r i b u t e d t o t h e i n l e t r a d i a l v e l o c i t y w h i c h was n o t prescribed b y t h e organiz- ers. Page & G i r o u x [23] p e r f o r m e d calculations b o t h w i t h zero a n d non-zero r a d i a l v e l o c i t y , u s i n g t h e results of a separate K a p l a n r u n n e r s i m u l a t i o n . T h e pressure recovery increased b y 15% w i t h the s i m u l a t e d r a d i a l v e l o c i t y . T h e r e - f o r e , t h i s c o m p o n e n t is o f great i m p o r t a n c e , i f d r a f t t u b e flow w i l l be s i m u l a t e d accurately.

2.1 Boundary C o n d i t i o n s (Summary of paper A ) 2 . 1 . 1 R a d i a l v e l o c i t y a t t h e i n l e t o f t h e d r a f t t u b e

T h e p a r t i c i p a n t s of the T u r b i n e - 9 9 W o r k s h o p faced a p r o b l e m w i t h t h e u n k n o w n i n l e t r a d i a l v e l o c i t y , a p r o b l e m c o m m o n t o m a n y engineers s i m u l a t i n g i n d u s t r i a l flows. Several a l t e r n a t i v e s were used b y the p a r t i c i p a n t s t o h a n d l e the p r o b l e m . T h e f i r s t a l t e r n a t i v e was t o set t h i s b o u n d a r y c o n d i t i o n equal t o zero. However, s i m p l e g e o m e t r i c a l considerations show t h a t t h e v o l u m e of fluid t r a n s p o r t e d t o w a r d t h e cone is m o r e t h a n t w i c e the v o l u m e t r a n s p o r t e d t o w a r d t h e w a l l .

1 3

(21)

1 4

4I , , , , , , 1 l _

0.08 0.1 0 . 1 2 0 . 1 4 0.16 0 . 1 8 0.2 0 . 2 2 0 . 2 4 Radius (m)

F i g u r e 2 . 1 : Radial velocity profile obtained w i t h the Squire-Long equation and proposed by the organizers of the second Turbine-99 Workshop.

S e p a r a t i o n occurs i f such a v o l u m e is n o t t r a n s p o r t e d t o w a r d t h e cone a n d t h e w a l l , decreasing s u b s t a n t i a l l y t h e p e r f o r m a n c e of t h e d r a f t t u b e . F u r t h e r m o r e , m a n y p a r a m e t e r s w o r k against t h e transfer o f m o m e n t u m t o w a r d t h e cone.

T h e angle of t h e cone is i m p o r t a n t at the i n l e t a n d t h e t a n g e n t i a l v e l o c i t y creates a c e n t r i f u g a l force, w h i c h p u l l s the fluid t o w a r d s t h e w a l l . T h e r e f o r e , a r a d i a l v e l o c i t y is necessary t o a v o i d a p r e m a t u r e s e p a r a t i o n o n t h e cone. T h e second a l t e r n a t i v e was t o consider t h e flow a t t a c h e d t o t h e w a l l s a n d the t h i r d a l t e r n a t i v e t o use t h e p r o f i l e o f a separate K a p l a n r u n n e r s i m u l a t i o n , since t h e r u n n e r g e o m e t r y was n o t available; Page & G i r o u x [23].

T h e Best Practice Guidelines [26] recommends a s e n s i t i v i t y analysis f o r u n - k n o w n b o u n d a r y c o n d i t i o n s i n w h i c h the b o u n d a r y is s y s t e m a t i c a l l y changed w i t h i n c e r t a i n l i m i t s t o see t h e v a r i a t i o n i n the results. Since t h e a x i a l a n d t a n - g e n t i a l velocities were available i m m e d i a t e l y a f t e r t h e cone, c o m p a r i s o n of t h e c o m p u t a t i o n a l results w o u l d have g i v e n a n a p p r o x i m a t i o n o n t h e r a d i a l velocity.

A fifth a l t e r n a t i v e w o u l d have been t o use t h e e x p e r i m e n t a l values of t h e m e a n a x i a l a n d t a n g e n t i a l velocities a n d a t w o d i m e n s i o n a l non-viscous descrip- t i o n o f t h e s w i r l i n g flow g i v e n b y t h e S q u i r e - L o n g e q u a t i o n (2.1) f o r t h e s t r e a m f u n c t i o n ip as described i n p a p e r A .

T h e S q u i r e - L o n g e q u a t i o n has t h e p e c u l i a r i t y t o d e p e n d o n t h e b o u n d a r y c o n d i t i o n s , since t h e B e r n o u l l i f u n c t i o n H a n d the c i r c u l a t i o n C are constant o n streamlines. T h e m e t h o d takes advantage of t h i s d e p e n d e n c y b y c o m p u t i n g t h e e q u a t i o n r e l a t e d t o the d o m a i n w i t h a n i t e r a t i v e process. T h e r a d i a l v e l o c i t y

(22)

15

F i g u r e 2.2: Variation of the pressure at the inlet of the d r a f t tube i n the radial di- rection for the T mode, Turbine-99 Work- shop test case. H u b on the left and shroud on the right.

F i g u r e 2.3: Variation of the radial pres- sure gradient (~^r) and the different terms i n the radial component of the Euler equation. (^§7)2 represents the pressure gradient i n equation 2.2.

p r o f i l e is t h e n o b t a i n e d . T h e p r o f i l e o b t a i n e d w i t h t h e present m e t h o d is rep- resented i n figure 2.1 w i t h t h e p r o f i l e proposed b y t h e organizers of t h e second T u r b i n e - 9 9 W o r k s h o p , w h i c h is s i m i l a r t o t h e p r o f i l e r e c e n t l y o b t a i n e d b y N i l s - son [27] w i t h a n u m e r i c a l s i m u l a t i o n of the H ö l l e f o r s e n r u n n e r . T h e discrepancy between b o t h profiles is i m p o r t a n t a n d a t t r i b u t e d t o the lack of i n f o r m a t i o n b e n e a t h the cone. T h i s lack o f d a t a can be c o m p e n s a t e d b y an i t e r a t i v e process between t h e viscous a n d non-viscous region u s i n g e.g. t h e a p p r o x i m a t e m e t h o d due t o v o n K a r m a n a n d Pohlhausen f o r t w o d i m e n s i o n a l f l o w [17].

2.1.2 R a d i a l p r e s s u r e a t t h e i n l e t o f t h e d r a f t t u b e

A n o t h e r issue o f t h e first w o r k s h o p was t h e pressure d r o p t o w a r d the o u t e r w a l l at t h e i n l e t o f t h e d r a f t t u b e f o u n d b y some p a r t i c i p a n t s , a result i n c o n t r a d i c t i o n w i t h s w i r l c a l c u l a t i o n s i n a d i f f u s e r . F i g u r e 2.2 represents t h e v a r i a t i o n of t h e pressure a t the i n l e t o f t h e d r a f t t u b e o b t a i n e d i n paper B f o r t h e 2n d Turbine—99 W o r k s h o p w i t h t h e e x p e r i m e n t a l values of A n d e r s s o n presented at t h e second w o r k s h o p . T h i s figure w i l l be c o m m e n t e d i n section 2.2.2.

T h e pressure d r o p t o w a r d t h e o u t e r w a l l m a y be e x p l a i n e d using i n v i s c i d flow t h e o r y , due t o the h i g h R e y n o l d s n u m b e r at t h e i n l e t o f t h e d r a f t t u b e . For such a flow, t h e r a d i a l v a r i a t i o n o f t h e pressure is c o u p l e d t o t h e a x i a l , r a d i a l a n d t a n g e n t i a l v e l o c i t y c o m p o n e n t s (U, V, W) t h r o u g h t h e r a d i a l c o m p o n e n t o f t h e E u l e r e q u a t i o n .

IdP W 2 TTdV ÖV , .

- — = ( 7 — - V — (2.2) p or r oz or

T h e sign o f t h e r a d i a l d e r i v a t i v e o f t h e pressure depends o n t h e m a g n i t u d e o f the d i f f e r e n t t e r m s a n d t h e i r v a r i a t i o n is shown i n figure 2.3. T h e first t e r m is always p o s i t i v e . T h e second t e r m is m a i n l y p o s i t i v e except close t o t h e cone

(23)

1 6

a n d t h e w a l l . T h e t h i r d t e r m is m a i n l y p o s i t i v e , except close t o the cone. T h e second t e r m dominates due t o t h e i m p o r t a n t v a r i a t i o n o f the r a d i a l v e l o c i t y w i t h z, except close t o the cone. T h u s , t h e large angle o f the cone i m p l i e s a negative r a d i a l v e l o c i t y at the i n l e t o f t h e d r a f t t u b e t o avoid separation. T h e r a d i a l v e l o c i t y decreases r a p i d l y i n m a g n i t u d e , w h i c h gives a p o s i t i v e second t e r m i n t h e above r e l a t i o n . T h e r e f o r e , t h e pressure decreases t o w a r d t h e w a l l .

T h e s u m o f the d i f i e r e n t t e r m s ((dP/dr)2 represented b y a dashed l i n e ) is presented i n figure 2.3 w i t h t h e r a d i a l pressure g r a d i e n t t a k i n g i n t o account t h e viscous effect. I f g o o d agreement is o b t a i n e d i n t h e m i d d l e o f the f l o w , i n d i c a t i n g a n e a r l y i n v i s c i d fluid, s t r o n g discrepancies appear close t o t h e cone a n d t h e s h r o u d , where viscous effects a n d t u r b u l e n c e cannot be neglected.

2.2 Simulation of the d r a f t tube (Summary of paper B ) 2 . 2 . 1 T h e k — e t u r b u l e n c e m o d e l

I n paper B , t h e s t a n d a r d k-e m o d e l is used t o s i m u l a t e the m o d e l d r a f t t u b e flow o f t h e T u r b i n e - 9 9 W o r k s h o p on t h e t o p ( T m o d e ) a n d the right ( R m o d e ) o f t h e p r o p e l l e r curve. T h i s t w o e q u a t i o n m o d e l uses the eddy viscosity h y p o t h e s i s f o r t h e R e y n o l d s stresses, w h i c h relates t h e m l i n e a r l y t o t h e m e a n v e l o c i t y g r a d i e n t :

2

- UiUj = 2 vTSl j - -kSij, (2.3)

where, i>i is t h e eddy viscosity a n d is t h e m e a n s t r a i n r a t e tensor [28].

T h e t u r b u l e n t k i n e t i c energy (k) a n d i t s d i s s i p a t i o n r a t e (e) are used t o get t h e v e l o c i t y a n d l e n g t h scales f o r t h e e d d y viscosity g i v e n as:

^ T = C M - (2.4)

e T h e steady equations f o r fe a n d e are:

u.

dk dxj de

.9Ui

1 dx. e +

dxj (u + vT/ ak) dk

r t dUi

'Ca kUi Uid x ~

c J - + —

k dx.

(2.5)

(2.6)

where t h e s u m m a t i o n c o n v e n t i o n is assumed a n d t h e m o d e l constants are:

0.09, Cel = 1.44, C a = 1-92, ak = 1 a n d cre = 1.3.

A s y —> 0, e q u a t i o n (2.5) has t h e l i m i t i n g b e h a v i o r [29]:

ew = v dy2

(2.7)

Since t h e t u r b u l e n t k i n e t i c energy is e q u a l t o zero a n d t h e d i s s i p a t i o n is non-zero o n t h e w a l l , t h e s t a n d a r d k-e fails t o p r e d i c t the flow near t h e w a l l . Some o f t h e

(24)

1 7

a l t e r n a t i v e s developed t o handle the p r o b l e m are d a m p i n g t h e viscosity w i t h a f u n c t i o n , w a l l f u n c t i o n s a n d t w o layer models. T h e second a l t e r n a t i v e was used i n t h e s i m u l a t i o n s . I t decreases s u b s t a n t i a l l y t h e c o m p u t a t i o n a l t i m e , since no fine g r i d is needed close t o t h e w a l l . T h e m e t h o d abandons t h e k-e equations i n regions n e x t t o t h e walls a n d imposes b o u n d a r y c o n d i t i o n s a t t h e t o p o f t h a t zone. I n t h i s region, the flow is assumed t o f o l l o w t h e l a w of t h e w a l l :

U+ = -log(y+)+C, (2.8)

where, U+ = U/u*, y+ = yu*/v a n d it* = ß(dU/dy)w. A s s u m i n g p r o d u c t i o n a n d d i s s i p a t i o n n e a r l y equal, the t u r b u l e n t k i n e t i c energy a n d t u r b u l e n t dissi- p a t i o n m a y be given as a f u n c t i o n o f t h e f r i c t i o n v e l o c i t y f o r 40 < y+ < 0.25gg:

k =

= ny'

(2.9)

(2.10)

T h e w a l l f u n c t i o n m e t h o d m a y f a i l f o r c o m p l e x flows, where t h e flow does n o t f o l l o w t h e log-law. O f interest f o r d r a f t t u b e s i m u l a t i o n s , flows i n a conical d i f f u s e r a n d a s t r a i g h t a s y m m e t r i c d i f f u s e r do n o t f o l l o w t h e s t a n d a r d log-law;

see A z a d [30] a n d paper E .

2.2.2 A p p l i c a t i o n t o t h e T u r b i n e - 9 9 b e n c h m a r k

T h e results o f t h e s i m u l a t i o n s p e r f o r m e d f o r t h e T u r b i n e - 9 9 b e n c h m a r k a t t h e T a n d R o p e r a t i n g c o n d i t i o n s are presented i n t a b l e 2 . 1 . T h e T m o d e is t h e p o i n t o n t h e t o p of t h e p r o p e l l e r curve, i.e. a t best efficiency. For t h e R m o d e , t h e guide vanes are m o r e o p e n a n d the e f f i c i e n c y is lower t h a n f o r t h e T m o d e . T h e m a i n difference between t h e modes resides i n t h e i n l e t t a n g e n t i a l v e l o c i t y , w h i c h is negative as t h e r a d i u s varies f r o m 0.1 m t o 0.16 m f o r t h e R m o d e . T h i s difference induces d i f f e r e n t d i r e c t i o n s of r o t a t i o n of t h e v o r t e x rope, w h i c h emanates f r o m t h e cone; i t c o n t r a - r o t a t e s i n t h e R m o d e a n d co-rotates i n t h e T m o d e . T h u s , d e p e n d i n g o n t h e m o d e , t h e v o r t e x r o p e is o r i e n t e d d i f f e r e n t l y a f t e r t h e elbow due t o the gyroscopic effect, cf. figures 2.4 a n d 2.5.

T a b l e 2 . 1 : Computational and experimental results of the T and R modes.

E n g . q u a n t i t i e s CPwall Cpmean ^axial III ßm Q {mA/s)

T m o d e ( C F D ) 1.288 0.971 1.223 1.224 0.522

T m o d e (exp.) 1.120 - 1.090 1.020 0.522

R m o d e ( C F D ) 1.283 0.945 1.188 1.149 0.542

R m o d e (exp.) 1.100 - - - 0.542

(25)

1 8

F i g u r e 2.4: Path of the vortex rope through the d r a f t tube, T mode. Scale represents velocity magnitude.

* 0 . 0

F i g u r e 2.5: Path of the vortex rope through the d r a f t tube, R mode. Scale represents velocity magnitude.

T h e w a l l pressure recovery Cpwau based o n t h e m e a n value o f t h e pressure o n t h e w a l l a t t h e i n l e t a n d o u t l e t of the d r a f t t u b e is o v e r e s t i m a t e d f o r b o t h s i m u l a t i o n s . I t is of interest t o compare t h e i n l e t r a d i a l pressure o b t a i n e d w i t h C F D a n d t h e e x p e r i m e n t a l values of A n d e r s s o n1, cf. figure 2.2. T h e e x p e r i m e n - t a l value o f t h e pressure increases s i g n i f i c a n t l y close t o t h e w a l l , a n expected characteristic since t h e s h r o u d acts as the w a l l o f a n o r d i n a r y d i f f u s e r , where the pressure increases t o w a r d t h e w a l l . However, t h e s i m u l a t i o n does n o t reproduce t h i s t r e n d . T h e r e f o r e , a higher value of Cpwau is o b t a i n e d w i t h the s i m u l a t i o n s . T h e m e a n pressure recovery presented i n t a b l e 2.1 is t h e difference between the m e a n pressure at t h e o u t l e t a n d i n l e t o f t h e d r a f t t u b e n o r m a l i z e d w i t h t h e m e a n k i n e t i c energy based o n t h e m e a n flow r a t e . I t is lower f o r the R m o d e t h a n f o r t h e t h e T m o d e . However, the same pressure difference n o r m a l i z e d w i t h t h e i n l e t k i n e t i c energy is s i m i l a r f o r b o t h cases; 0.921 f o r t h e T m o d e a n d 0.923 f o r the R m o d e . T h i s indicates t h a t t h e d r a f t t u b e has n e a r l y t h e same efficiency f o r b o t h modes.

T h e pressure recovery along the upper a n d lower walls is s h o w n i n figures 2.6 a n d 2.7, as a f u n c t i o n o f t h e center line c o o r d i n a t e . T h e e x p e r i m e n t a l values m a y be f o u n d i n A n d e r s s o n [31]. T h e pressure recovery occurs a l o n g several elements represented i n t h e figures b y dashed lines; t h e r u n n e r cone (0 < L < 0.042), t h e s t r a i g h t cone d i f f u s e r (0 < L < 0.094), the e l b o w (0.094 < L < 0.33), t h e elbow corner (L = 0.21), t h e o u t l e t d i f f u s e r p a r t I (0.33 < L < 0.68) a n d t h e o u t l e t d i f f u s e r p a r t I I (0.68 < L < 1). T h e pressure recovery is i n g o o d agreement along t h e s t r a i g h t cone d i f f u s e r . A s the elbow s t a r t s , t h e pressure o n t h e lower a n d u p p e r walls are u n d e r e s t i m a t e d . Since i m p i n g e m e n t occur a t the b o t t o m o f t h e elbow, one e x p l a n a t i o n m a y be t h e p a r t i c u l a r b e h a v i o r of t h e s t a n d a r d k — e m o d e l near a s t a g n a t i o n p o i n t [29], w h i c h gives rise t o a n excessive level o f t h e t u r b u l e n t k i n e t i c energy k a n d the eddy viscosity v?- I n such a case, t h e

XI thank Urban Andersson for allowing me the use of his precious experimental data. The following comparison is also available in the proceeding of the 2n d Turbine-99 Workshop.

(26)

19

O 0.2 0.4 0.6 0.8 1 Center line L

F i g u r e 2.6: Experimental and simulated values of the pressure recovery along the upper wall.

- Q - Experiments

- t - CFD

f

0 0.05 0.1 0.15 0.2 0.25 0.3 Radius (m)

F i g u r e 2.8: Experimental and simulated values of the axial velocity at section l b for the T mode.

0 0.2 0.4 0.6 0.8 1 Center line L

F i g u r e 2.7: Experimental and simulated values of the pressure recovery along the lower wall.

_ 1 .6I , ; 1 . 1 1

0 0.05 0.1 0.15 0.2 0.25 0.3 Radius (m)

F i g u r e 2.9: Experimental and simulated values of the tangential velocity at section l b for the T mode.

w a l l shear stress is o v e r e s t i m a t e d a c c o r d i n g t o r e l a t i o n ( 2 . 9 ) , w h i c h gives h i g h e r viscous losses a n d t h u s , a lower pressure recovery. A f t e r t h e elbow corner, t h e pressure recovery is w e l l represented f o r t h e lower w a l l a n d o v e r e s t i m a t e d f o r t h e u p p e r w a l l .

T h e e x p e r i m e n t a l a n d s i m u l a t e d values o f the a x i a l a n d t a n g e n t i a l velocities a t section l b are represented i n figures 2.8 a n d 2.9, where t h e dashed l i n e repre- sents t h e diameter a t t h e end o f t h e cone. Close agreement is o b t a i n e d f o r the a x i a l v e l o c i t y f o r 0.07 < r < 0.2, where t h e flow can be supposed i n v i s c i d . Near t h e b o u n d a r y , t h e results are n o t as g o o d ; t h e a x i a l v e l o c i t y is o v e r e s t i m a t e d close t o the s h r o u d a n d u n d e r e s t i m a t e d close t o t h e center o f t h e d r a f t t u b e . T h e t a n g e n t i a l v e l o c i t y presents a s y s t e m a t i c bias w i t h t h e e x p e r i m e n t a l p r o f i l e f o r 0.07 < r < 0.24, however t h e t r e n d is w e l l c a p t u r e d . Once again, there is a n i m p o r t a n t difference near t h e cone a n d t h e s h r o u d , especially t h e p o s i t i o n a n d a m p l i t u d e of the m i n i m u m t a n g e n t i a l v e l o c i t y are n o t c a p t u r e d w i t h t h e present s i m u l a t i o n . F r o m these comparisons, one m a y suggest, t h a t t h e w a l l f u n c t i o n is

References

Related documents

Däremot är denna studie endast begränsat till direkta effekter av reformen, det vill säga vi tittar exempelvis inte närmare på andra indirekta effekter för de individer som

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av

a) Inom den regionala utvecklingen betonas allt oftare betydelsen av de kvalitativa faktorerna och kunnandet. En kvalitativ faktor är samarbetet mellan de olika

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i