• No results found

Malformation in different species of benthic diatoms in three herbicide polluted streams in southern Sweden

N/A
N/A
Protected

Academic year: 2021

Share "Malformation in different species of benthic diatoms in three herbicide polluted streams in southern Sweden"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

BA CHELOR THESIS

Bachelor's Programme in Nature Conservation and Species Diversity, 240 cred

Malformation in different species of benthic diatoms in three herbicide polluted streams in southern Sweden

Helena Spångfors

Biology, 15 credits

Halmstad 2017-09-11

(2)

SAMMANFATTNING

Målet med den här studien var att undersöka kiselalger och dess eventuella missbildningar i tre vattendrag i södra Sverige - Höje å, Skivarpsån och M42. Kiselalger används som bioindikator för vattenkvalitet i hela Europa, men de befintliga kiselalgsindexen visar inte eventuell förekomst av miljöfarliga ämnen. Det har dock visats att en förekomst > 1 % av missbildade kiselalger indikerar påverkan av miljöfarliga ämnen, såsom pesticider och tungmetaller. Denna studie är en av få som har undersökt kiselalgers missbildningar i vattendrag som är mer eller mindre påverkade av herbicider. Sex prov från varje vattendrag analyserades - kiselalger räknades och identifierades till artnivå och missbildningar dokumenterades och kategoriserades. Vattendragen delades in efter PTI (Pesticide Toxicity Index), där Höje å hade lägst PTI och ansågs vara minst påverkad av herbicider.

Skivarpsån och M42 hade högre PTI, och ansågs därför ha en högre herbicidpåverkan.

Det fanns en signifikant skillnad i missbildningsfrekvens vattendragen emellan, den kunde dock inte kopplas till PTI. Både Höje å och M42 hade > 1 % missbildningar. Skivarpsåns

missbildningsfrekvens var < 1 % trots vattendragets relativt höga PTI. Det är möjligt att

missbildningsfrekvensen bättre hade reflekterat PTI om herbicidprovtagningen skett någon månad tidigare, då herbicidhalter kan variera och kiselalger har visat sig kunna spegla ett vattendrags mående upp till tre månader bakåt i tiden. En annan förklaring till en varierande

missbildningsfrekvens kan vara en lika varierande artsammansättning. Vissa arter är mindre

“benägna” att missbildas än andra - ett prov som domineras av sådana skulle därför kunna innehålla

få missbildningar trots eventuell miljögiftspåverkan. Det krävs dock ytterligare studier för att bättre

förstå kiselalgers missbildningar i förhållande till herbicider.

(3)

Introduction

Diatoms are unicellular algae with a silica cell wall (“frustule”), and important primary producers in most aquatic systems (Morin et al. 2012). In freshwater, diatoms are usually the dominating taxa in biofilm communities of rocks and macrophytes - a few square centimeters of biofilm can contain more than one hundred different species (Kahlert et al. 2016). Since all diatom species have different ecological preferences they are useful in detecting environmental changes (Morin et al.

2008). Diverse, easily sampled and with different ecological preferences, diatoms are perfectly suited to serve as biological indicators (Kahlert et al. 2016).

Two diatom indexes are commonly used to determine water quality in Swedish lakes and streams:

IPS reflects levels of nutrients and organic pollution, and ACID is an acidity index (Kahlert et al.

2016). The IPS and ACID index enables detection of eutrophication and acidification in streams and lakes. However, there is yet no diatom index in Sweden that takes environmental pollution into account (Kahlert 2012). This means that the existing indexes might wrongfully report a good ecological status class even in a heavy metal- or pesticide polluted stream (Morin et al. 2009). In order to meet the demands of the Swedish Environmental Objectives such as 'A Non-Toxic

Environment’ it is thus imperative to further develop indicators that detect effects of environmental pollutants, such as heavy metals and pesticides (Kahlert 2016).

Malformed diatoms may be a valid indicator of environmental pollution (Falasco et al. 2009).

Falasco et al. (2009) have summarised cause-effect relationships of malformations from 222 studies from different countries (e.g. Australia, Canada, France, Great Britain, Wales, Hungary). Their review shows that environmental pollution such as metals and pesticides can cause frustule

malformation. Several studies have shown that the proportion of malformation is low in unpolluted

streams in Sweden, but increased tenfold in waterbodies with heavy metal or pesticide pollution

(Eriksson & Jarlman 2016, Goedkoop & Kahlert 2015, Kahlert 2012). Eriksson & Jarlman (2011)

have sampled and analysed diatoms from pesticide polluted streams in southern Sweden. They

found that the high proportion of malformed frustules was strongly positively correlated to total

stream water pesticide concentration. Following Kahlert’s (2012) recommendations, a preliminary

screening indicator has recently been added to the Swedish water quality assessment guidelines,

where frustule malformation percentage > 1 %, or number of diatom taxa < 20 indicates heavy

metal- or pesticide pollution. Kahlert (2012) also has contributed to a new parameter in the Swedish

standard method (SIS 2014b) of diatom analysis. The parameter divides malformed diatoms into

(4)

four categories - ”slight”- or ”strong” abnormal form, and ”slight”- or ”strong” abnormal pattern. It is clear that diatom malformation is an important variable in the development of a new bio indicator that reflects environmental pollution (Lavoie et al. 2017).

Herbicides are a type of pesticide used abundantly in agriculture, targeting unwanted plants. In agricultural dominated landscapes, such as southern Skåne, streams might contain traces of many different herbicides (Pirzadeh 2011). Many of these substances affect primary producers (such as algae) photosynthesis and growth in the same way as in the land based plants they were designed to eliminate (Goedkoop & Kahlert 2015, Morin et al. 2009). At present there exist few studies of diatom malformation as a response to herbicides. Debenest et al. (2008) isolated a diatom community from a natural biofilm of a French river, cultured and exposed them to maleic hydrazide, a commonly used herbicide in France. They found that the highest herbicide

concentration significantly increased the abundance of malformed frustules. Jan-Ers (2009) found a significant increased proportion of malformation in relation to both heavy metal- and pesticide (two of which were herbicides) water concentrations. She also compared malformations induced either by pesticides (two of which were herbicides) or by heavy metals in a laboratory experiment but found no difference in type of malformation between the two. Lavoie et al. (2017) suggests that the method of documenting pure presence of diatom malformation is excellent in identifying

contaminated environments. However, they highlight the need for studies that take the type and the severity of these malformations into account. They also highlight the need to identify species more prone to develop malformations than others, in order to fully understand causes of diatom

malformations and develop a bio indicator based on these. I have therefore conducted a study of diatom species and their types of malformations, in three streams that were herbicide polluted to varying degrees.

Aim

This study is a contribution to the development of a new bio indicator in Sweden that responds to environmental pollution. The aim was to investigate diatom malformation in three herbicide

polluted streams in southern Sweden. This was done by answering the following questions: 1) Is the proportion of diatom malformation higher in streams with higher herbicide pollution than in a less polluted stream? 2) Does the proportion of diatom malformation differ between sampling

occasions? 3) Are “strong” malformations a better indicator of herbicide pollution than “slight”

(5)

malformations? 


Material & Methods

Study design and study locations

The study included 3 streams (Höje å, Skivarpsån and M42. See Fig. 1), each was sampled 6 times, but at 2 different sampling occasions (September and October) and at 3 slightly different loctions (N=18). The stream water differed in stream water herbicide concentrations, where Höje å had the lowest and Skivarpsån and M42 the highest.

Höje å is located in Lomma municipality in the county of Skåne, between Lund and Malmö (Fig.

1). Skivarpsån and M42 are both located in Skurup municipality in southern Skåne (Fig. 1) and are included in Swedens national environmental program for pesticides, which is administrated by SLU.

Fig. 1: Approximate locations of the three streams Höje å, Skivarpsån and M42, in the county of Skåne, southern Sweden. Map is created with pictures from VISS (Water information in Sweden).

The catchment area of all three streams is dominated by agricultural farmlands according to VISS

(Water information Sweden), and their physiochemical properties are presented in Table 1. Höje å

runs through a nature reserve upstream sampling points and had a low stream water herbicide

concentration. Skivarpsån and M42 had a relatively high stream water herbicide concentration.

(6)

Table 1: Physicochemical properties of the three streams studied (Höje Å, Skivarpsån and M42) during the two sampling occasions in September and October of 2016. “Number of herbicides” is the total amount of herbicides in the sample that is over detection limit. PTI represents the Pesticide toxicity index (only for herbicides). Metal classifications are taken from the Swedish Environmental Protection Agency (Naturvårdsverket 1999).

Water sampling and analyses


The three streams were sampled for stream water quality on the 13th of September and the 11th of October 2016. pH was measured in situ with the help of a portable multiparameter sensor (Hanna Instruments ® HI98194). Metal ions in the stream water were analysed by ICP-MS at SRT- University of Girona. The analysis of stream water PO4 was performed by Eurofins using SS-EN ISO 6878:2005. Stream water pesticide concentrations were measured by the laboratory for organic environmental chemistry (OMK) at SLU, using by Swedac accredited methods OMK 51:8, OMK 57:3, OMK 58:1 and OMK 59:0 (SLU 2017). Stream water herbicide concentrations were used to calculate a PTI (Pesticide Toxicity Index) for herbicides (Table 1). It is an index calculated of the sum of all herbicide substances found in each sample, and their concentration, in relation to each substance toxicity to aquatic organisms (Naturvårdsverket 2008). Water samples and water

chemistry data were provided by Natàlia Corcoll (University of Gothenburg). PTI were calculated by Andreas Håkansson (University of Gothenburg).

Diatom sampling

Diatom sampling was carried out at the same time as water sampling, taking three samples from each stream both September and in October. Sampling was performed according to European

Month No of

herb. PTI pH PO43-

(mg/L) Cu

(µg/L) Cu

(class) Zn

(µg/L) Zn

(class) Cd

(µg/L) Cd

(class) Pb

(µg/L) Pb (class)

Höj. 9 9 0.2 7.9 <0.02 1.1 Low 31.0 Mod.

high 0.02 Low 0.6 Low

10 8 0.2 7.8 <0.02 0.9 Low 130.2 High 0.02 Low 0.7 Low

Skiv. 9 15 2.3 8.3 0.3 1.4 Low 49.1 Mod.

high 0.03 Low 1.1 Mod.

high

10 19 4.0 8.3 0.2 0.3 Very

low 213.1 High 0.02 Low 0.4 Low

M42 9 23 7.2 7.8 0.6 1.7 Low 36.7 Mod.

high 0.05 Low 1.5 Mod.

high

10 27 17.7 7.7 0.2 0.2 Very

low 85.0 High 0.04 Low 0.5 Low

(7)

standard method SS-EN 13946 (SIS 2014a), scraping off the biofilm of small stones with a toothbrush. Diatom samples were provided by Natàlia Corcoll (University of Gothenburg).

Diatom preparation and analysis

Diatom samples was prepared in April and May 2017 at the Department of Soil and Environment at SLU. The samples were boiled in hydrogen peroxide (30% H

2

O

2

) and hydrochloric acid (35% HCl) to eliminate organic material and to clean the diatom silica frustules, following Jarlman (2007).

Permanent replicates were then prepared by mounting the frustules on glass microscope slides with Naphrax© (Brunel Microscopes Ltd, UK), a medium with refractive index 1.74. See Jarlman (2007) for a detailed method description. Diatom preparation was performed according to European

standard method SS-EN 13946 (SIS 2014a)

The diatom analysis was performed according to European standard method SS-EN 14407 (SIS 2014b) in the laboratory of Halmstad University. 400 valves were identified to species level on each replicate with a Nikon eclipse E600 microscope with 1000× magnification. In some cases only genera were identified - for example some “girdle views” (valves lying on their side) are difficult to identify to species level. Every taxon found was updated to the latest nomenclature according to the Swedish freshwater diatom taxa list (available from Department of Aquatic Sciences at SLU).

The taxonomic literature used in this study are from central Europe (Hofmann, Werum & Lange- Bertalot 2011, Krammer & Lange-Bertalot 1991a, Krammer & Lange-Bertalot 1991b), and was supplemented with Spaulding, Lubinski & Potapova (2010) and Guiry & Guiry (2017).

Diatom metrics and malformation categories

Indexes used in this study are IPS (Indice de Polluo-sensibilité Spécifique, Cemagref 1982), ACID (Andrén & Jarlman 2009) and Shannon’s diversity index (Shannon 1948) IPS is based on all identified taxa in the sample and shows the nutrient impact and organic pollution in the water. It is used with supportive parameters %PT (Pollution Tolerant valves, Kelly 1998) and TDI (Trophic Diatom Index, Kelly 1998), which classifies species based on their tolerance to eutrophication and (easily dissolved) organic pollution. ACID is an acidity index. Shannon’s diversity index,

showing species diversity, was also calculated. All index calculations in this study were made by

Anders Stehn (SLU), using Omnidia software (Omnidia, Roubaix, France). The ecological status of

each stream was determined by IPS value as recommended by the Swedish Environmental

(8)

Protection Agency (Naturvårdsverket 2007). Index values for Swedish conditions are shown in Table 2 & 3.

Table 2: Classes for IPS (Indice de Polluo-sensibilité Spécifique), %PT (Pollutant Tolerant valves), TDI (Trophic Diatom Index). IPS margin of error +/- 0,5 if IPS > 13, margin of error +/- 1 if IPS < 13 (Naturvårdsverket 2007).

Table 3: Classes for ACID (ACidity InDex) for Swedish conditions. Margin of error +/- 10 % (Naturvårdsverket 2007).

A total of 400 diatom valves were counted and identified on each slide. Every malformation was photographed with microscopic camera DFK 33UX174 Color Camera using IC Measure software (The Imaging Source Europe GmbH, Bremen, Germany). Malformations have been divided into four categories according to Kahlert (2012) - ”slight”- or ”strong” abnormal form, and ”slight”- or

”strong” abnormal pattern. The total number of malformations (i.e the sum of all malformations regardless of category) in each sample were transformed into %, where a total proportion of malformation > 1 % indicates toxic impact such as heavy metal- or possibly pesticide pollution (Kahlert 2012). Pictures of all malformations were sent to Maria Kahlert at SLU for validation.

Acidity class ACID index Equivalent to mean pH (mean of 12 months before sampling)

Equivalent to minimum pH (up to 12 months before sampling)

Alcaline ≥7,5 ≥7,3 -

Near neutral 5,8-7,5 6,5-7,3 -

Moderate acidic 4,2-5,8 5,9-6,5 <6,4

Acidic 2,2-4,2 5,5-5,9 <5,6

Highly acidic <2,2 <5,5 <4,8

Status IPS-value %PT TDI

Reference 19,6 - -

High ≥17,5 <10 <40

Good ≥14,5 and <17,5 <10 40-80

Moderate ≥11 and <14,5 <20 40-80

Unsatisfactory ≥8 and <11 20-40 >80

Poor <8 >40 >80

(9)

A mean value for each sample was calculated for number of taxa, proportion of malformations, IPS, TDI, %PT, ACID and Shannon. Ecological status for each sample was determined by the mean IPS- value according to the Swedish Environmental Protection Agency (Naturvårdsverket 2007)

Data processing and statistics

The first question to be answered in this study is if the total proportion of diatom malformation is higher in streams with higher herbicide pollution than in a less polluted stream. I sorted streams after stream water herbicide concentration using PTI (Table 1). Höje å has lowest PTI and is assumed to be less herbicide polluted than Skivarpsån and M42. M42 has the highest PTI and is assumed to be the most polluted. An one way ANOVA-test and a Tukey HSD test was used to find any differences between all samples total proportion of malformation and the three streams.

The second question is if the proportion of diatom malformation differs between sampling occassions. An independent samples t-test was used to find any difference between the samples proportion of malformation and sample occasions September and October.

The third question is if “strong” malformations are a better indicator of herbicide pollution than

“slight” malformations. A Kruskal-Wallis test was used to find any differences between “strong malformations” and the three streams. An one way ANOVA-test and a Tukey HSD test was used to find any differences between “slight malformations” and the three streams.

Statistical analysis


All statistical analyses were performed in SPSS (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.). In this study there is a total of 18 samples.

These consists of 3 samples from 3 streams sampled at 2 occasions (N=18) (Table 3). All data except the variable for “strong malformations” were normally distributed according to a Kolmogorov-Smirnov test.

Results

Taxonomic composition of diatom communities

Amphora pediculus Kütz. Grunow is the most common species in all samples except the stream

Höje in October, where Cocconeis placentula Ehrenb. dominated. Table 4 describes the five most

(10)

common diatom taxa at each sampling occasion. Their photos are presented in Fig. 2. A complete taxa list for each stream is presented in Appendix A.

Table 4: The five most common diatom taxa from each sample at each sampling occasion, ranked 1-5 where 1 is the most common. Authors: Achnanthidium minutissimum-complex, Amphora pediculus Kütz. Grunow, Caloneis lancettula (Schulz) Lange-Bert. & Witkowski, Cocconeis placentulaEhrenb., Cyclotella meneghiniana Kütz., Eolimna minima (Grunow) Lange-Bert., Navicula gregaria Donkin, Planothidium frequentissimum (Lange-Bert.) Lange-Bert., Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bert.

Höje å

September Höje å

October Skivarpsån

September Skivarpsån

October M42

September M42 October 1 Amphora

pediculus Cocconeis

placentula Amphora

pediculus Amphora

pediculus Amphora

pediculus Amphora pediculus 2 Achnanthidium

minutissimum Aulacoseira sp. Achnanthidium

minutissimum Achnanthidium

minutissimum Cocconeis

placentula Achnanthidium minutissimum 3 Eolimna minima Amphora

pediculus Amphora sp. Amphora sp. Achnanthidium

minutissimum Planothidium frequentissimum 4 Planothidium

lanceolatum Staurosira sp. Planothidium

lanceolatum Caloneis

lancettula Aulacoseira

sp. Navicula gregaria

5 Planothidium

frequentissimum Cyclotella

meneghiniana Cocconeis

placentula Cocconeis placentula / Eolimna minima

Eolimna

minima Planothidium lanceolatum

(11)

Fig. 2: Pictures of the most common taxa in all samples. a) Amphora pediculus Kütz. Grunow, b) Achnanthidium minutissimum-complex c) Cocconeis placentulaEhrenb., d) Eolimna minima (Grunow) Lange-Bert., e) Amphora sp., f) Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bert., g) Navicula gregaria Donkin, h) Staurosira sp., i) Caloneis lancettula (Schulz) Lange-Bert. & Witkowski, j) Aulacoseira sp., k) Planothidium frequentissimum (Lange-Bert.) Lange-Bert., l) Cyclotella meneghiniana Kütz. Ⓒ Helena Spångfors

Diatom metrics

There was a significant difference between the total proportion of malformation and the three streams (one way ANOVA test; df = 17, F = 4.7, p = 0.0026). There was no significant difference between the total proportion of malformation and sampling months September and October (t-test;

p > 0.05).

Results of the diatom analysis is showed in Table 5. All three streams have a higher number of taxa in October than in September, but standard deviations are high in Höje å and in September sample of Skivarpsån. IPS values are higher in September than in October in all three streams. Samples from Skivarpsån have a malformation frequency < 1 %, whereas the other two streams have values

> 1 %. Both Höje å and M42 has a higher proportion of malformation in September than in October.

The ecological status is moderate in Höje å, good in Skivarpsån and moderate to good in M42.

Table 5: Mean with standard deviations of total number of taxa, proportion of malformations and index values from three samples per site. The ecological status is classified from index values, according to Swedish Environmental Protection Agency (Naturvårdsverket 2007). Abbreviations: IPS (Indice de Polluo-sensibilité Spécifique), TDI (Trophic Diatom Index), %PT (% Pollution Tolerant valves), ACID (ACidity InDex), Shannon (Shannon´s diversity index).

* > 1 % indicates environmental pollution (Kahlert 2012). ** On the boundary to “Moderate” (Naturvårdsverket 2007).

Month Taxa %

Malform. IPS TDI %PT ACID Shannon Ecological

status class

Höj. 9 27 ± 7.2 2.17 ± 1.2 14.4 ± 0.4 92.7 ± 2.3 12.2 ± 3.0 7.7 ± 0.2 2.5 ± 0.7 Moderate

10 30 ± 7.0 1.75 ± 0.9 14.1 ± 0.5 72.7 ± 1.8 3.0 ± 1.6 7.5 ± 0.2 3.4 ± 0.6 Moderate

Skiv. 9 26 ± 10.4 0.75 ± 0.3 15.2 ± 0.1 92.4 ± 3.2 5.3 ± 2.2 7.8 ± 0.1 2.1 ± 0.6 Good

10 35 ± 3.0 0.75 ± 0.9 14.6 ± 0.3 90.9 ± 3.3 7.2 ± 3.2 7.8 ± 0.2 2.5 ± 0.2 Good*

M42 9 27 ± 1.2 2.08 ± 0.4 14.9 ± 0.4 84.8 ± 11.7 6.0 ± 3.9 8.2 ± 0.6 2.6 ± 0.7 Good*

10 35 ± 1.0 1.33 ± 0.4 14.0 ± 0.7 95.9 ± 0.9 14.7 ± 2.9 8.5 ± 0.8 3.0 ± 0.3 Moderate

(12)

Malformation categories

Only two of four malformation categories were found in this study. These were ”slight”-

respectively ”strong” abnormal form. There was a significant difference between the proportion of

“slight” abnormal form and the three streams (one way ANOVA test; df = 17, F = 6.09, p = 0.012).

There was no significant difference between the proportion of ”strong” abnormal form and the three streams (Kruskal-Wallis test; p > 0.05). The graph in Fig. 3 presents the total proportion of

malformation of each category found in each sample. The red line in the graph shows the limit for which environmental pollution can be assumed (malformations > 1 %). There is one sample in Skivarpsån in October in which no malformations were found. “Strong” abnormal forms are found in all samples except M42 in October. Pictures in Fig. 4 are taken during analysis and show

examples of the two malformation categories, of the most commonly malformed species

(Achnathidium minutissimum, Eolimna minima (Grunow) Lange-Bert and Cocconeis placentula Ehrenb.

Fig. 3: Graph on total proportion of malformation of all 18 samples, including 2 categories: “Strong” abnormal form and “slight” abnormal form. The red line shows the 1% malformation limit ( > 1 % indicates environmental pollution).

(13)

Fig. 4: Pictures taken during analysis, showing examples of “strong”- and ”slight” abnormal forms found in this study.

a) “Slight” abnormal form of Achnanthidium minutissimum, b) “Strong” abnormal form of Achnanthidium

minutissimum, c) “Slight” abnormal form of Eolimna minima (Grunow) Lange-Bert, d) “Strong” abnormal form of Eolimna minima “Slight” abormal form of Cocconeis placentulaEhrenb., f) “Strong” abnormal form of Cocconeis placentulaEhrenb. Ⓒ Helena Spångfors

Discussion

The aim of this study was to investigate diatom malformations in Höje å, Skivarpsån and M42. The total proportion of diatom malformation were significantly different between the streams, but according to Tukey’s HSD test only between Skivarpsån and the other two streams. This means that in this study the proportion of malformation is high in the stream with the highest herbicide

pollution, but also in the stream with less herbicide pollution. This answers the first question in this study - the proportion of diatom malformation is not higher in the streams with higher herbicide pollution than in the less polluted stream. The proportion of “slight” abnormal form were also significantly different between the streams but with the same Tukey’s HSD test result as for the total proportion of malformation. The proportion of “strong” abnormal form were not significantly different between the streams, and the total proportion of diatom malformation was not significantly different between samling month September and October. This answers the second and third

question in the study - the proportion of malformation does not differ between the sampling occasions, and the ”strong” malformations are not a better indicator of herbicide pollution than the

”slight” malformations.

However, M42 showed expected results with regard to its relatively high PTI. It had a total

proportion of malformation > 1 % and was significantly different to Skivarpsån, which had lower

(14)

PTI. Its IPS value in October was the lowest of all samples, while its TDI and %PT for the same month were the highest. This means that M42 had the highest nutrient load and the highest proportion of pollution tolerant valves out of all streams. The mean number of malformations are higher in September than in October in both Höje å and M42, however, neither of the samples differed in malformation frequency between September and October according to the t-test. It is possible that a significant difference would appear had there been more streams in the study.

In Höje å, PTI was relatively low. The sample points were downstream a nature reserve and therefore expected to have low impact of environmental pollution. Despite this, the highest

proportion of both ”slight”- and ”strong” abnormal form were found here, and the total proportion of malformation was significantly different to Skivarpsån. One possible explanation to the high proportion of malformations could be the low level of phosphorus in Höje å. A nutrient deprivation could have further affected the (already vulnerable) diatom community and its negative response to pesticides (Morin et al. 2009). However, the IPS and TDI rather reflect a nutrient surplus in all three streams. Another explanation could be the high Zn levels in Höje å. In Hedenborg’s (2016) study it was observed that similar high Zn levels induced diatom malformation, and Ström (2016) found that in some cases in her study, low phosphorus levels raised the toxicity of Zn to diatoms.

Whatever the reason might be, from this study one can assume that there is some sort of environmental pollution in the samples from Höje å, because of the relatively high level of malformations and the only moderate ecological status class.

Regarding Skivarpsån, I had expected a higher frequency of diatom malformations due to a relatively high herbicide pollution (i.e. high PTI). Additionally, also the Zn and Pb content was found to be relatively high in the stream. However, the total proportion of diatom malformation was

< 1 % and IPS was higher in Skivarpsån than in the other streams. The low amount of

malformations could be temporary, because variations in malformations have been observed earlier (Kahlert 2012, Morin et al. 2009). It could also be that the proportion of malformation probably is not coupled to the PTI directly at sampling date, but to earlier impacts. According to Eriksson &

Jarlman (2011) and Kahlert (2012) malformations best reflects the environmental pollution impact of the previous 1-3 months. Another possibility could be that the diatom taxa composition in Skivarpsån was dominated by taxa which are less prone to develop malformations. Larras et al.

(2014) states that in a natural diatom community in Lake Geneva, sensitivity to a herbicide mixture

varied between seasons, with winter season species being more tolerant than the summer season

(15)

community. It is also known that some species are more tolerant to pollution than others, for example Achnanthidium minutissimum (Kahlert 2012, Wood et al. 2016) that is the 2nd most common species in Skivarpsån. Overall, the five most common species in Skivarpsån is not very different from the other streams. However, Amphora sp. (on 3rd place both September and October) and Caloneis lancettula (Schulz) Lange-Bert. & Witkowski (4th in October) did not have a single malformed valve in any of the 18 samples in this study. Amphora pediculus Kütz. Grunow which is the most dominant species in both sampling months in Skivarpsån only had two malformed valves out of all 18 samples. Also, two of this study’s most commonly malformed species (Cocconeis

placentula Ehrenb. and Eolimna minima (Grunow) Lange-Bert.) are on 5th place in Skivarpsån

while Cocconeis placentula Ehrenb. is on 1st and 2nd place in the other two streams, and Eolimna

minima (Grunow) Lange-Bert. on the 3rd and 5th. It would be of interest to take more of the species

found into consideration, but this will have to be done in another study.

In general, most samples in the study were dominated by Amphora pediculus Kütz. Grunow,

Achnanthidium minutissimum and Eolimna minimia (Grunow) Lange-Bert. which are common taxa

in nutrient rich waters according to Goedkoop & Kahlert (2015). Regarding the number of taxa and diversity, they fall into the range which is assumed to be normal for Sweden according to Kahlert (2011), who states that 90% of Swedish streams have between 20 and 80 diatom taxa and a Shannon-diversity between 1.5 and 5. The mean number of taxa was higher in October than in September for all three streams, reflecting the seasonal variations of diatoms found earlier by Goedkoop & Kahlert (2015). Judging by the normal amount of taxa and diversity, and by the IPS values, all three streams in this study would probably come across as having reasonably high water quality. However, by counting malformed diatom valves, one will find that there is an

environmental pollution impact in two of the streams. Hopefully in a near future, with a new bio indicator based on diatom malformation and species composition, it will be possible to point out exactly what kind of environmental pollution is affecting Swedish streams.

Conclusions

The present study investigated diatom malformations in more or less herbicide polluted streams.

The results show that the stream Höje probably has some exposure to environmental pollution,

shown by its high proportion (> 1 %) of malformations - this is also confirmed by its ecological

status class (“moderate”). Considering the stream runs through a nature reserve upstream from the

sample points, and had a relatively low PTI, these findings are somewhat surprising and should be

(16)

investigated further. Skivarpsån does not show any impact, but more samples should be taken as this study indicates that monthly variations occur. Other months might present a higher proportion of malformation in Skivarpsån. In general, taxa composition could have impact on the lack of malformations. Also, to obtain a mean value of malformations that matches PTI in a stream, one probably needs to take several pesticide measurements, starting a couple of months ahead of diatom sampling. Overall, this study takes another step towards developing a new bio indicator for Swedish waters. When analysing its results with regards to earlier studies, it is clear that malformations are complex. This study indicates that diatom malformations might vary in relation to stream water herbicide concentration and probably due to taxa composition.

Acknowledgements

Thank you Antonia Liess for being an invaluable supervisor, and Maria Kahlert for taking me under your wings and teaching me (almost) everything about diatoms. Thank you Natalia Corcoll, Bonnie Bailet, Anders Stehn, Eva Herlitz, Isabel Quintana and Andreas Håkansson. Also, thank you Mikael Andersson and Kerstin Spångfors for your support and lunch boxes.

Diatom samples as well as pesticide and water chemistry data in this study were provided by Natàlia Corcoll as a part of the HERBEVOL Project No. 2015-1464, founded by the Swedish research council Formas. All index calculations were made by Anders Stehn at SLU. PTI were calculated by Andreas Håkansson at the University of Gothenburg.

References

Andrén, C. & Jarlman, A. (2009). Benthic diatoms as indicators of acidity in streams, Fundamental and Applied Limnology, 173, pp 237-253.

CEMAGREF. (1982). Etude des méthodes biologiques d ́appréciation quantitative de la qualité des eaux, Rapport Division Qualitédes Eaux Lyon-Agence Financière de Bassin Rhône-Méditerranée-Corse: 218 p.

Debenest, T., Silvestre, J., Coste, M. et al. (2008). Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities, Aquatic Toxicology, 88, pp 88-94.

Eriksson, M. & Jarlman, A. (2011). Kiselalgsundersökning i vattendrag i Skåne 2010 – statusklassning samt en studie av kopplingen mellan deformerade skal och förekomst av bekämpningsmedel. (Report 2011:5). Länsstyrelsen i Skåne län.

Eriksson, M. & Jarlman, A. (2016). Kiselalgsundersökning i vattendrag i Skåne 2015. (Report 2016:21). Länsstyrelsen i Skåne län.

Falasco, E., Bona, F., Badino, G. et al. (2009). Diatom teratological forms and environmental alterations: a review, Hydrobiologia, 623, pp 1-35.

(17)

Goedkoop, W. & Kahlert, M. (2015). Bioloiska effekter av bekämpningsmedel i vattendrag - erfarenheter från 6 års studier av bottenfauna och kiselalger i jordbruksbäckar. (Report 2015:2). Centre for Chemical Pesticides, Swedish University of Agricultural Science.

Guiry, M.D. & Guiry, G.M. (2017). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org (last accessed on 22 of August 2017).

Hedenborg, A. (2016). Zinc tolerance of freshwater diatoms isolated from sites with zinc pollution; and pH effect on zinc toxicity. Bachelor thesis, Uppsala: Swedish University of Agricultural Science.

Hofmann, G., Werum, M. & Lange-Bertalot, H. (2011). Diatomeen im Süßwasser - Benthos von Mitteleuropa.

Bestimmungsflora Kieselalgen für die ökologische Praxis über 700 der häufigsten Arten und ihre Ökologie. A.R.G.

Gantner Verlag K.G. Ruggell. 908 p.

Jan-Ers, L (2009). Kiselalgernas missbildningar under toxiska förhållanden. Bachelor thesis, Uppsala: Swedish University of Agricultural Science.

Jarlman, A. (2007). Diatom preparation according to Amelie Jarlman, January 2007, Swedish University of Agriculture. Available from: https://www.slu.se/institutioner/vatten-miljo/laboratorier/biologiska-laboratoriet/

pavaxtalger-som-miljoindikator/kiselalgspreparering/ (last accessed on 13 August 2017).

Kahlert, M. (2011). Framtagande av gemensamt delprogram Kiselalger i rinnande vatten. Verifiering av kiselalgsindex och förslag till övervakningsstationer. (Report 2011:6). Länsstyrelsen Blekinge.

Kahlert, M. (2012). Utveckling av en miljögiftsindikator – kiselalger i rinnande vatten. (Report 2012:12). Länsstyrelsen Blekinge län.

Kahlert, M. (2016). Påväxtalger/bentiska kiselalger som miljöindikator, Swedish University of Agriculture. Available from: https://www.slu.se/institutioner/vatten-miljo/laboratorier/biologiska-laboratoriet/pavaxtalger-som-miljoindikator/

(last accessed on 13 August 2017).

Kahlert, M. Jarlman, A. Herlitz, E. et al. (2016). Påväxt I sjöar och vattendrag – kiselalgsanalys. (Version 3:2, 2016-12-02). Havs- och Vattenmyndigheten.

Kelly M. G. (1998). Use of the trophic diatom index to monitor eutrophication in rivers. Water Research, 32, pp 236-242.

Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae.

Süsswasserflora von Mitteleuropa. Band 2/3. 2. Aufl. 2000. Spektrum Akademischer Verlag, Heidelberg Berlin. 599 p.

Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4. Teil:Achnanthaceae, Kritische Ergänzungen zu Achnanthes s.l., Navicula s.str., Gomphonema, Gesamtliteraturverzeich nis Teil 1-4. Süsswasserflora von Mitteleuropa.

Band 2/4. Ergänzter Nachdruck 2004. Spektrum Akademischer Verlag, Heidelberg Berlin. 468 p.

Larras, F., Montuelle, B., Rimet, F. et al. (2014). Seasonal shift in the sensitivity of a natural benthic microalgal community to a herbicide mixture: impact on the protective level of thresholds derived from species sensitivity distributions, Ecotoxicology, 23, pp 1109-1123.

Lavoie, I., Hamilton, P. B., Morin, S. et al. (2017). Diatom teratologies as biomarkers of contamination: Are all deformities ecologically meaningful? Ecological Indicators, 82, pp 539-550.

Morin, S., Cordonier, A., Lavoie, I. et al. (2012). Consistency in Diatom Response to Metal-Contaminated

Environments, H. Guasch, A. Ginebreda, A. Geiszinger (Eds.), Emerging and Priority Pollutants in Rivers, Springer- Verlag, Berlin (2012), pp 117–146.

Morin, S., Duong, T. T., Dabrin, A. et al. (2008). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France, Environmental Pollution, 151, pp

532-542.

Morin, S., Bottin, M., Mazzella, N. et al. (2009). Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): A case study in the Neste river system (South-West France), Aquatic Toxicology, 94, pp 28-39.

Naturvårdsverket (2007). Bilaga A: Bedömningsgrunder för sjöar och vattendrag. I: Status, potential och kvalitetskrav för sjöar, vattendrag, kustvatten och vatten i övergångszon : en handbok om hur kvalitetskrav i ytvattenförekomster kan

(18)

bestämmas och följas upp. Guide / Swedish Environmental Protection Agency 2007:4. Available at: https://

www.naturvardsverket.se/Documents/publikationer/620-0148-3.pdf (last accessed on 13 August 2017).

Naturvårdsverket (1999). Environmental Quality Criteria. Lakes and Watercourses. (Report 5050). Swedish Environmental Protection Agency.

Naturvårdsverket (2008). Swedish Environmental Protection Agency. De svenska miljömålen, Växtskyddsmedel i ytvatten. Available at: http://www.miljomal.se/Miljomalen/Alla-indikatorer/Indikatorsida/Metod/?

iid=140&pl=1&t=Land&l=SE# (last accessed on 20 August 2017).

Pirzadeh, P. (2011). Bekämpningsmedel i skånska vattendrag - resultat från den regionala miljöövervakningen 2010.

(Report 2011:15). Länsstyrelsen i Skåne län.

Shannon, C. E. (1948). A mathematical theory of communication, The Bell System Technical Journal, 27, pp 379–423 and 623–656.

SIS (2014a). Svensk Standard, SS-EN 13946:2014, Water quality - Guidance for the routine sampling and preparation of benthic diatoms from rivers and lakes.

SIS (2014b). Svensk Standard, SS-EN 14407:2014, Water quality –Guidance for the identification and enumeration of benthic diatom samples from rivers and lakes.

SLU (2017). Swedish University of Agricultural Sciences. OMK-laboratoriet: Analys av kemiska bekämpningsmedel.

Available at: http://www.slu.se/institutioner/vatten-miljo/laboratorier/laboratoriet-for-organisk-miljokemi-omk/ (last accessed on 24 August 2017).

Spaulding, S.A., Lubinski, D.J. and Potapova, M. (2010). Diatoms of the United States. Available at: http://

westerndiatoms.colorado.edu (last accessed on 22 of August 2017).

Ström, J. (2016). The impact of phosphorus and temperature on the toxicity of zinc on benthic diatoms. Bachelor thesis, Uppsala: Swedish University of Agricultural Science.

Wood, R. J., Mitrovic, S., M., Lim, R. P. et al. (2016). How benthic diatoms within natural communities respond to eight common herbicides with different modes of action, Science of The Total Environment, 557-558, pp 636-643.

Appendix A

Complete taxa lists of all species found in each stream each sample occasion.

Location Date Taxa Author

Höje å 13/9-16 Achnanthidium lauenburgianum (Hust.) Monnier, Lange-Bert. & Ector, 2007 Höje å 13/9-16 Achnanthidium minutissimum group II

(mean width 2,2-2,8µm)

Höje å 13/9-16 Adlafia minuscula (Grunow) Lange-Bert., 1999 Höje å 13/9-16 Amphora pediculus (Kütz.) Grunow, 1880

Höje å 13/9-16 Amphora sp. Ehrenb. ex Kütz.

Höje å 13/9-16 Aulacoseira sp. Thwaites

Höje å 13/9-16 Caloneis lancettula (Schulz) Lange-Bert. & Witkowski, 1996 Höje å 13/9-16 Cocconeis pediculus Ehrenb., 1838

Höje å 13/9-16 Cocconeis placentula incl. varietes Ehrenb., 1838 Höje å 13/9-16 Cyclostephanos dubius (Hust.) Round., 1988 Höje å 13/9-16 Cyclotella meneghiniana Kütz., 1844

Höje å 13/9-16 Discostella pseudostelligera (Hust.) Houk & Klee, 2004 Höje å 13/9-16 Eolimna minima (Grunow) Lange-Bert., 1998 Höje å 13/9-16 Fragilaria capucina var. capucina Desmazières, 1825

Höje å 13/9-16 Fragilaria capucina var. vaucheriae (Kütz.) Lange-Bert.,1980 Höje å 13/9-16 Gomphonema micropus Kütz.,1844

(19)

Höje å 13/9-16 Gomphonema parvulum (Kütz.) Kütz., 1849

Höje å 13/9-16 Gomphonema pumilum s.lat. (Grunow) E.Reichardt & Lange-Bert.

Höje å 13/9-16 Gomphonema sp. Ehrenb.

Höje å 13/9-16 Hantzschia amphioxys (Ehrenb.) Grunow, 1880 Höje å 13/9-16 Luticola ventriconfusa Lange-Bert.

Höje å 13/9-16 Mayamaea atomus var. permitis (Hust.) Lange-Bert.

Höje å 13/9-16 Melosira varians C.Agardh, 1849

Höje å 13/9-16 Meridion circulare var. circulare (Grev.) C.Agardh, 1831

Höje å 13/9-16 Navicula gregaria Donkin, 1861

Höje å 13/9-16 Navicula lanceolata (C.Agardh) Ehrenb., 1838

Höje å 13/9-16 Navicula sp. Bory

Höje å 13/9-16 Navicula tripunctata (O.F.Müll.) Bory, 1822 Höje å 13/9-16 Nitzschia dissipata (Kütz.) Grunow, 1862 Höje å 13/9-16 Nitzschia fonticola Grunow, 1881

Höje å 13/9-16 Nitzschia sp. Hassall

Höje å 13/9-16 Planothidium delicatulum (Kütz.) Round & Bukht., 1996 Höje å 13/9-16 Planothidium frequentissimum (Lange-Bert.) Lange-Bert., 1999 Höje å 13/9-16 Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bert., 1999 Höje å 13/9-16 Platessa conspicua (A.Mayer) Lange-Bert.,2005 Höje å 13/9-16 Pseudostaurosira parasitica var.

subconstricta (Grunow) E.Morales, 2003

Höje å 13/9-16 Rhoicosphenia abbreviata (C.Agardh) Lange-Bert. 1980 Höje å 13/9-16 Sellaphora joubaudii (H.Germ.) Aboal, 2003 Höje å 13/9-16 Sellaphora seminulum (Grunow) D.G.Mann, 1990 Höje å 13/9-16 Sellaphora sp.

Höje å 13/9-16 Staurosira pinnata s.lat. Ehrenb.

Höje å 13/9-16 Stephanodiscus parvus Stoermer & Håk., 1984

Location Date Taxa Author

Location Date Taxa Author

Höje å 11/10-1

6 Achnanthidium catenatum (J.Bily & Marvan) Lange-Bert. 1999 Höje å 11/10-1

6 Achnanthidium lauenburgianum (Hust.) Monnier, Lange-Bert. & Ector, 2007 Höje å 11/10-1

6 Achnanthidium minutissimum group II (mean width 2,2-2,8µm)

Höje å 11/10-1

6 Adlafia minuscula (Grunow) Lange-Bert., 1999

Höje å 11/10-1

6 Adlafia suchlandtii Moser, Lange-Bert. & Metzeltin, 1998 Höje å 11/10-1

6 Amphora pediculus (Kütz.) Grunow, 1880

Höje å 11/10-1

6 Amphora sp. Ehrenb. ex Kütz.

Höje å 11/10-1

6 Asterionella formosa Hassall, 1850

Höje å 11/10-1

6 Aulacoseira sp. Thwaites

Höje å 11/10-1

6 Cocconeis pediculus Ehrenb., 1838

Höje å 11/10-1

6 Cocconeis placentula incl. varietes Ehrenb., 1838 Höje å 11/10-1

6 Cyclostephanos dubius (Hust.) Round., 1988

Höje å 11/10-1

6 Cyclotella meneghiniana Kütz., 1844

Höje å 11/10-1

6 Cyclotella sp. (Kütz.) Bréb.

Höje å 11/10-1

6 Discostella pseudostelligera (Hust.) Houk & Klee, 2004 Höje å 11/10-1

6 Encyonema silesiacum var. silesiacum (Bleisch) D.G.Mann, 1990 Höje å 11/10-1

6 Eolimna minima (Grunow) Lange-Bert., 1998

(20)

Höje å 11/10-1

6 Fragilaria berolinensis (Lemmerm.) Lange-Bert.

Höje å 11/10-1

6 Fragilaria capucina var. capucina Desmazières, 1825 Höje å 11/10-1

6 Fragilaria capucina var. vaucheriae (Kütz.) Lange-Bert., 1980 Höje å 11/10-1

6 Fragilaria gracilis Østrup, 1910

Höje å 11/10-1

6 Fragilaria rumpens (Kütz.) G.W.F. Carlson

Höje å 11/10-1

6 Fragilaria sp. Lyngb.

Höje å 11/10-1

6 Fragilaria tenera (W. Sm.) Lange-Bert., 1981

Höje å 11/10-1

6 Gomphonema parvulum (Kütz.) Kütz., 1849

Höje å 11/10-1

6 Gomphonema pumilum s.lat. (Grunow) E.Reichardt & Lange-Bert.

Höje å 11/10-1

6 Gomphonema sp. Ehrenb.

Höje å 11/10-1

6 Hippodonta capitata (Ehrenb.) Lange-Bert., Metzeltin & Witkowski, Höje å 11/10-1 1996

6 Hippodonta sp. Lange-Bert. et al.

Höje å 11/10-1

6 Melosira varians C.Agardh, 1849

Höje å 11/10-1

6 Navicula cincta (Ehrenb.) Ralfs, 1861

Höje å 11/10-1

6 Navicula cryptotenella Lange-Bert., 1985

Höje å 11/10-1

6 Navicula gregaria Donkin, 1861

Höje å 11/10-1

6 Navicula lanceolata (C.Agardh) Ehrenb., 1838

Höje å 11/10-1

6 Navicula reichardtiana Lange-Bert., 1989

Höje å 11/10-1

6 Navicula tripunctata (O.F.Müll.) Bory, 1822

Höje å 11/10-1

6 Navicula veneta Kütz., 1844

Höje å 11/10-1

6 Nitzschia dissipata (Kütz.) Grunow, 1862

Höje å 11/10-1

6 Nitzschia fonticola Grunow, 1881

Höje å 11/10-1

6 Nitzschia palea var. debilis (Kütz.) Grunow, 1880 Höje å 11/10-1

6 Nitzschia sp. Hassall

Höje å 11/10-1

6 Planothidium frequentissimum (Lange-Bert.) Lange-Bert., 1999 Höje å 11/10-1

6 Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bert., 1999 Höje å 11/10-1

6 Planothidium rostratum (Østrup) Lange-Bert., 1999

Höje å 11/10-1

6 Platessa conspicua (A.Mayer) Lange-Bert.,2005

Höje å 11/10-1

6 Reimeria sinuata (W.Greg.) Kociolek & Stoermer, 1987

Höje å 11/10-1

6 Staurosira construens var. construens Ehrenb., 1843 Höje å 11/10-1

6 Staurosira pinnata s.lat. Ehrenb.

Höje å 11/10-1

6 Staurosira sp. Ehrenb.

Höje å 11/10-1

6 Staurosira venter (Ehrenb.) Cleve & J.D.Möller, 1881 Höje å 11/10-1

6 Stephanodiscus hantzschii Grunow, 1880

Höje å 11/10-1

6 Stephanodiscus parvus Stoermer & Håk., 1984

Höje å 11/10-1

6 Stephanodiscus sp. Ehrenb.

Location Date Taxa Author

Location Date Taxa Author

Skivarpsån 13/9-16 Achnanthidium lauenburgianum (Hust.) Monnier, Lange-Bert. & Ector, 2007 Skivarpsån 13/9-16 Achnanthidium minutissimum group II (mean

width 2,2-2,8µm) ADM2

Skivarpsån 13/9-16 Adlafia minuscula (Grunow) Lange-Bert., 1999 Skivarpsån 13/9-16 Amphora pediculus (Kütz.) Grunow, 1880

Skivarpsån 13/9-16 Amphora sp. Ehrenb. ex Kütz.

Skivarpsån 13/9-16 Aulacoseira sp. Thwaites

Skivarpsån 13/9-16 Caloneis lancettula (Schulz) Lange-Bert. & Witkowski, 1996

(21)

Skivarpsån 13/9-16 Cocconeis placentula incl. varietes Ehrenb., 1838 Skivarpsån 13/9-16 Cyclotella meneghiniana Kütz., 1844

Skivarpsån 13/9-16 Cyclotella sp. (Kütz.) Bréb.

Skivarpsån 13/9-16 Cymatopleura elliptica var. elliptica (Bréb. ex Kütz.) W.Sm., 1851 Skivarpsån 13/9-16 Encyonema silesiacum var. silesiacum (Bleisch) D.G.Mann, 1990 Skivarpsån 13/9-16 Eolimna minima (Grunow) Lange-Bert., 1998 Skivarpsån 13/9-16 Fallacia subhamulata (Grunow) D.G.Mann, 1990 Skivarpsån 13/9-16 Fragilaria capucina var. vaucheriae (Kütz.) Lange-Bert., 1980 Skivarpsån 13/9-16 Gomphonema micropus Kütz.,1844

Skivarpsån 13/9-16 Gomphonema olivaceum (Hornem.) Kütz. 1844 Skivarpsån 13/9-16 Gomphonema parvulum (Kütz.) Kütz., 1849

Skivarpsån 13/9-16 Gomphonema pumilum s.lat. (Grunow) E.Reichardt & Lange-Bert.

Skivarpsån 13/9-16 Gomphonema sp. Ehrenb.

Skivarpsån 13/9-16 Hippodonta capitata (Ehrenb.) Lange-Bert., Metzeltin & Wit- kowski, 1996

Skivarpsån 13/9-16 Karayevia oblongella (Østrup) M.Aboal, 2003 Skivarpsån 13/9-16 Luticola mutica (Kütz.) D.G.Mann, 1990 Skivarpsån 13/9-16 Mayamaea atomus var. permitis (Hust.) Lange-Bert.

Skivarpsån 13/9-16 Melosira varians C.Agardh, 1849 Skivarpsån 13/9-16 Meridion circulare var. circulare (Grev.) C.Agardh, 1831 Skivarpsån 13/9-16 Navicula gregaria Donkin, 1861

Skivarpsån 13/9-16 Navicula lanceolata (C.Agardh) Ehrenb., 1838 Skivarpsån 13/9-16 Navicula reichardtiana Lange-Bert., 1989 Skivarpsån 13/9-16 Navicula tripunctata (O.F.Müll.) Bory, 1822

Skivarpsån 13/9-16 Navicula veneta Kütz., 1844

Skivarpsån 13/9-16 Nitzschia dissipata (Kütz.) Grunow, 1862 Skivarpsån 13/9-16 Nitzschia fonticola Grunow, 1881 Skivarpsån 13/9-16 Nitzschia linearis var. linearis (C.Agardh) W.Sm.

Skivarpsån 13/9-16 Nitzschia media Hantzsch, 1860

Skivarpsån 13/9-16 Planothidium delicatulum (Kütz.) Round & Bukht., 1996 Skivarpsån 13/9-16 Planothidium frequentissimum (Lange-Bert.) Lange-Bert., 1999 Skivarpsån 13/9-16 Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bert., 1999 Skivarpsån 13/9-16 Pseudostaurosira parasitica var. subconstricta (Grunow) E.Morales, 2003

Skivarpsån 13/9-16 Reimeria sinuata (W.Greg.) Kociolek & Stoermer, 1987 Skivarpsån 13/9-16 Rhoicosphenia abbreviata (C.Agardh) Lange-Bert. 1980 Skivarpsån 13/9-16 Sellaphora joubaudii (H.Germ.) Aboal, 2003 Skivarpsån 13/9-16 Sellaphora seminulum (Grunow) D.G.Mann, 1990

Skivarpsån 13/9-16 Sellaphora sp. Mereschk.

Skivarpsån 13/9-16 Staurosira dubia Grunow

Skivarpsån 13/9-16 Staurosira venter (Ehrenb.) Cleve & J.D.Möller, 1881 Skivarpsån 13/9-16 Stephanodiscus parvus Stoermer & Håk., 1984

Skivarpsån 13/9-16 Surirella brebissonii var. kuetzingii Krammer & Lange-Bert., 1987

Location Date Taxa Author

References

Related documents

Det som också framgår i direktivtexten, men som rapporten inte tydligt lyfter fram, är dels att det står medlemsstaterna fritt att införa den modell för oberoende aggregering som

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

Both Brazil and Sweden have made bilateral cooperation in areas of technology and innovation a top priority. It has been formalized in a series of agreements and made explicit

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än

Figur 11 återger komponenternas medelvärden för de fem senaste åren, och vi ser att Sveriges bidrag från TFP är lägre än både Tysklands och Schweiz men högre än i de